Datasets:
language:
- bn
license: cc-by-4.0
size_categories:
- 10K<n<100K
task_categories:
- automatic-speech-recognition
dataset_info:
features:
- name: audio
dtype: audio
- name: transcription
dtype: string
- name: file_path
dtype: string
splits:
- name: test
num_bytes: 2345138893.961
num_examples: 6533
- name: validation
num_bytes: 2374606148.554
num_examples: 6594
- name: train
num_bytes: 23111288170.312
num_examples: 64491
download_size: 31898660522
dataset_size: 27831033212.827
configs:
- config_name: default
data_files:
- split: test
path: data/test-*
- split: validation
path: data/validation-*
- split: train
path: data/train-*
tags:
- speech-recognition
- Bangladeshi Bangla
- Bengali
- speech-corpus
Dataset Card for SUBAK.KO
Table of Contents
- Dataset Card for SUBAK.KO
Dataset Description
- Developed By Shahjalal University of Science and Technology, Bangladesh
- Repository: [Needs More Information]
- Paper: Bangladeshi Bangla speech corpus for automatic speech recognition research
- Leaderboard: [Needs More Information]
- Point of Contact: A. M. Samin
Dataset Summary
SUBAK.KO, a publicly available annotated Bangladeshi standard Bangla speech corpus is compiled for automatic speech recognition research. This corpus contains 241 hours of high-quality speech data, including 229 hours of read speech data and 12 hours of broadcast speech data. The read speech segment is recorded in a noise-proof studio environment from 33 male and 28 female native Bangladeshi Bangla speakers representing 8 divisions/34 districts of Bangladesh. Furthermore, the read speech segment comprises a total of 1 hour and 30 minutes of recorded speech provided by two second language (L2) speakers. The broadcast speech segment is collected from YouTube. SUBAK.KO has been manually annotated under human supervision. The associated paper reports detailed information about the development and baseline performance of SUBAK.KO.
SUBAK.KO is developed by the Department of Computer Science and Engineering (CSE) at Shahjalal University of Science and Technology (SUST), Bangladesh with financial support from the Higher Education Quality Enhancement Project (AIF Window 4, CP 3888) for “The Development of Multi-Platform Speech and Language Processing Software for Bangla” of the University Grants Commission (UGC), Bangladesh.
Supported Tasks and Leaderboards
This dataset is designed for the automatic speech recognition task. The associated paper provides the baseline results on SUBAK.KO corpus.
Languages
Bangladeshi standard Bangla
Dataset Structure
Data Instances
A typical data point comprises the path to the audio file, called path
and its transcription, called sentence
. Some additional information about the speaker and the passage which contains the transcription is provided.
{'speaker_id': 'VIVOSSPK01',
'path': '/home/admin/.cache/huggingface/datasets/downloads/extracted/b7ded9969e09942ab65313e691e6fc2e12066192ee8527e21d634aca128afbe2/vivos/train/waves/VIVOSSPK01/VIVOSSPK01_R001.wav',
'audio': {'path': '/home/admin/.cache/huggingface/datasets/downloads/extracted/b7ded9969e09942ab65313e691e6fc2e12066192ee8527e21d634aca128afbe2/vivos/train/waves/VIVOSSPK01/VIVOSSPK01_R001.wav',
'array': array([-0.00048828, -0.00018311, -0.00137329, ..., 0.00079346, 0.00091553, 0.00085449], dtype=float32),
'sampling_rate': 16000},
'sentence': 'KHÁCH SẠN'}
Data Fields
speaker_id: An id for which speaker (voice) made the recording
path: The path to the audio file
audio: A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate. Note that when accessing the audio column:
dataset[0]["audio"]
the audio file is automatically decoded and resampled todataset.features["audio"].sampling_rate
. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the"audio"
column, i.e.dataset[0]["audio"]
should always be preferred overdataset["audio"][0]
.sentence: The sentence the user was prompted to speak
Data Splits
The speech material has been subdivided into portions for train and test.
Speech was recorded in a quiet environment with high quality microphone, speakers were asked to read one sentence at a time.
Train | Test | |
---|---|---|
Speakers | 46 | 19 |
Utterances | 11660 | 760 |
Duration | 14:55 | 00:45 |
Unique Syllables | 4617 | 1692 |
Additional Information
Licensing Information
Public Domain, Creative Commons Attribution NonCommercial ShareAlike v4.0 (CC BY-NC-SA 4.0)
Citation Information
@article{kibria2022bangladeshi,
title={Bangladeshi Bangla speech corpus for automatic speech recognition research},
author={Kibria, Shafkat and Samin, Ahnaf Mozib and Kobir, M Humayon and Rahman, M Shahidur and Selim, M Reza and Iqbal, M Zafar},
journal={Speech Communication},
volume={136},
pages={84--97},
year={2022},
publisher={Elsevier}
}