File size: 9,094 Bytes
b109984 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
CDR - Extracting Chemical-Disease Relations from Academic Literature # Source: https://github.com/snorkel-team/snorkel-extraction/tree/master/tutorials/cdr # Labels: 0: Negative, the drug does NOT induce the disease 1: Positive, the drug induces the disease 33 Label functions (Use ctrl+F to search for implementation) LFs = [ LF_c_cause_d, LF_c_d, LF_c_induced_d, LF_c_treat_d, LF_c_treat_d_wide, LF_closer_chem, LF_closer_dis, LF_ctd_marker_c_d, LF_ctd_marker_induce, LF_ctd_therapy_treat, LF_ctd_unspecified_treat, LF_ctd_unspecified_induce, LF_d_following_c, LF_d_induced_by_c, LF_d_induced_by_c_tight, LF_d_treat_c, LF_develop_d_following_c, LF_far_c_d, LF_far_d_c, LF_improve_before_disease, LF_in_ctd_therapy, LF_in_ctd_marker, LF_in_patient_with, LF_induce, LF_induce_name, LF_induced_other, LF_level, LF_measure, LF_neg_d, LF_risk_d, LF_treat_d, LF_uncertain, LF_weak_assertions, ] ##### Distant supervision approaches # We'll use the [Comparative Toxicogenomics Database](http://ctdbase.org/) (CTD) for distant supervision. # The CTD lists chemical-condition entity pairs under three categories: therapy, marker, and unspecified. # Therapy means the chemical treats the condition, marker means the chemical is typically present with the condition, # and unspecified is...unspecified. We can write LFs based on these categories. ### LF_in_ctd_unspecified def LF_in_ctd_unspecified(c): return -1 * cand_in_ctd_unspecified(c) ### LF_in_ctd_therapy def LF_in_ctd_therapy(c): return -1 * cand_in_ctd_therapy(c) ### LF_in_ctd_marker def LF_in_ctd_marker(c): return cand_in_ctd_marker(c) ##### Text pattern approaches # Now we'll use some LF helpers to create LFs based on indicative text patterns. # We came up with these rules by using the viewer to examine training candidates and noting frequent patterns. import re from snorkel.lf_helpers import ( get_tagged_text, rule_regex_search_tagged_text, rule_regex_search_btw_AB, rule_regex_search_btw_BA, rule_regex_search_before_A, rule_regex_search_before_B, ) # List to parenthetical def ltp(x): return '(' + '|'.join(x) + ')' ### LF_induce def LF_induce(c): return 1 if re.search(r'{{A}}.{0,20}induc.{0,20}{{B}}', get_tagged_text(c), flags=re.I) else 0 ### LF_d_induced_by_c causal_past = ['induced', 'caused', 'due'] def LF_d_induced_by_c(c): return rule_regex_search_btw_BA(c, '.{0,50}' + ltp(causal_past) + '.{0,9}(by|to).{0,50}', 1) ### LF_d_induced_by_c_tight def LF_d_induced_by_c_tight(c): return rule_regex_search_btw_BA(c, '.{0,50}' + ltp(causal_past) + ' (by|to) ', 1) ### LF_induce_name def LF_induce_name(c): return 1 if 'induc' in c.chemical.get_span().lower() else 0 ### LF_c_cause_d causal = ['cause[sd]?', 'induce[sd]?', 'associated with'] def LF_c_cause_d(c): return 1 if ( re.search(r'{{A}}.{0,50} ' + ltp(causal) + '.{0,50}{{B}}', get_tagged_text(c), re.I) and not re.search('{{A}}.{0,50}(not|no).{0,20}' + ltp(causal) + '.{0,50}{{B}}', get_tagged_text(c), re.I) ) else 0 ### LF_d_treat_c treat = ['treat', 'effective', 'prevent', 'resistant', 'slow', 'promise', 'therap'] def LF_d_treat_c(c): return rule_regex_search_btw_BA(c, '.{0,50}' + ltp(treat) + '.{0,50}', -1) ### LF_c_treat_d def LF_c_treat_d(c): return rule_regex_search_btw_AB(c, '.{0,50}' + ltp(treat) + '.{0,50}', -1) ### LF_treat_d def LF_treat_d(c): return rule_regex_search_before_B(c, ltp(treat) + '.{0,50}', -1) ### LF_c_treat_d_wide def LF_c_treat_d_wide(c): return rule_regex_search_btw_AB(c, '.{0,200}' + ltp(treat) + '.{0,200}', -1) ### LF_c_d def LF_c_d(c): return 1 if ('{{A}} {{B}}' in get_tagged_text(c)) else 0 ### LF_c_induced_d def LF_c_induced_d(c): return 1 if ( ('{{A}} {{B}}' in get_tagged_text(c)) and (('-induc' in c[0].get_span().lower()) or ('-assoc' in c[0].get_span().lower())) ) else 0 ### LF_improve_before_disease def LF_improve_before_disease(c): return rule_regex_search_before_B(c, 'improv.*', -1) ### LF_in_patient_with pat_terms = ['in a patient with ', 'in patients with'] def LF_in_patient_with(c): return -1 if re.search(ltp(pat_terms) + '{{B}}', get_tagged_text(c), flags=re.I) else 0 ### LF_uncertain uncertain = ['combin', 'possible', 'unlikely'] def LF_uncertain(c): return rule_regex_search_before_A(c, ltp(uncertain) + '.*', -1) ### LF_induced_other def LF_induced_other(c): return rule_regex_search_tagged_text(c, '{{A}}.{20,1000}-induced {{B}}', -1) ### LF_far_c_d def LF_far_c_d(c): return rule_regex_search_btw_AB(c, '.{100,5000}', -1) ### LF_far_d_c def LF_far_d_c(c): return rule_regex_search_btw_BA(c, '.{100,5000}', -1) ### LF_risk_d def LF_risk_d(c): return rule_regex_search_before_B(c, 'risk of ', 1) ### LF_develop_d_following_c def LF_develop_d_following_c(c): return 1 if re.search(r'develop.{0,25}{{B}}.{0,25}following.{0,25}{{A}}', get_tagged_text(c), flags=re.I) else 0 ### LF_d_following_c procedure, following = ['inject', 'administrat'], ['following'] def LF_d_following_c(c): return 1 if re.search('{{B}}.{0,50}' + ltp(following) + '.{0,20}{{A}}.{0,50}' + ltp(procedure), get_tagged_text(c), flags=re.I) else 0 ### LF_measure def LF_measure(c): return -1 if re.search('measur.{0,75}{{A}}', get_tagged_text(c), flags=re.I) else 0 ### LF_level def LF_level(c): return -1 if re.search('{{A}}.{0,25} level', get_tagged_text(c), flags=re.I) else 0 ### LF_neg_d def LF_neg_d(c): return -1 if re.search('(none|not|no) .{0,25}{{B}}', get_tagged_text(c), flags=re.I) else 0 ### LF_weak_assertions WEAK_PHRASES = ['none', 'although', 'was carried out', 'was conducted', 'seems', 'suggests', 'risk', 'implicated', 'the aim', 'to (investigate|assess|study)'] WEAK_RGX = r'|'.join(WEAK_PHRASES) def LF_weak_assertions(c): return -1 if re.search(WEAK_RGX, get_tagged_text(c), flags=re.I) else 0 ##### Composite LFs # The following LFs take some of the strongest distant supervision and text pattern LFs, # and combine them to form more specific LFs. These LFs introduce some obvious # dependencies within the LF set, which we will model later. ### LF_ctd_marker_c_d def LF_ctd_marker_c_d(c): return LF_c_d(c) * cand_in_ctd_marker(c) ### LF_ctd_marker_induce def LF_ctd_marker_induce(c): return (LF_c_induced_d(c) or LF_d_induced_by_c_tight(c)) * cand_in_ctd_marker(c) ### LF_ctd_therapy_treat def LF_ctd_therapy_treat(c): return LF_c_treat_d_wide(c) * cand_in_ctd_therapy(c) ### LF_ctd_unspecified_treat def LF_ctd_unspecified_treat(c): return LF_c_treat_d_wide(c) * cand_in_ctd_unspecified(c) ### LF_ctd_unspecified_induce def LF_ctd_unspecified_induce(c): return (LF_c_induced_d(c) or LF_d_induced_by_c_tight(c)) * cand_in_ctd_unspecified(c) ##### Rules based on context hierarchy # These last two rules will make use of the context hierarchy. # The first checks if there is a chemical mention much closer to the candidate's disease mention # than the candidate's chemical mention. The second does the analog for diseases. ### LF_closer_chem def LF_closer_chem(c): # Get distance between chemical and disease chem_start, chem_end = c.chemical.get_word_start(), c.chemical.get_word_end() dis_start, dis_end = c.disease.get_word_start(), c.disease.get_word_end() if dis_start < chem_start: dist = chem_start - dis_end else: dist = dis_start - chem_end # Try to find chemical closer than @dist/2 in either direction sent = c.get_parent() closest_other_chem = float('inf') for i in range(dis_end, min(len(sent.words), dis_end + dist // 2)): et, cid = sent.entity_types[i], sent.entity_cids[i] if et == 'Chemical' and cid != sent.entity_cids[chem_start]: return -1 for i in range(max(0, dis_start - dist // 2), dis_start): et, cid = sent.entity_types[i], sent.entity_cids[i] if et == 'Chemical' and cid != sent.entity_cids[chem_start]: return -1 return 0 ### LF_closer_dis def LF_closer_dis(c): # Get distance between chemical and disease chem_start, chem_end = c.chemical.get_word_start(), c.chemical.get_word_end() dis_start, dis_end = c.disease.get_word_start(), c.disease.get_word_end() if dis_start < chem_start: dist = chem_start - dis_end else: dist = dis_start - chem_end # Try to find chemical disease than @dist/8 in either direction sent = c.get_parent() for i in range(chem_end, min(len(sent.words), chem_end + dist // 8)): et, cid = sent.entity_types[i], sent.entity_cids[i] if et == 'Disease' and cid != sent.entity_cids[dis_start]: return -1 for i in range(max(0, chem_start - dist // 8), chem_start): et, cid = sent.entity_types[i], sent.entity_cids[i] if et == 'Disease' and cid != sent.entity_cids[dis_start]: return -1 return 0 |