|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
This dataset is collected from electronic newspapers published on the web and provided by VLSP organization.\ |
|
It consists of approximately 15k sentences, each of which contain NE information in the IOB annotation format\ |
|
""" |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@article{nguyen-et-al-2019-vlsp-ner, |
|
author = {Nguyen, Huyen and Ngo, Quyen and Vu, Luong and Mai, Vu and Nguyen, Hien}, |
|
year = {2019}, |
|
month = {01}, |
|
pages = {283-294}, |
|
title = {VLSP Shared Task: Named Entity Recognition}, |
|
volume = {34}, |
|
journal = {Journal of Computer Science and Cybernetics}, |
|
doi = {10.15625/1813-9663/34/4/13161} |
|
} |
|
""" |
|
|
|
_DATASETNAME = "vlsp2016_ner" |
|
|
|
_DESCRIPTION = """\ |
|
This dataset is collected from electronic newspapers published on the web and provided by VLSP organization. \ |
|
It consists of approximately 15k sentences, each of which contain NE information in the IOB annotation format |
|
""" |
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/datnth1709/VLSP2016-NER-data" |
|
|
|
_LANGUAGES = ["vie"] |
|
|
|
_LICENSE = Licenses.CC_BY_NC_4_0.value |
|
|
|
_LOCAL = False |
|
|
|
_URLS = { |
|
_DATASETNAME: { |
|
"train": "https://huggingface.co/datasets/datnth1709/VLSP2016-NER-data/resolve/main/data/train-00000-of-00001-b0417886a268b83a.parquet?download=true", |
|
"test": "https://huggingface.co/datasets/datnth1709/VLSP2016-NER-data/resolve/main/data/valid-00000-of-00001-846411c236133ba3.parquet?download=true", |
|
}, |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
|
|
class Visp2016NER(datasets.GeneratorBasedBuilder): |
|
"""This dataset is collected from electronic newspapers published on the web and provided by VLSP organization. |
|
It consists of approximately 15k sentences, each of which contain NE information in the IOB annotation format""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name="vlsp2016_ner_source", |
|
version=SOURCE_VERSION, |
|
description="vlsp2016_ner source schema", |
|
schema="source", |
|
subset_id="vlsp2016_ner", |
|
), |
|
SEACrowdConfig( |
|
name="vlsp2016_ner_seacrowd_seq_label", |
|
version=SEACROWD_VERSION, |
|
description="vlsp2016_ner SEACrowd schema", |
|
schema="seacrowd_seq_label", |
|
subset_id="vlsp2016_ner", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "vlsp2016_ner_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"tokens": datasets.Sequence(datasets.Value("string")), |
|
"ner_tags": datasets.Sequence(datasets.Value("int64")), |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_seq_label": |
|
features = schemas.seq_label.features([x for x in range(9)]) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
train_url = _URLS[_DATASETNAME]["train"] |
|
train_path = dl_manager.download_and_extract(train_url) |
|
|
|
test_url = _URLS[_DATASETNAME]["test"] |
|
test_path = dl_manager.download_and_extract(test_url) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": train_path, |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": test_path, |
|
"split": "test", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
df = pd.read_parquet(filepath) |
|
if self.config.schema == "source": |
|
for i in range(len(df)): |
|
row = df.iloc[i] |
|
yield ( |
|
i, |
|
{ |
|
"tokens": row["tokens"], |
|
"ner_tags": row["ner_tags"], |
|
}, |
|
) |
|
elif self.config.schema == "seacrowd_seq_label": |
|
for i in range(len(df)): |
|
row = df.iloc[i] |
|
yield ( |
|
i, |
|
{ |
|
"id": i, |
|
"tokens": row["tokens"], |
|
"labels": row["ner_tags"], |
|
}, |
|
) |
|
|