id
large_stringlengths
12
12
term_id
large_stringlengths
10
10
term_name
large_stringlengths
5
147
Y_hat
float64
0
1
MIP_00005484
GO:0007098
centrosome cycle
0.000006
MIP_00005484
GO:0009225
nucleotide-sugar metabolic process
0.000153
MIP_00005484
GO:0032388
positive regulation of intracellular transport
0.000007
MIP_00005484
GO:0006164
purine nucleotide biosynthetic process
0.000443
MIP_00005484
GO:0039654
fusion of virus membrane with host endosome membrane
0.000003
MIP_00005484
GO:0061025
membrane fusion
0.000068
MIP_00005484
GO:0046777
protein autophosphorylation
0.000001
MIP_00005484
GO:0051014
actin filament severing
0.000002
MIP_00005484
GO:0019748
secondary metabolic process
0.000034
MIP_00005484
GO:0006979
response to oxidative stress
0.000806
MIP_00005484
GO:0045216
cell-cell junction organization
0.000006
MIP_00005484
GO:0030595
leukocyte chemotaxis
0.000004
MIP_00005484
GO:0045930
negative regulation of mitotic cell cycle
0.000002
MIP_00005484
GO:0015718
monocarboxylic acid transport
0.001678
MIP_00005484
GO:0051693
actin filament capping
0.000001
MIP_00005484
GO:0071028
nuclear mRNA surveillance
0.000001
MIP_00005484
GO:0007052
mitotic spindle organization
0.000001
MIP_00005484
GO:0010605
negative regulation of macromolecule metabolic process
0.000001
MIP_00005484
GO:0046689
response to mercury ion
0.00014
MIP_00005484
GO:0033048
negative regulation of mitotic sister chromatid segregation
0.000002
MIP_00005484
GO:0007031
peroxisome organization
0.000287
MIP_00005484
GO:1990138
neuron projection extension
0
MIP_00005484
GO:1903312
negative regulation of mRNA metabolic process
0
MIP_00005484
GO:0022900
electron transport chain
0.006111
MIP_00005484
GO:0044804
autophagy of nucleus
0.000046
MIP_00005484
GO:0032984
protein-containing complex disassembly
0.000002
MIP_00005484
GO:0106074
aminoacyl-tRNA metabolism involved in translational fidelity
0.000039
MIP_00005484
GO:0009151
purine deoxyribonucleotide metabolic process
0.00001
MIP_00005484
GO:0030705
cytoskeleton-dependent intracellular transport
0.000004
MIP_00005484
GO:0007088
regulation of mitotic nuclear division
0.000002
MIP_00005484
GO:0060996
dendritic spine development
0.000002
MIP_00005484
GO:0071229
cellular response to acid chemical
0.000026
MIP_00005484
GO:0006897
endocytosis
0.000028
MIP_00005484
GO:0072330
monocarboxylic acid biosynthetic process
0.000017
MIP_00005484
GO:0140013
meiotic nuclear division
0
MIP_00005484
GO:0007599
hemostasis
0.000006
MIP_00005484
GO:0000459
exonucleolytic trimming involved in rRNA processing
0.000003
MIP_00005484
GO:0060315
negative regulation of ryanodine-sensitive calcium-release channel activity
0.000013
MIP_00005484
GO:0006664
glycolipid metabolic process
0.000399
MIP_00005484
GO:0005991
trehalose metabolic process
0.000029
MIP_00005484
GO:0046578
regulation of Ras protein signal transduction
0.000006
MIP_00005484
GO:0042450
arginine biosynthetic process via ornithine
0.000002
MIP_00005484
GO:1903792
negative regulation of anion transport
0.000021
MIP_00005484
GO:0046173
polyol biosynthetic process
0.000023
MIP_00005484
GO:1990000
amyloid fibril formation
0.000006
MIP_00005484
GO:0050667
homocysteine metabolic process
0.00001
MIP_00005484
GO:0006631
fatty acid metabolic process
0.00003
MIP_00005484
GO:0006024
glycosaminoglycan biosynthetic process
0.000153
MIP_00005484
GO:0033273
response to vitamin
0.000005
MIP_00005484
GO:0050796
regulation of insulin secretion
0.000007
MIP_00005484
GO:0051336
regulation of hydrolase activity
0.000189
MIP_00005484
GO:0090502
RNA phosphodiester bond hydrolysis, endonucleolytic
0.000018
MIP_00005484
GO:0051715
cytolysis in other organism
0.000057
MIP_00005484
GO:0010562
positive regulation of phosphorus metabolic process
0.000001
MIP_00005484
GO:0050768
negative regulation of neurogenesis
0
MIP_00005484
GO:0048857
neural nucleus development
0.000006
MIP_00005484
GO:0071825
protein-lipid complex subunit organization
0.000041
MIP_00005484
GO:0000270
peptidoglycan metabolic process
0.000405
MIP_00005484
GO:0019740
nitrogen utilization
0.000005
MIP_00005484
GO:0032392
DNA geometric change
0.000023
MIP_00005484
GO:0048284
organelle fusion
0.000078
MIP_00005484
GO:0033500
carbohydrate homeostasis
0.000004
MIP_00005484
GO:0030100
regulation of endocytosis
0.00001
MIP_00005484
GO:0031667
response to nutrient levels
0.00012
MIP_00005484
GO:0036388
pre-replicative complex assembly
0.000003
MIP_00005484
GO:0099173
postsynapse organization
0.000004
MIP_00005484
GO:0043500
muscle adaptation
0.000005
MIP_00005484
GO:0051053
negative regulation of DNA metabolic process
0
MIP_00005484
GO:0022409
positive regulation of cell-cell adhesion
0
MIP_00005484
GO:0016237
lysosomal microautophagy
0.000055
MIP_00005484
GO:0046464
acylglycerol catabolic process
0.000019
MIP_00005484
GO:2000144
positive regulation of DNA-templated transcription, initiation
0
MIP_00005484
GO:0032515
negative regulation of phosphoprotein phosphatase activity
0.000001
MIP_00005484
GO:0042306
regulation of protein import into nucleus
0.000006
MIP_00005484
GO:1904356
regulation of telomere maintenance via telomere lengthening
0.000002
MIP_00005484
GO:0010959
regulation of metal ion transport
0.000015
MIP_00005484
GO:0009653
anatomical structure morphogenesis
0.001097
MIP_00005484
GO:0043588
skin development
0.000003
MIP_00005484
GO:0043491
protein kinase B signaling
0.000002
MIP_00005484
GO:0042777
plasma membrane ATP synthesis coupled proton transport
0.000048
MIP_00005484
GO:0045621
positive regulation of lymphocyte differentiation
0.000001
MIP_00005484
GO:0050709
negative regulation of protein secretion
0.000013
MIP_00005484
GO:0033627
cell adhesion mediated by integrin
0.000002
MIP_00005484
GO:0071902
positive regulation of protein serine/threonine kinase activity
0
MIP_00005484
GO:0035418
protein localization to synapse
0.000012
MIP_00005484
GO:0006633
fatty acid biosynthetic process
0.000018
MIP_00005484
GO:0051651
maintenance of location in cell
0.00006
MIP_00005484
GO:1901992
positive regulation of mitotic cell cycle phase transition
0.000001
MIP_00005484
GO:0032273
positive regulation of protein polymerization
0.000002
MIP_00005484
GO:0006486
protein glycosylation
0.000575
MIP_00005484
GO:0007029
endoplasmic reticulum organization
0.000186
MIP_00005484
GO:0098659
inorganic cation import across plasma membrane
0.000062
MIP_00005484
GO:0030193
regulation of blood coagulation
0.000003
MIP_00005484
GO:1901361
organic cyclic compound catabolic process
0.000008
MIP_00005484
GO:0120034
positive regulation of plasma membrane bounded cell projection assembly
0.000004
MIP_00005484
GO:0099536
synaptic signaling
0.000019
MIP_00005484
GO:0042590
antigen processing and presentation of exogenous peptide antigen via MHC class I
0.000006
MIP_00005484
GO:0039694
viral RNA genome replication
0
MIP_00005484
GO:0001701
in utero embryonic development
0.000013
MIP_00005484
GO:0016071
mRNA metabolic process
0.000018

Microbiome Immunity Project: Protein Universe

~200,000 predicted structures for diverse protein sequences from 1,003 representative genomes across the microbial tree of life and annotate them functionally on a per-residue basis.

Quickstart Usage

Install HuggingFace Datasets package

Each subset can be loaded into python using the Huggingface datasets library. First, from the command line install the datasets library

$ pip install datasets

Optionally set the cache directory, e.g.

$ HF_HOME=${HOME}/.cache/huggingface/
$ export HF_HOME

then, from within python load the datasets library

>>> import datasets

Load model datasets

To load one of the MIP model datasets, use datasets.load_dataset(...):

>>> dataset_tag = "rosetta_high_quality"
>>> dataset_models = datasets.load_dataset(
  path = "RosettaCommons/MIP",
  name = f"{dataset_tag}_models",
  data_dir = f"{dataset_tag}_models")['train']
Resolving data files: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 54/54 [00:00<00:00, 441.70it/s]
Downloading data: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 54/54 [01:34<00:00,  1.74s/files]
Generating train split: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 211069/211069 [01:41<00:00, 2085.54 examples/s]
Loading dataset shards: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 48/48 [00:00<00:00, 211.74it/s]

and the dataset is loaded as a datasets.arrow_dataset.Dataset

>>> dataset_models
Dataset({
    features: ['id', 'pdb', 'Filter_Stage2_aBefore', 'Filter_Stage2_bQuarter', 'Filter_Stage2_cHalf', 'Filter_Stage2_dEnd', 'clashes_bb', 'clashes_total', 'score', 'silent_score', 'time'],
    num_rows: 211069
})

which is a column oriented format that can be accessed directly, converted in to a pandas.DataFrame, or parquet format, e.g.

>>> dataset_models.data.column('pdb')
>>> dataset_models.to_pandas()
>>> dataset_models.to_parquet("dataset.parquet")

Load Function Predictions

Function predictions are generated using DeepFRI across

>>> dataset_function_prediction = datasets.load_dataset(
  path = "RosettaCommons/MIP",
  name = f"{dataset_tag}_function_predictions",
  data_dir = f"{dataset_tag}_function_predictions")['train']
Downloading readme: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 15.4k/15.4k [00:00<00:00, 264kB/s]
Resolving data files: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 219/219 [00:00<00:00, 1375.51it/s]
Downloading data: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 219/219 [13:04<00:00,  3.58s/files]
Generating train split: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1332900735/1332900735 [13:11<00:00, 1684288.89 examples/s]
Loading dataset shards: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 219/219 [01:22<00:00,  2.66it/s]

this loads the >1.3B function predictions for all 211069 targets across 6315 GO and EC ontology terms. The predictions are stored in long format, but can be easily converted to a wide format using pandas:

>>> import pandas
>>> dataset_function_prediction_wide = pandas.pivot(
  dataset_function_prediction.data.select(['id', 'term_id', 'Y_hat']).to_pandas(),
  columns = "term_id",
  index = "id",
  values = "Y_hat")
>>> dataset_function_prediction_wide.shape
(211069, 6315)

Dataset Details

Dataset Description

Large-scale structure prediction on representative protein domains from the Genomic Encyclopedia of Bacteria and Archaea (GEBA1003) reference genome database across the microbial tree of life. From a non-redundant GEBA1003 gene catalog protein sequences without matches to any structural databases and which produced multiple-sequence alignments of N_eff > 16 and all putative novel domains between 40 and 200 residues were extracted. For each sequence 20,000 Rosetta de novo models and up to 5 DMPfold models were generated. The initial output dataset (MIP_raw) of about 240,000 models were curated to high-quality models comprising about 75% of the original dataset (MIP_curated): Models were filtered out if (1) Rosetta models had >60% coil content or DMPFold models with >80% coil content, (2) the averaging the pairwise TM-scores of the 10 lowest-scoring models was less than 0.4, and (3) if the Rosetta and DMPfold models had TM-score less than 0.5. Functional annotations of the entire dataset were created using structure-based Graph Convolutional Network embeddings from DeepFRI. The highest quality structure for each sequence for both Rosetta and DMPFold, is included in this dataset; the entire dataset of more than 5 billion Rosetta models and 1 million DMPFold models is available upon request.

  • Acknowledgements: We kindly acknowledge the support of the IBM World Community Grid team (Caitlin Larkin, Juan A Hindo, Al Seippel, Erika Tuttle, Jonathan D Armstrong, Kevin Reed, Ray Johnson, and Viktors Berstis), and the community of 790,000 volunteers who donated 140,661 computational years since Aug 2017 of their computer time over the course of the project. This research was also supported in part by PLGrid Infrastructure (to PS). The authors thank Hera Vlamakis and Damian Plichta from the Broad Institute for helpful discussions. The work was supported by the Flatiron Institute as part of the Simons Foundation to J.K.L., P.D.R., V.G., D.B., C.C., A.P., N.C., I.F., and R.B. This research was also supported by grants NAWA PPN/PPO/2018/1/00014 to P.S. and T.K., PLGrid to P.S., and NIH - DK043351 to T.V. and R.J.X.

  • License: cc-by-4.0

Dataset Sources

Uses

Exploration of sequence-structure-function relationship in naturally ocurring proteins. The MIP database is complementary to and distinct from the other large-scale predicted protein structure databases such as the EBI AlphaFold database because it consists of proteins from Archaea and Bacteria, whose protein sequences are generally shorter than Eukaryotic.

Out-of-Scope Use

While this dataset has been curated for quality, in some cases the predicted structures may not represent physically realistic conformations. Thus caution much be used when using it as training data for protein structure prediction and design.

Source Data

Sequences were obtained from the Genomic Encyclopedia of Bacteria and Archaea (GEBA1003) reference genome database across the microbial tree of life:

1,003 reference genomes of bacterial and archaeal isolates expand coverage of the tree of life We present 1,003 reference genomes that were sequenced as part of the Genomic Encyclopedia of Bacteria and Archaea (GEBA) initiative, selected to maximize sequence coverage of phylogenetic space. These genomes double the number of existing type strains and expand their overall phylogenetic diversity by 25%. Comparative analyses with previously available finished and draft genomes reveal a 10.5% increase in novel protein families as a function of phylogenetic diversity. The GEBA genomes recruit 25 million previously unassigned metagenomic proteins from 4,650 samples, improving their phylogenetic and functional interpretation. We identify numerous biosynthetic clusters and experimentally validate a divergent phenazine cluster with potential new chemical structure and antimicrobial activity. This Resource is the largest single release of reference genomes to date. Bacterial and archaeal isolate sequence space is still far from saturated, and future endeavors in this direction will continue to be a valuable resource for scientific discovery.

Citation

@article{KoehlerLeman2023,
  title = {Sequence-structure-function relationships in the microbial protein universe},
  volume = {14},
  ISSN = {2041-1723},
  url = {http://dx.doi.org/10.1038/s41467-023-37896-w},
  DOI = {10.1038/s41467-023-37896-w},
  number = {1},
  journal = {Nature Communications},
  publisher = {Springer Science and Business Media LLC},
  author = {Koehler Leman,  Julia and Szczerbiak,  Pawel and Renfrew,  P. Douglas and Gligorijevic,  Vladimir and Berenberg,  Daniel and Vatanen,  Tommi and Taylor,  Bryn C. and Chandler,  Chris and Janssen,  Stefan and Pataki,  Andras and Carriero,  Nick and Fisk,  Ian and Xavier,  Ramnik J. and Knight,  Rob and Bonneau,  Richard and Kosciolek,  Tomasz},
  year = {2023},
  month = apr
}

Dataset Card Authors

Matthew O'Meara ([email protected])

Downloads last month
337

Collection including RosettaCommons/MIP