Datasets:
Tasks:
Automatic Speech Recognition
Sub-tasks:
keyword-spotting
Size:
10K<n<100K
ArXiv:
Tags:
speech-recognition
License:
metadata
annotations_creators:
- expert-generated
- crowdsourced
- machine-generated
language_creators:
- crowdsourced
- expert-generated
language:
- en
- fr
- it
- es
- pt
- de
- nl
- ru
- pl
- cs
- ko
- zh
license:
- cc-by-4.0
multilinguality:
- multilingual
size_categories:
- 10K<n<100K
task_categories:
- automatic-speech-recognition
- speech-processing
task_ids:
- speech-recognition
- keyword-spotting
pretty_name: MInDS-14
language_bcp47:
- en
- en-GB
- en-US
- en-AU
- fr
- it
- es
- pt
- de
- nl
- ru
- pl
- cs
- ko
- zh
dataset_info:
config_name: cs-CZ
features:
- name: path
dtype: string
- name: audio
dtype:
audio:
sampling_rate: 8000
- name: transcription
dtype: string
- name: english_transcription
dtype: string
- name: intent_class
dtype:
class_label:
names:
'0': abroad
'1': address
'2': app_error
'3': atm_limit
'4': balance
'5': business_loan
'6': card_issues
'7': cash_deposit
'8': direct_debit
'9': freeze
'10': high_value_payment
'11': joint_account
'12': latest_transactions
'13': pay_bill
- name: lang_id
dtype:
class_label:
names:
'0': cs-CZ
'1': de-DE
'2': en-AU
'3': en-GB
'4': en-US
'5': es-ES
'6': fr-FR
'7': it-IT
'8': ko-KR
'9': nl-NL
'10': pl-PL
'11': pt-PT
'12': ru-RU
'13': zh-CN
splits:
- name: train
num_bytes: 40441715
num_examples: 574
download_size: 36488611
dataset_size: 40441715
configs:
- config_name: cs-CZ
data_files:
- split: train
path: cs-CZ/train-*
MInDS-14
Dataset Description
- Fine-Tuning script: pytorch/audio-classification
- Paper: Multilingual and Cross-Lingual Intent Detection from Spoken Data
- Total amount of disk used: ca. 500 MB
MINDS-14 is training and evaluation resource for intent detection task with spoken data. It covers 14 intents extracted from a commercial system in the e-banking domain, associated with spoken examples in 14 diverse language varieties.
Example
MInDS-14 can be downloaded and used as follows:
from datasets import load_dataset
minds_14 = load_dataset("PolyAI/minds14", "fr-FR") # for French
# to download all data for multi-lingual fine-tuning uncomment following line
# minds_14 = load_dataset("PolyAI/all", "all")
# see structure
print(minds_14)
# load audio sample on the fly
audio_input = minds_14["train"][0]["audio"] # first decoded audio sample
intent_class = minds_14["train"][0]["intent_class"] # first transcription
intent = minds_14["train"].features["intent_class"].names[intent_class]
# use audio_input and language_class to fine-tune your model for audio classification
Dataset Structure
We show detailed information the example configurations fr-FR
of the dataset.
All other configurations have the same structure.
Data Instances
fr-FR
- Size of downloaded dataset files: 471 MB
- Size of the generated dataset: 300 KB
- Total amount of disk used: 471 MB
An example of a datainstance of the config fr-FR
looks as follows:
{
"path": "/home/patrick/.cache/huggingface/datasets/downloads/extracted/3ebe2265b2f102203be5e64fa8e533e0c6742e72268772c8ac1834c5a1a921e3/fr-FR~ADDRESS/response_4.wav",
"audio": {
"path": "/home/patrick/.cache/huggingface/datasets/downloads/extracted/3ebe2265b2f102203be5e64fa8e533e0c6742e72268772c8ac1834c5a1a921e3/fr-FR~ADDRESS/response_4.wav",
"array": array(
[0.0, 0.0, 0.0, ..., 0.0, 0.00048828, -0.00024414], dtype=float32
),
"sampling_rate": 8000,
},
"transcription": "je souhaite changer mon adresse",
"english_transcription": "I want to change my address",
"intent_class": 1,
"lang_id": 6,
}
Data Fields
The data fields are the same among all splits.
- path (str): Path to the audio file
- audio (dict): Audio object including loaded audio array, sampling rate and path ot audio
- transcription (str): Transcription of the audio file
- english_transcription (str): English transcription of the audio file
- intent_class (int): Class id of intent
- lang_id (int): Id of language
Data Splits
Every config only has the "train"
split containing of ca. 600 examples.
Dataset Creation
Considerations for Using the Data
Social Impact of Dataset
Discussion of Biases
Other Known Limitations
Additional Information
Dataset Curators
Licensing Information
All datasets are licensed under the Creative Commons license (CC-BY).
Citation Information
@article{DBLP:journals/corr/abs-2104-08524,
author = {Daniela Gerz and
Pei{-}Hao Su and
Razvan Kusztos and
Avishek Mondal and
Michal Lis and
Eshan Singhal and
Nikola Mrksic and
Tsung{-}Hsien Wen and
Ivan Vulic},
title = {Multilingual and Cross-Lingual Intent Detection from Spoken Data},
journal = {CoRR},
volume = {abs/2104.08524},
year = {2021},
url = {https://arxiv.org/abs/2104.08524},
eprinttype = {arXiv},
eprint = {2104.08524},
timestamp = {Mon, 26 Apr 2021 17:25:10 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2104-08524.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
Contributions
Thanks to @patrickvonplaten for adding this dataset