Pierre Lepagnol
Adding scripts + data
b109984
raw
history blame
9.09 kB
CDR - Extracting Chemical-Disease Relations from Academic Literature
# Source:
https://github.com/snorkel-team/snorkel-extraction/tree/master/tutorials/cdr
# Labels:
0: Negative, the drug does NOT induce the disease
1: Positive, the drug induces the disease
33 Label functions (Use ctrl+F to search for implementation)
LFs = [
LF_c_cause_d,
LF_c_d,
LF_c_induced_d,
LF_c_treat_d,
LF_c_treat_d_wide,
LF_closer_chem,
LF_closer_dis,
LF_ctd_marker_c_d,
LF_ctd_marker_induce,
LF_ctd_therapy_treat,
LF_ctd_unspecified_treat,
LF_ctd_unspecified_induce,
LF_d_following_c,
LF_d_induced_by_c,
LF_d_induced_by_c_tight,
LF_d_treat_c,
LF_develop_d_following_c,
LF_far_c_d,
LF_far_d_c,
LF_improve_before_disease,
LF_in_ctd_therapy,
LF_in_ctd_marker,
LF_in_patient_with,
LF_induce,
LF_induce_name,
LF_induced_other,
LF_level,
LF_measure,
LF_neg_d,
LF_risk_d,
LF_treat_d,
LF_uncertain,
LF_weak_assertions,
]
##### Distant supervision approaches
# We'll use the [Comparative Toxicogenomics Database](http://ctdbase.org/) (CTD) for distant supervision.
# The CTD lists chemical-condition entity pairs under three categories: therapy, marker, and unspecified.
# Therapy means the chemical treats the condition, marker means the chemical is typically present with the condition,
# and unspecified is...unspecified. We can write LFs based on these categories.
### LF_in_ctd_unspecified
def LF_in_ctd_unspecified(c):
return -1 * cand_in_ctd_unspecified(c)
### LF_in_ctd_therapy
def LF_in_ctd_therapy(c):
return -1 * cand_in_ctd_therapy(c)
### LF_in_ctd_marker
def LF_in_ctd_marker(c):
return cand_in_ctd_marker(c)
##### Text pattern approaches
# Now we'll use some LF helpers to create LFs based on indicative text patterns.
# We came up with these rules by using the viewer to examine training candidates and noting frequent patterns.
import re
from snorkel.lf_helpers import (
get_tagged_text,
rule_regex_search_tagged_text,
rule_regex_search_btw_AB,
rule_regex_search_btw_BA,
rule_regex_search_before_A,
rule_regex_search_before_B,
)
# List to parenthetical
def ltp(x):
return '(' + '|'.join(x) + ')'
### LF_induce
def LF_induce(c):
return 1 if re.search(r'{{A}}.{0,20}induc.{0,20}{{B}}', get_tagged_text(c), flags=re.I) else 0
### LF_d_induced_by_c
causal_past = ['induced', 'caused', 'due']
def LF_d_induced_by_c(c):
return rule_regex_search_btw_BA(c, '.{0,50}' + ltp(causal_past) + '.{0,9}(by|to).{0,50}', 1)
### LF_d_induced_by_c_tight
def LF_d_induced_by_c_tight(c):
return rule_regex_search_btw_BA(c, '.{0,50}' + ltp(causal_past) + ' (by|to) ', 1)
### LF_induce_name
def LF_induce_name(c):
return 1 if 'induc' in c.chemical.get_span().lower() else 0
### LF_c_cause_d
causal = ['cause[sd]?', 'induce[sd]?', 'associated with']
def LF_c_cause_d(c):
return 1 if (
re.search(r'{{A}}.{0,50} ' + ltp(causal) + '.{0,50}{{B}}', get_tagged_text(c), re.I)
and not re.search('{{A}}.{0,50}(not|no).{0,20}' + ltp(causal) + '.{0,50}{{B}}', get_tagged_text(c), re.I)
) else 0
### LF_d_treat_c
treat = ['treat', 'effective', 'prevent', 'resistant', 'slow', 'promise', 'therap']
def LF_d_treat_c(c):
return rule_regex_search_btw_BA(c, '.{0,50}' + ltp(treat) + '.{0,50}', -1)
### LF_c_treat_d
def LF_c_treat_d(c):
return rule_regex_search_btw_AB(c, '.{0,50}' + ltp(treat) + '.{0,50}', -1)
### LF_treat_d
def LF_treat_d(c):
return rule_regex_search_before_B(c, ltp(treat) + '.{0,50}', -1)
### LF_c_treat_d_wide
def LF_c_treat_d_wide(c):
return rule_regex_search_btw_AB(c, '.{0,200}' + ltp(treat) + '.{0,200}', -1)
### LF_c_d
def LF_c_d(c):
return 1 if ('{{A}} {{B}}' in get_tagged_text(c)) else 0
### LF_c_induced_d
def LF_c_induced_d(c):
return 1 if (
('{{A}} {{B}}' in get_tagged_text(c)) and
(('-induc' in c[0].get_span().lower()) or ('-assoc' in c[0].get_span().lower()))
) else 0
### LF_improve_before_disease
def LF_improve_before_disease(c):
return rule_regex_search_before_B(c, 'improv.*', -1)
### LF_in_patient_with
pat_terms = ['in a patient with ', 'in patients with']
def LF_in_patient_with(c):
return -1 if re.search(ltp(pat_terms) + '{{B}}', get_tagged_text(c), flags=re.I) else 0
### LF_uncertain
uncertain = ['combin', 'possible', 'unlikely']
def LF_uncertain(c):
return rule_regex_search_before_A(c, ltp(uncertain) + '.*', -1)
### LF_induced_other
def LF_induced_other(c):
return rule_regex_search_tagged_text(c, '{{A}}.{20,1000}-induced {{B}}', -1)
### LF_far_c_d
def LF_far_c_d(c):
return rule_regex_search_btw_AB(c, '.{100,5000}', -1)
### LF_far_d_c
def LF_far_d_c(c):
return rule_regex_search_btw_BA(c, '.{100,5000}', -1)
### LF_risk_d
def LF_risk_d(c):
return rule_regex_search_before_B(c, 'risk of ', 1)
### LF_develop_d_following_c
def LF_develop_d_following_c(c):
return 1 if re.search(r'develop.{0,25}{{B}}.{0,25}following.{0,25}{{A}}', get_tagged_text(c), flags=re.I) else 0
### LF_d_following_c
procedure, following = ['inject', 'administrat'], ['following']
def LF_d_following_c(c):
return 1 if re.search('{{B}}.{0,50}' + ltp(following) + '.{0,20}{{A}}.{0,50}' + ltp(procedure), get_tagged_text(c), flags=re.I) else 0
### LF_measure
def LF_measure(c):
return -1 if re.search('measur.{0,75}{{A}}', get_tagged_text(c), flags=re.I) else 0
### LF_level
def LF_level(c):
return -1 if re.search('{{A}}.{0,25} level', get_tagged_text(c), flags=re.I) else 0
### LF_neg_d
def LF_neg_d(c):
return -1 if re.search('(none|not|no) .{0,25}{{B}}', get_tagged_text(c), flags=re.I) else 0
### LF_weak_assertions
WEAK_PHRASES = ['none', 'although', 'was carried out', 'was conducted',
'seems', 'suggests', 'risk', 'implicated',
'the aim', 'to (investigate|assess|study)']
WEAK_RGX = r'|'.join(WEAK_PHRASES)
def LF_weak_assertions(c):
return -1 if re.search(WEAK_RGX, get_tagged_text(c), flags=re.I) else 0
##### Composite LFs
# The following LFs take some of the strongest distant supervision and text pattern LFs,
# and combine them to form more specific LFs. These LFs introduce some obvious
# dependencies within the LF set, which we will model later.
### LF_ctd_marker_c_d
def LF_ctd_marker_c_d(c):
return LF_c_d(c) * cand_in_ctd_marker(c)
### LF_ctd_marker_induce
def LF_ctd_marker_induce(c):
return (LF_c_induced_d(c) or LF_d_induced_by_c_tight(c)) * cand_in_ctd_marker(c)
### LF_ctd_therapy_treat
def LF_ctd_therapy_treat(c):
return LF_c_treat_d_wide(c) * cand_in_ctd_therapy(c)
### LF_ctd_unspecified_treat
def LF_ctd_unspecified_treat(c):
return LF_c_treat_d_wide(c) * cand_in_ctd_unspecified(c)
### LF_ctd_unspecified_induce
def LF_ctd_unspecified_induce(c):
return (LF_c_induced_d(c) or LF_d_induced_by_c_tight(c)) * cand_in_ctd_unspecified(c)
##### Rules based on context hierarchy
# These last two rules will make use of the context hierarchy.
# The first checks if there is a chemical mention much closer to the candidate's disease mention
# than the candidate's chemical mention. The second does the analog for diseases.
### LF_closer_chem
def LF_closer_chem(c):
# Get distance between chemical and disease
chem_start, chem_end = c.chemical.get_word_start(), c.chemical.get_word_end()
dis_start, dis_end = c.disease.get_word_start(), c.disease.get_word_end()
if dis_start < chem_start:
dist = chem_start - dis_end
else:
dist = dis_start - chem_end
# Try to find chemical closer than @dist/2 in either direction
sent = c.get_parent()
closest_other_chem = float('inf')
for i in range(dis_end, min(len(sent.words), dis_end + dist // 2)):
et, cid = sent.entity_types[i], sent.entity_cids[i]
if et == 'Chemical' and cid != sent.entity_cids[chem_start]:
return -1
for i in range(max(0, dis_start - dist // 2), dis_start):
et, cid = sent.entity_types[i], sent.entity_cids[i]
if et == 'Chemical' and cid != sent.entity_cids[chem_start]:
return -1
return 0
### LF_closer_dis
def LF_closer_dis(c):
# Get distance between chemical and disease
chem_start, chem_end = c.chemical.get_word_start(), c.chemical.get_word_end()
dis_start, dis_end = c.disease.get_word_start(), c.disease.get_word_end()
if dis_start < chem_start:
dist = chem_start - dis_end
else:
dist = dis_start - chem_end
# Try to find chemical disease than @dist/8 in either direction
sent = c.get_parent()
for i in range(chem_end, min(len(sent.words), chem_end + dist // 8)):
et, cid = sent.entity_types[i], sent.entity_cids[i]
if et == 'Disease' and cid != sent.entity_cids[dis_start]:
return -1
for i in range(max(0, chem_start - dist // 8), chem_start):
et, cid = sent.entity_types[i], sent.entity_cids[i]
if et == 'Disease' and cid != sent.entity_cids[dis_start]:
return -1
return 0