File size: 5,862 Bytes
a45d0b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This dataset is collected from electronic newspapers published on the web and provided by VLSP organization.\
It consists of approximately 15k sentences, each of which contain NE information in the IOB annotation format\
"""
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
import pandas as pd
from seacrowd.utils import schemas
from seacrowd.utils.configs import SEACrowdConfig
from seacrowd.utils.constants import Licenses, Tasks
_CITATION = """\
@article{nguyen-et-al-2019-vlsp-ner,
author = {Nguyen, Huyen and Ngo, Quyen and Vu, Luong and Mai, Vu and Nguyen, Hien},
year = {2019},
month = {01},
pages = {283-294},
title = {VLSP Shared Task: Named Entity Recognition},
volume = {34},
journal = {Journal of Computer Science and Cybernetics},
doi = {10.15625/1813-9663/34/4/13161}
}
"""
_DATASETNAME = "vlsp2016_ner"
_DESCRIPTION = """\
This dataset is collected from electronic newspapers published on the web and provided by VLSP organization. \
It consists of approximately 15k sentences, each of which contain NE information in the IOB annotation format
"""
_HOMEPAGE = "https://huggingface.co/datasets/datnth1709/VLSP2016-NER-data"
_LANGUAGES = ["vie"] # We follow ISO639-3 language code (https://iso639-3.sil.org/code_tables/639/data)
_LICENSE = Licenses.CC_BY_NC_4_0.value
_LOCAL = False
_URLS = {
_DATASETNAME: {
"train": "https://huggingface.co/datasets/datnth1709/VLSP2016-NER-data/resolve/main/data/train-00000-of-00001-b0417886a268b83a.parquet?download=true",
"test": "https://huggingface.co/datasets/datnth1709/VLSP2016-NER-data/resolve/main/data/valid-00000-of-00001-846411c236133ba3.parquet?download=true",
},
}
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION] # example: [Tasks.TRANSLATION, Tasks.NAMED_ENTITY_RECOGNITION, Tasks.RELATION_EXTRACTION]
_SOURCE_VERSION = "1.0.0"
_SEACROWD_VERSION = "2024.06.20"
class Visp2016NER(datasets.GeneratorBasedBuilder):
"""This dataset is collected from electronic newspapers published on the web and provided by VLSP organization.
It consists of approximately 15k sentences, each of which contain NE information in the IOB annotation format"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
BUILDER_CONFIGS = [
SEACrowdConfig(
name="vlsp2016_ner_source",
version=SOURCE_VERSION,
description="vlsp2016_ner source schema",
schema="source",
subset_id="vlsp2016_ner",
),
SEACrowdConfig(
name="vlsp2016_ner_seacrowd_seq_label",
version=SEACROWD_VERSION,
description="vlsp2016_ner SEACrowd schema",
schema="seacrowd_seq_label",
subset_id="vlsp2016_ner",
),
]
DEFAULT_CONFIG_NAME = "vlsp2016_ner_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"tokens": datasets.Sequence(datasets.Value("string")),
"ner_tags": datasets.Sequence(datasets.Value("int64")),
}
)
elif self.config.schema == "seacrowd_seq_label":
features = schemas.seq_label.features([x for x in range(9)])
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
"""Returns SplitGenerators."""
train_url = _URLS[_DATASETNAME]["train"]
train_path = dl_manager.download_and_extract(train_url)
test_url = _URLS[_DATASETNAME]["test"]
test_path = dl_manager.download_and_extract(test_url)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": train_path,
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": test_path,
"split": "test",
},
),
]
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]:
df = pd.read_parquet(filepath)
if self.config.schema == "source":
for i in range(len(df)):
row = df.iloc[i]
yield (
i,
{
"tokens": row["tokens"],
"ner_tags": row["ner_tags"],
},
)
elif self.config.schema == "seacrowd_seq_label":
for i in range(len(df)):
row = df.iloc[i]
yield (
i,
{
"id": i,
"tokens": row["tokens"],
"labels": row["ner_tags"],
},
)
|