id
large_stringlengths 12
12
| term_id
large_stringlengths 10
10
| term_name
large_stringlengths 5
147
| Y_hat
float64 0
1
|
---|---|---|---|
MIP_00005484 | GO:0007098 | centrosome cycle | 0.000006 |
MIP_00005484 | GO:0009225 | nucleotide-sugar metabolic process | 0.000153 |
MIP_00005484 | GO:0032388 | positive regulation of intracellular transport | 0.000007 |
MIP_00005484 | GO:0006164 | purine nucleotide biosynthetic process | 0.000443 |
MIP_00005484 | GO:0039654 | fusion of virus membrane with host endosome membrane | 0.000003 |
MIP_00005484 | GO:0061025 | membrane fusion | 0.000068 |
MIP_00005484 | GO:0046777 | protein autophosphorylation | 0.000001 |
MIP_00005484 | GO:0051014 | actin filament severing | 0.000002 |
MIP_00005484 | GO:0019748 | secondary metabolic process | 0.000034 |
MIP_00005484 | GO:0006979 | response to oxidative stress | 0.000806 |
MIP_00005484 | GO:0045216 | cell-cell junction organization | 0.000006 |
MIP_00005484 | GO:0030595 | leukocyte chemotaxis | 0.000004 |
MIP_00005484 | GO:0045930 | negative regulation of mitotic cell cycle | 0.000002 |
MIP_00005484 | GO:0015718 | monocarboxylic acid transport | 0.001678 |
MIP_00005484 | GO:0051693 | actin filament capping | 0.000001 |
MIP_00005484 | GO:0071028 | nuclear mRNA surveillance | 0.000001 |
MIP_00005484 | GO:0007052 | mitotic spindle organization | 0.000001 |
MIP_00005484 | GO:0010605 | negative regulation of macromolecule metabolic process | 0.000001 |
MIP_00005484 | GO:0046689 | response to mercury ion | 0.00014 |
MIP_00005484 | GO:0033048 | negative regulation of mitotic sister chromatid segregation | 0.000002 |
MIP_00005484 | GO:0007031 | peroxisome organization | 0.000287 |
MIP_00005484 | GO:1990138 | neuron projection extension | 0 |
MIP_00005484 | GO:1903312 | negative regulation of mRNA metabolic process | 0 |
MIP_00005484 | GO:0022900 | electron transport chain | 0.006111 |
MIP_00005484 | GO:0044804 | autophagy of nucleus | 0.000046 |
MIP_00005484 | GO:0032984 | protein-containing complex disassembly | 0.000002 |
MIP_00005484 | GO:0106074 | aminoacyl-tRNA metabolism involved in translational fidelity | 0.000039 |
MIP_00005484 | GO:0009151 | purine deoxyribonucleotide metabolic process | 0.00001 |
MIP_00005484 | GO:0030705 | cytoskeleton-dependent intracellular transport | 0.000004 |
MIP_00005484 | GO:0007088 | regulation of mitotic nuclear division | 0.000002 |
MIP_00005484 | GO:0060996 | dendritic spine development | 0.000002 |
MIP_00005484 | GO:0071229 | cellular response to acid chemical | 0.000026 |
MIP_00005484 | GO:0006897 | endocytosis | 0.000028 |
MIP_00005484 | GO:0072330 | monocarboxylic acid biosynthetic process | 0.000017 |
MIP_00005484 | GO:0140013 | meiotic nuclear division | 0 |
MIP_00005484 | GO:0007599 | hemostasis | 0.000006 |
MIP_00005484 | GO:0000459 | exonucleolytic trimming involved in rRNA processing | 0.000003 |
MIP_00005484 | GO:0060315 | negative regulation of ryanodine-sensitive calcium-release channel activity | 0.000013 |
MIP_00005484 | GO:0006664 | glycolipid metabolic process | 0.000399 |
MIP_00005484 | GO:0005991 | trehalose metabolic process | 0.000029 |
MIP_00005484 | GO:0046578 | regulation of Ras protein signal transduction | 0.000006 |
MIP_00005484 | GO:0042450 | arginine biosynthetic process via ornithine | 0.000002 |
MIP_00005484 | GO:1903792 | negative regulation of anion transport | 0.000021 |
MIP_00005484 | GO:0046173 | polyol biosynthetic process | 0.000023 |
MIP_00005484 | GO:1990000 | amyloid fibril formation | 0.000006 |
MIP_00005484 | GO:0050667 | homocysteine metabolic process | 0.00001 |
MIP_00005484 | GO:0006631 | fatty acid metabolic process | 0.00003 |
MIP_00005484 | GO:0006024 | glycosaminoglycan biosynthetic process | 0.000153 |
MIP_00005484 | GO:0033273 | response to vitamin | 0.000005 |
MIP_00005484 | GO:0050796 | regulation of insulin secretion | 0.000007 |
MIP_00005484 | GO:0051336 | regulation of hydrolase activity | 0.000189 |
MIP_00005484 | GO:0090502 | RNA phosphodiester bond hydrolysis, endonucleolytic | 0.000018 |
MIP_00005484 | GO:0051715 | cytolysis in other organism | 0.000057 |
MIP_00005484 | GO:0010562 | positive regulation of phosphorus metabolic process | 0.000001 |
MIP_00005484 | GO:0050768 | negative regulation of neurogenesis | 0 |
MIP_00005484 | GO:0048857 | neural nucleus development | 0.000006 |
MIP_00005484 | GO:0071825 | protein-lipid complex subunit organization | 0.000041 |
MIP_00005484 | GO:0000270 | peptidoglycan metabolic process | 0.000405 |
MIP_00005484 | GO:0019740 | nitrogen utilization | 0.000005 |
MIP_00005484 | GO:0032392 | DNA geometric change | 0.000023 |
MIP_00005484 | GO:0048284 | organelle fusion | 0.000078 |
MIP_00005484 | GO:0033500 | carbohydrate homeostasis | 0.000004 |
MIP_00005484 | GO:0030100 | regulation of endocytosis | 0.00001 |
MIP_00005484 | GO:0031667 | response to nutrient levels | 0.00012 |
MIP_00005484 | GO:0036388 | pre-replicative complex assembly | 0.000003 |
MIP_00005484 | GO:0099173 | postsynapse organization | 0.000004 |
MIP_00005484 | GO:0043500 | muscle adaptation | 0.000005 |
MIP_00005484 | GO:0051053 | negative regulation of DNA metabolic process | 0 |
MIP_00005484 | GO:0022409 | positive regulation of cell-cell adhesion | 0 |
MIP_00005484 | GO:0016237 | lysosomal microautophagy | 0.000055 |
MIP_00005484 | GO:0046464 | acylglycerol catabolic process | 0.000019 |
MIP_00005484 | GO:2000144 | positive regulation of DNA-templated transcription, initiation | 0 |
MIP_00005484 | GO:0032515 | negative regulation of phosphoprotein phosphatase activity | 0.000001 |
MIP_00005484 | GO:0042306 | regulation of protein import into nucleus | 0.000006 |
MIP_00005484 | GO:1904356 | regulation of telomere maintenance via telomere lengthening | 0.000002 |
MIP_00005484 | GO:0010959 | regulation of metal ion transport | 0.000015 |
MIP_00005484 | GO:0009653 | anatomical structure morphogenesis | 0.001097 |
MIP_00005484 | GO:0043588 | skin development | 0.000003 |
MIP_00005484 | GO:0043491 | protein kinase B signaling | 0.000002 |
MIP_00005484 | GO:0042777 | plasma membrane ATP synthesis coupled proton transport | 0.000048 |
MIP_00005484 | GO:0045621 | positive regulation of lymphocyte differentiation | 0.000001 |
MIP_00005484 | GO:0050709 | negative regulation of protein secretion | 0.000013 |
MIP_00005484 | GO:0033627 | cell adhesion mediated by integrin | 0.000002 |
MIP_00005484 | GO:0071902 | positive regulation of protein serine/threonine kinase activity | 0 |
MIP_00005484 | GO:0035418 | protein localization to synapse | 0.000012 |
MIP_00005484 | GO:0006633 | fatty acid biosynthetic process | 0.000018 |
MIP_00005484 | GO:0051651 | maintenance of location in cell | 0.00006 |
MIP_00005484 | GO:1901992 | positive regulation of mitotic cell cycle phase transition | 0.000001 |
MIP_00005484 | GO:0032273 | positive regulation of protein polymerization | 0.000002 |
MIP_00005484 | GO:0006486 | protein glycosylation | 0.000575 |
MIP_00005484 | GO:0007029 | endoplasmic reticulum organization | 0.000186 |
MIP_00005484 | GO:0098659 | inorganic cation import across plasma membrane | 0.000062 |
MIP_00005484 | GO:0030193 | regulation of blood coagulation | 0.000003 |
MIP_00005484 | GO:1901361 | organic cyclic compound catabolic process | 0.000008 |
MIP_00005484 | GO:0120034 | positive regulation of plasma membrane bounded cell projection assembly | 0.000004 |
MIP_00005484 | GO:0099536 | synaptic signaling | 0.000019 |
MIP_00005484 | GO:0042590 | antigen processing and presentation of exogenous peptide antigen via MHC class I | 0.000006 |
MIP_00005484 | GO:0039694 | viral RNA genome replication | 0 |
MIP_00005484 | GO:0001701 | in utero embryonic development | 0.000013 |
MIP_00005484 | GO:0016071 | mRNA metabolic process | 0.000018 |
Microbiome Immunity Project: Protein Universe
~200,000 predicted structures for diverse protein sequences from 1,003 representative genomes across the microbial tree of life and annotate them functionally on a per-residue basis.
Quickstart Usage
Install HuggingFace Datasets package
Each subset can be loaded into python using the Huggingface datasets library.
First, from the command line install the datasets
library
$ pip install datasets
Optionally set the cache directory, e.g.
$ HF_HOME=${HOME}/.cache/huggingface/
$ export HF_HOME
then, from within python load the datasets library
>>> import datasets
Load model datasets
To load one of the MIP
model datasets, use datasets.load_dataset(...)
:
>>> dataset_tag = "rosetta_high_quality"
>>> dataset_models = datasets.load_dataset(
path = "RosettaCommons/MIP",
name = f"{dataset_tag}_models",
data_dir = f"{dataset_tag}_models")['train']
Resolving data files: 100%|βββββββββββββββββββββββββββββββββββββββββ| 54/54 [00:00<00:00, 441.70it/s]
Downloading data: 100%|βββββββββββββββββββββββββββββββββββββββββββ| 54/54 [01:34<00:00, 1.74s/files]
Generating train split: 100%|βββββββββββββββββββββββ| 211069/211069 [01:41<00:00, 2085.54 examples/s]
Loading dataset shards: 100%|βββββββββββββββββββββββββββββββββββββββ| 48/48 [00:00<00:00, 211.74it/s]
and the dataset is loaded as a datasets.arrow_dataset.Dataset
>>> dataset_models
Dataset({
features: ['id', 'pdb', 'Filter_Stage2_aBefore', 'Filter_Stage2_bQuarter', 'Filter_Stage2_cHalf', 'Filter_Stage2_dEnd', 'clashes_bb', 'clashes_total', 'score', 'silent_score', 'time'],
num_rows: 211069
})
which is a column oriented format that can be accessed directly, converted in to a pandas.DataFrame
, or parquet
format, e.g.
>>> dataset_models.data.column('pdb')
>>> dataset_models.to_pandas()
>>> dataset_models.to_parquet("dataset.parquet")
Load Function Predictions
Function predictions are generated using DeepFRI
across
>>> dataset_function_prediction = datasets.load_dataset(
path = "RosettaCommons/MIP",
name = f"{dataset_tag}_function_predictions",
data_dir = f"{dataset_tag}_function_predictions")['train']
Downloading readme: 100%|ββββββββββββββββββββββββββββββββββββββββ| 15.4k/15.4k [00:00<00:00, 264kB/s]
Resolving data files: 100%|ββββββββββββββββββββββββββββββββββββββ| 219/219 [00:00<00:00, 1375.51it/s]
Downloading data: 100%|βββββββββββββββββββββββββββββββββββββββββ| 219/219 [13:04<00:00, 3.58s/files]
Generating train split: 100%|ββββββββββββ| 1332900735/1332900735 [13:11<00:00, 1684288.89 examples/s]
Loading dataset shards: 100%|ββββββββββββββββββββββββββββββββββββββ| 219/219 [01:22<00:00, 2.66it/s]
this loads the >1.3B
function predictions for all 211069
targets across 6315
GO and EC ontology terms.
The predictions are stored in long format, but can be easily converted to a wide format using pandas:
>>> import pandas
>>> dataset_function_prediction_wide = pandas.pivot(
dataset_function_prediction.data.select(['id', 'term_id', 'Y_hat']).to_pandas(),
columns = "term_id",
index = "id",
values = "Y_hat")
>>> dataset_function_prediction_wide.shape
(211069, 6315)
Dataset Details
Dataset Description
Large-scale structure prediction on representative protein domains from the Genomic Encyclopedia of Bacteria and Archaea (GEBA1003) reference genome database across the microbial tree of life. From a non-redundant GEBA1003 gene catalog protein sequences without matches to any structural databases and which produced multiple-sequence alignments of N_eff > 16 and all putative novel domains between 40 and 200 residues were extracted. For each sequence 20,000 Rosetta de novo models and up to 5 DMPfold models were generated. The initial output dataset (MIP_raw) of about 240,000 models were curated to high-quality models comprising about 75% of the original dataset (MIP_curated): Models were filtered out if (1) Rosetta models had >60% coil content or DMPFold models with >80% coil content, (2) the averaging the pairwise TM-scores of the 10 lowest-scoring models was less than 0.4, and (3) if the Rosetta and DMPfold models had TM-score less than 0.5. Functional annotations of the entire dataset were created using structure-based Graph Convolutional Network embeddings from DeepFRI. The highest quality structure for each sequence for both Rosetta and DMPFold, is included in this dataset; the entire dataset of more than 5 billion Rosetta models and 1 million DMPFold models is available upon request.
Acknowledgements: We kindly acknowledge the support of the IBM World Community Grid team (Caitlin Larkin, Juan A Hindo, Al Seippel, Erika Tuttle, Jonathan D Armstrong, Kevin Reed, Ray Johnson, and Viktors Berstis), and the community of 790,000 volunteers who donated 140,661 computational years since Aug 2017 of their computer time over the course of the project. This research was also supported in part by PLGrid Infrastructure (to PS). The authors thank Hera Vlamakis and Damian Plichta from the Broad Institute for helpful discussions. The work was supported by the Flatiron Institute as part of the Simons Foundation to J.K.L., P.D.R., V.G., D.B., C.C., A.P., N.C., I.F., and R.B. This research was also supported by grants NAWA PPN/PPO/2018/1/00014 to P.S. and T.K., PLGrid to P.S., and NIH - DK043351 to T.V. and R.J.X.
License: cc-by-4.0
Dataset Sources
- Repository: https://github.com/microbiome-immunity-project/protein_universe
- Paper: Koehler Leman, J., Szczerbiak, P., Renfrew, P. D., Gligorijevic, V., Berenberg, D., Vatanen, T., β¦ Kosciolek, T. (2023). Sequence-structure-function relationships in the microbial protein universe. Nature Communications, 14(1), 2351. doi:10.1038/s41467-023-37896-w
- Zenodo Repository: https://doi.org/10.5281/zenodo.6611431
Uses
Exploration of sequence-structure-function relationship in naturally ocurring proteins. The MIP database is complementary to and distinct from the other large-scale predicted protein structure databases such as the EBI AlphaFold database because it consists of proteins from Archaea and Bacteria, whose protein sequences are generally shorter than Eukaryotic.
Out-of-Scope Use
While this dataset has been curated for quality, in some cases the predicted structures may not represent physically realistic conformations. Thus caution much be used when using it as training data for protein structure prediction and design.
Source Data
Sequences were obtained from the Genomic Encyclopedia of Bacteria and Archaea (GEBA1003) reference genome database across the microbial tree of life:
1,003 reference genomes of bacterial and archaeal isolates expand coverage of the tree of life We present 1,003 reference genomes that were sequenced as part of the Genomic Encyclopedia of Bacteria and Archaea (GEBA) initiative, selected to maximize sequence coverage of phylogenetic space. These genomes double the number of existing type strains and expand their overall phylogenetic diversity by 25%. Comparative analyses with previously available finished and draft genomes reveal a 10.5% increase in novel protein families as a function of phylogenetic diversity. The GEBA genomes recruit 25 million previously unassigned metagenomic proteins from 4,650 samples, improving their phylogenetic and functional interpretation. We identify numerous biosynthetic clusters and experimentally validate a divergent phenazine cluster with potential new chemical structure and antimicrobial activity. This Resource is the largest single release of reference genomes to date. Bacterial and archaeal isolate sequence space is still far from saturated, and future endeavors in this direction will continue to be a valuable resource for scientific discovery.
Citation
@article{KoehlerLeman2023,
title = {Sequence-structure-function relationships in the microbial protein universe},
volume = {14},
ISSN = {2041-1723},
url = {http://dx.doi.org/10.1038/s41467-023-37896-w},
DOI = {10.1038/s41467-023-37896-w},
number = {1},
journal = {Nature Communications},
publisher = {Springer Science and Business Media LLC},
author = {Koehler Leman, Julia and Szczerbiak, Pawel and Renfrew, P. Douglas and Gligorijevic, Vladimir and Berenberg, Daniel and Vatanen, Tommi and Taylor, Bryn C. and Chandler, Chris and Janssen, Stefan and Pataki, Andras and Carriero, Nick and Fisk, Ian and Xavier, Ramnik J. and Knight, Rob and Bonneau, Richard and Kosciolek, Tomasz},
year = {2023},
month = apr
}
Dataset Card Authors
Matthew O'Meara ([email protected])
- Downloads last month
- 337