SushantGautam
commited on
Update kvasir-points_datasets_script.py
Browse files
kvasir-points_datasets_script.py
CHANGED
@@ -23,15 +23,38 @@ import os
|
|
23 |
import json
|
24 |
import pandas as pd
|
25 |
import hashlib
|
|
|
|
|
26 |
|
27 |
|
28 |
-
cal_mid
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
|
31 |
def cal_sha256(file_path): return hashlib.sha256(
|
32 |
open(file_path, 'rb').read()).hexdigest()
|
33 |
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
hyper_label_img_path = '/global/D1/projects/HOST/Datasets/hyper-kvasir/labeled-images/image-labels.csv'
|
36 |
|
37 |
hyper_df = pd.read_csv(hyper_label_img_path)
|
@@ -45,6 +68,8 @@ instr_seg_img_base_path = '/global/D1/projects/HOST/Datasets/kvasir-instrument/i
|
|
45 |
hyper_seg_imgs = json.load(open(hyper_seg_img_path))
|
46 |
instr_seg_imgs = json.load(open(instr_seg_img_path))
|
47 |
|
|
|
|
|
48 |
_CITATION = """\
|
49 |
@article{kvasir,
|
50 |
title={Kvasir-instrument and Hyper-Kvasir datasets for bounding box annotations},
|
@@ -122,12 +147,11 @@ class KvasirHyperBBox(datasets.GeneratorBasedBuilder):
|
|
122 |
"label": hyper_entry.Finding,
|
123 |
"collection_method": 'counting',
|
124 |
"classification": hyper_entry.Classification,
|
125 |
-
"organ": hyper_entry.Organ
|
126 |
}
|
127 |
|
128 |
for key, entry in instr_seg_imgs.items():
|
129 |
img_path = os.path.join(instr_seg_img_base_path, f"{key}.jpg")
|
130 |
-
assert len(cal_mid(entry['bbox'])) > 0
|
131 |
yield key, {
|
132 |
"image_data": open(img_path, 'rb').read(),
|
133 |
"image_sha256": cal_sha256(img_path),
|
@@ -139,5 +163,35 @@ class KvasirHyperBBox(datasets.GeneratorBasedBuilder):
|
|
139 |
"organ": "instrument"
|
140 |
}
|
141 |
|
142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
143 |
# huggingface-cli upload kvasir-points . . --repo-type dataset
|
|
|
23 |
import json
|
24 |
import pandas as pd
|
25 |
import hashlib
|
26 |
+
from collections import defaultdict
|
27 |
+
import numpy as np
|
28 |
|
29 |
|
30 |
+
def cal_mid(bx): return [[[float(box['xmin'] + box['xmax']) / 2,
|
31 |
+
float(box['ymin'] + box['ymax']) / 2] for box in bx]]
|
32 |
+
|
33 |
+
|
34 |
+
def cal_mid_xy(bx): return [{"x": float(box['xmin'] + box['xmax']) / 2,
|
35 |
+
"y": float(box['ymin'] + box['ymax']) / 2} for box in bx]
|
36 |
|
37 |
|
38 |
def cal_sha256(file_path): return hashlib.sha256(
|
39 |
open(file_path, 'rb').read()).hexdigest()
|
40 |
|
41 |
|
42 |
+
def convert_to_json_format(file_path, image_width, image_height):
|
43 |
+
with open(file_path, 'r') as file:
|
44 |
+
return [
|
45 |
+
{
|
46 |
+
"label": line.split()[0],
|
47 |
+
"xmin": int((float(line.split()[1]) - float(line.split()[3]) / 2) * image_width),
|
48 |
+
"ymin": int((float(line.split()[2]) - float(line.split()[4]) / 2) * image_height),
|
49 |
+
"xmax": int((float(line.split()[1]) + float(line.split()[3]) / 2) * image_width),
|
50 |
+
"ymax": int((float(line.split()[2]) + float(line.split()[4]) / 2) * image_height),
|
51 |
+
}
|
52 |
+
for line in file.readlines()
|
53 |
+
]
|
54 |
+
|
55 |
+
|
56 |
+
class_map = {"0": "normal", "1": "cluster", "2": "pinhead"}
|
57 |
+
|
58 |
hyper_label_img_path = '/global/D1/projects/HOST/Datasets/hyper-kvasir/labeled-images/image-labels.csv'
|
59 |
|
60 |
hyper_df = pd.read_csv(hyper_label_img_path)
|
|
|
68 |
hyper_seg_imgs = json.load(open(hyper_seg_img_path))
|
69 |
instr_seg_imgs = json.load(open(instr_seg_img_path))
|
70 |
|
71 |
+
visem_root = "/global/D1/projects/HOST/Datasets/visem-tracking"
|
72 |
+
|
73 |
_CITATION = """\
|
74 |
@article{kvasir,
|
75 |
title={Kvasir-instrument and Hyper-Kvasir datasets for bounding box annotations},
|
|
|
147 |
"label": hyper_entry.Finding,
|
148 |
"collection_method": 'counting',
|
149 |
"classification": hyper_entry.Classification,
|
150 |
+
"organ": hyper_entry.Organ
|
151 |
}
|
152 |
|
153 |
for key, entry in instr_seg_imgs.items():
|
154 |
img_path = os.path.join(instr_seg_img_base_path, f"{key}.jpg")
|
|
|
155 |
yield key, {
|
156 |
"image_data": open(img_path, 'rb').read(),
|
157 |
"image_sha256": cal_sha256(img_path),
|
|
|
163 |
"organ": "instrument"
|
164 |
}
|
165 |
|
166 |
+
for folder in os.listdir(visem_root):
|
167 |
+
folder_path = os.path.join(visem_root, folder)
|
168 |
+
labels_all = os.listdir(folder_path+"/labels")
|
169 |
+
images = os.listdir(folder_path+"/images")
|
170 |
+
height, width = Image.open(os.path.join(
|
171 |
+
folder_path, "images", images[0])).size
|
172 |
+
labels = [labels_all[i] for i in np.linspace(
|
173 |
+
0, len(labels_all)-1, 250).astype(int)]
|
174 |
+
for label in labels:
|
175 |
+
label_path = os.path.join(folder_path, "labels", label)
|
176 |
+
image_path = label_path.replace(
|
177 |
+
"/labels/", "/images/").replace(".txt", ".jpg")
|
178 |
+
entry_bbox = convert_to_json_format(label_path, width, height)
|
179 |
+
label_dict = defaultdict(list)
|
180 |
+
for entry in entry_bbox:
|
181 |
+
label_dict[entry['label']].append(entry)
|
182 |
+
for label in label_dict:
|
183 |
+
yield cal_sha256(image_path)+label, {
|
184 |
+
"image_data": open(image_path, 'rb').read(),
|
185 |
+
"image_sha256": cal_sha256(image_path),
|
186 |
+
"points": cal_mid(label_dict[label]),
|
187 |
+
"count": len(label_dict[label]),
|
188 |
+
"label": class_map[label],
|
189 |
+
"collection_method": "counting",
|
190 |
+
"classification": "sperm",
|
191 |
+
"organ": "visem dataset"
|
192 |
+
}
|
193 |
+
|
194 |
+
|
195 |
+
# rm -rf /home/sushant/.cache/huggingface/modules/datasets_modules/datasets/kvasir-points_datasets_script/ /home/sushant/.cache/huggingface/datasets/kvasir-points_datasets_script
|
196 |
+
# datasets-cli test /global/D1/projects/HOST/Datasets/hyper-kvasir/sushant-experiments/kvasir-points_datasets_script.py --save_info --all_configs --trust_remote_cod
|
197 |
# huggingface-cli upload kvasir-points . . --repo-type dataset
|