File size: 7,749 Bytes
85699d6 c58c4fe 85699d6 c58c4fe 85699d6 c58c4fe 85699d6 c58c4fe 85699d6 c58c4fe 85699d6 c58c4fe 85699d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Dataset for filtered Kvasir-instrument and Hyper-Kvasir with bounding boxes."""
import os
import json
from PIL import Image
import datasets
import os
import json
import pandas as pd
import hashlib
from collections import defaultdict
import numpy as np
def cal_mid(bx): return [[[float(box['xmin'] + box['xmax']) / 2,
float(box['ymin'] + box['ymax']) / 2] for box in bx]]
def cal_mid_xy(bx): return [{"x": float(box['xmin'] + box['xmax']) / 2,
"y": float(box['ymin'] + box['ymax']) / 2} for box in bx]
def cal_sha256(file_path): return hashlib.sha256(
open(file_path, 'rb').read()).hexdigest()
def convert_to_json_format(file_path, image_width, image_height):
with open(file_path, 'r') as file:
return [
{
"label": line.split()[0],
"xmin": int((float(line.split()[1]) - float(line.split()[3]) / 2) * image_width),
"ymin": int((float(line.split()[2]) - float(line.split()[4]) / 2) * image_height),
"xmax": int((float(line.split()[1]) + float(line.split()[3]) / 2) * image_width),
"ymax": int((float(line.split()[2]) + float(line.split()[4]) / 2) * image_height),
}
for line in file.readlines()
]
class_map = {"0": "normal", "1": "cluster", "2": "pinhead"}
hyper_label_img_path = '/global/D1/projects/HOST/Datasets/hyper-kvasir/labeled-images/image-labels.csv'
hyper_df = pd.read_csv(hyper_label_img_path)
hyper_seg_img_path = '/global/D1/projects/HOST/Datasets/hyper-kvasir/segmented-images/bounding-boxes.json'
hyper_seg_img_base_path = "/global/D1/projects/HOST/Datasets/hyper-kvasir/segmented-images/images"
instr_seg_img_path = '/global/D1/projects/HOST/Datasets/kvasir-instrument/bboxes.json'
instr_seg_img_base_path = '/global/D1/projects/HOST/Datasets/kvasir-instrument/images/'
hyper_seg_imgs = json.load(open(hyper_seg_img_path))
instr_seg_imgs = json.load(open(instr_seg_img_path))
visem_root = "/global/D1/projects/HOST/Datasets/visem-tracking"
_CITATION = """\
@article{kvasir,
title={Kvasir-instrument and Hyper-Kvasir datasets for bounding box annotations},
author={Sushant Gautam and collaborators},
year={2024}
}
"""
_DESCRIPTION = """
Filtered Kvasir-instrument and Hyper-Kvasir datasets with bounding boxes for medical imaging tasks.
Each entry contains images, bounding box coordinates, and additional metadata.
"""
_HOMEPAGE = "https://example.com/kvasir-hyper-bbox"
_LICENSE = "CC BY-NC 4.0"
_URLS = {
"filtered_data": "https://example.com/kvasir-hyper-bbox-dataset.zip"
}
class KvasirHyperBBox(datasets.GeneratorBasedBuilder):
"""Dataset for Kvasir-instrument and Hyper-Kvasir with bounding boxes."""
VERSION = datasets.Version("1.0.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="bbox_dataset",
version=VERSION,
description="Dataset with bounding box annotations."
)
]
DEFAULT_CONFIG_NAME = "bbox_dataset"
def _info(self):
features = datasets.Features({
"image_data": datasets.Image(),
"image_sha256": datasets.Value("string"),
"points": datasets.Sequence(datasets.Sequence(datasets.Sequence(datasets.Value("float32")))),
"count": datasets.Value("int64"),
"label": datasets.Value("string"),
"collection_method": datasets.Value("string"),
"classification": datasets.Value("string"),
"organ": datasets.Value("string")
})
return datasets.DatasetInfo(
description=_DESCRIPTION,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
features=features
)
def _split_generators(self, dl_manager):
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={},
)
]
def _generate_examples(self):
for key, entry in hyper_seg_imgs.items():
img_path = os.path.join(hyper_seg_img_base_path, f"{key}.jpg")
hyper_entry = hyper_df.loc[hyper_df['Video file'] == key].iloc[0]
yield key, {
"image_data": open(img_path, 'rb').read(),
"image_sha256": cal_sha256(img_path),
"points": cal_mid(entry['bbox']),
"count": len(entry['bbox']),
"label": hyper_entry.Finding,
"collection_method": 'counting',
"classification": hyper_entry.Classification,
"organ": hyper_entry.Organ
}
for key, entry in instr_seg_imgs.items():
img_path = os.path.join(instr_seg_img_base_path, f"{key}.jpg")
yield key, {
"image_data": open(img_path, 'rb').read(),
"image_sha256": cal_sha256(img_path),
"points": cal_mid(entry['bbox']),
"count": len(entry['bbox']),
"label": "instrument",
"collection_method": "counting",
"classification": "instrument",
"organ": "instrument"
}
for folder in os.listdir(visem_root):
folder_path = os.path.join(visem_root, folder)
labels_all = os.listdir(folder_path+"/labels")
images = os.listdir(folder_path+"/images")
height, width = Image.open(os.path.join(
folder_path, "images", images[0])).size
labels = [labels_all[i] for i in np.linspace(
0, len(labels_all)-1, 250).astype(int)]
for label in labels:
label_path = os.path.join(folder_path, "labels", label)
image_path = label_path.replace(
"/labels/", "/images/").replace(".txt", ".jpg")
entry_bbox = convert_to_json_format(label_path, width, height)
label_dict = defaultdict(list)
for entry in entry_bbox:
label_dict[entry['label']].append(entry)
for label in label_dict:
yield cal_sha256(image_path)+label, {
"image_data": open(image_path, 'rb').read(),
"image_sha256": cal_sha256(image_path),
"points": cal_mid(label_dict[label]),
"count": len(label_dict[label]),
"label": class_map[label],
"collection_method": "counting",
"classification": "sperm",
"organ": "visem dataset"
}
# rm -rf /home/sushant/.cache/huggingface/modules/datasets_modules/datasets/kvasir-points_datasets_script/ /home/sushant/.cache/huggingface/datasets/kvasir-points_datasets_script
# datasets-cli test /global/D1/projects/HOST/Datasets/hyper-kvasir/sushant-experiments/kvasir-points_datasets_script.py --save_info --all_configs --trust_remote_cod
# huggingface-cli upload kvasir-points . . --repo-type dataset
|