File size: 9,094 Bytes
b109984
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
CDR - Extracting Chemical-Disease Relations from Academic Literature

# Source:
 https://github.com/snorkel-team/snorkel-extraction/tree/master/tutorials/cdr

# Labels:

0: Negative, the drug does NOT induce the disease
1: Positive, the drug induces the disease



33 Label functions (Use ctrl+F to search for implementation)
LFs = [
    LF_c_cause_d,
    LF_c_d,
    LF_c_induced_d,
    LF_c_treat_d,
    LF_c_treat_d_wide,
    LF_closer_chem,
    LF_closer_dis,
    LF_ctd_marker_c_d,
    LF_ctd_marker_induce,
    LF_ctd_therapy_treat,
    LF_ctd_unspecified_treat,
    LF_ctd_unspecified_induce,
    LF_d_following_c,
    LF_d_induced_by_c,
    LF_d_induced_by_c_tight,
    LF_d_treat_c,
    LF_develop_d_following_c,
    LF_far_c_d,
    LF_far_d_c,
    LF_improve_before_disease,
    LF_in_ctd_therapy,
    LF_in_ctd_marker,
    LF_in_patient_with,
    LF_induce,
    LF_induce_name,
    LF_induced_other,
    LF_level,
    LF_measure,
    LF_neg_d,
    LF_risk_d,
    LF_treat_d,
    LF_uncertain,
    LF_weak_assertions,
]


##### Distant supervision approaches
# We'll use the [Comparative Toxicogenomics Database](http://ctdbase.org/) (CTD) for distant supervision.
# The CTD lists chemical-condition entity pairs under three categories: therapy, marker, and unspecified.
# Therapy means the chemical treats the condition, marker means the chemical is typically present with the condition,
# and unspecified is...unspecified. We can write LFs based on these categories.

### LF_in_ctd_unspecified
def LF_in_ctd_unspecified(c):
    return -1 * cand_in_ctd_unspecified(c)

### LF_in_ctd_therapy
def LF_in_ctd_therapy(c):
    return -1 * cand_in_ctd_therapy(c)

### LF_in_ctd_marker 
def LF_in_ctd_marker(c):
    return cand_in_ctd_marker(c)





##### Text pattern approaches
# Now we'll use some LF helpers to create LFs based on indicative text patterns.
# We came up with these rules by using the viewer to examine training candidates and noting frequent patterns.

import re
from snorkel.lf_helpers import (
    get_tagged_text,
    rule_regex_search_tagged_text,
    rule_regex_search_btw_AB,
    rule_regex_search_btw_BA,
    rule_regex_search_before_A,
    rule_regex_search_before_B,
)

# List to parenthetical
def ltp(x):
    return '(' + '|'.join(x) + ')'

### LF_induce
def LF_induce(c):
    return 1 if re.search(r'{{A}}.{0,20}induc.{0,20}{{B}}', get_tagged_text(c), flags=re.I) else 0

### LF_d_induced_by_c
causal_past = ['induced', 'caused', 'due']
def LF_d_induced_by_c(c):
    return rule_regex_search_btw_BA(c, '.{0,50}' + ltp(causal_past) + '.{0,9}(by|to).{0,50}', 1)

### LF_d_induced_by_c_tight
def LF_d_induced_by_c_tight(c):
    return rule_regex_search_btw_BA(c, '.{0,50}' + ltp(causal_past) + ' (by|to) ', 1)

### LF_induce_name
def LF_induce_name(c):
    return 1 if 'induc' in c.chemical.get_span().lower() else 0     

### LF_c_cause_d
causal = ['cause[sd]?', 'induce[sd]?', 'associated with']
def LF_c_cause_d(c):
    return 1 if (
        re.search(r'{{A}}.{0,50} ' + ltp(causal) + '.{0,50}{{B}}', get_tagged_text(c), re.I)
        and not re.search('{{A}}.{0,50}(not|no).{0,20}' + ltp(causal) + '.{0,50}{{B}}', get_tagged_text(c), re.I)
    ) else 0

### LF_d_treat_c
treat = ['treat', 'effective', 'prevent', 'resistant', 'slow', 'promise', 'therap']
def LF_d_treat_c(c):
    return rule_regex_search_btw_BA(c, '.{0,50}' + ltp(treat) + '.{0,50}', -1)

### LF_c_treat_d
def LF_c_treat_d(c):
    return rule_regex_search_btw_AB(c, '.{0,50}' + ltp(treat) + '.{0,50}', -1)

### LF_treat_d
def LF_treat_d(c):
    return rule_regex_search_before_B(c, ltp(treat) + '.{0,50}', -1)

### LF_c_treat_d_wide
def LF_c_treat_d_wide(c):
    return rule_regex_search_btw_AB(c, '.{0,200}' + ltp(treat) + '.{0,200}', -1)

### LF_c_d
def LF_c_d(c):
    return 1 if ('{{A}} {{B}}' in get_tagged_text(c)) else 0

### LF_c_induced_d
def LF_c_induced_d(c):
    return 1 if (
        ('{{A}} {{B}}' in get_tagged_text(c)) and 
        (('-induc' in c[0].get_span().lower()) or ('-assoc' in c[0].get_span().lower()))
        ) else 0

### LF_improve_before_disease
def LF_improve_before_disease(c):
    return rule_regex_search_before_B(c, 'improv.*', -1)

### LF_in_patient_with
pat_terms = ['in a patient with ', 'in patients with']
def LF_in_patient_with(c):
    return -1 if re.search(ltp(pat_terms) + '{{B}}', get_tagged_text(c), flags=re.I) else 0

### LF_uncertain
uncertain = ['combin', 'possible', 'unlikely']
def LF_uncertain(c):
    return rule_regex_search_before_A(c, ltp(uncertain) + '.*', -1)

### LF_induced_other
def LF_induced_other(c):
    return rule_regex_search_tagged_text(c, '{{A}}.{20,1000}-induced {{B}}', -1)

### LF_far_c_d
def LF_far_c_d(c):
    return rule_regex_search_btw_AB(c, '.{100,5000}', -1)

### LF_far_d_c
def LF_far_d_c(c):
    return rule_regex_search_btw_BA(c, '.{100,5000}', -1)

### LF_risk_d
def LF_risk_d(c):
    return rule_regex_search_before_B(c, 'risk of ', 1)

### LF_develop_d_following_c
def LF_develop_d_following_c(c):
    return 1 if re.search(r'develop.{0,25}{{B}}.{0,25}following.{0,25}{{A}}', get_tagged_text(c), flags=re.I) else 0

### LF_d_following_c
procedure, following = ['inject', 'administrat'], ['following']
def LF_d_following_c(c):
    return 1 if re.search('{{B}}.{0,50}' + ltp(following) + '.{0,20}{{A}}.{0,50}' + ltp(procedure), get_tagged_text(c), flags=re.I) else 0

### LF_measure
def LF_measure(c):
    return -1 if re.search('measur.{0,75}{{A}}', get_tagged_text(c), flags=re.I) else 0

### LF_level
def LF_level(c):
    return -1 if re.search('{{A}}.{0,25} level', get_tagged_text(c), flags=re.I) else 0

### LF_neg_d
def LF_neg_d(c):
    return -1 if re.search('(none|not|no) .{0,25}{{B}}', get_tagged_text(c), flags=re.I) else 0

### LF_weak_assertions
WEAK_PHRASES = ['none', 'although', 'was carried out', 'was conducted',
                'seems', 'suggests', 'risk', 'implicated',
               'the aim', 'to (investigate|assess|study)']

WEAK_RGX = r'|'.join(WEAK_PHRASES)
def LF_weak_assertions(c):
    return -1 if re.search(WEAK_RGX, get_tagged_text(c), flags=re.I) else 0






##### Composite LFs

# The following LFs take some of the strongest distant supervision and text pattern LFs,
# and combine them to form more specific LFs. These LFs introduce some obvious 
# dependencies within the LF set, which we will model later.

### LF_ctd_marker_c_d
def LF_ctd_marker_c_d(c):
    return LF_c_d(c) * cand_in_ctd_marker(c)

### LF_ctd_marker_induce
def LF_ctd_marker_induce(c):
    return (LF_c_induced_d(c) or LF_d_induced_by_c_tight(c)) * cand_in_ctd_marker(c)

### LF_ctd_therapy_treat
def LF_ctd_therapy_treat(c):
    return LF_c_treat_d_wide(c) * cand_in_ctd_therapy(c)

### LF_ctd_unspecified_treat
def LF_ctd_unspecified_treat(c):
    return LF_c_treat_d_wide(c) * cand_in_ctd_unspecified(c)

### LF_ctd_unspecified_induce
def LF_ctd_unspecified_induce(c):
    return (LF_c_induced_d(c) or LF_d_induced_by_c_tight(c)) * cand_in_ctd_unspecified(c)






##### Rules based on context hierarchy
# These last two rules will make use of the context hierarchy.
# The first checks if there is a chemical mention much closer to the candidate's disease mention
# than the candidate's chemical mention. The second does the analog for diseases.

### LF_closer_chem
def LF_closer_chem(c):
    # Get distance between chemical and disease
    chem_start, chem_end = c.chemical.get_word_start(), c.chemical.get_word_end()
    dis_start, dis_end = c.disease.get_word_start(), c.disease.get_word_end()
    if dis_start < chem_start:
        dist = chem_start - dis_end
    else:
        dist = dis_start - chem_end
    # Try to find chemical closer than @dist/2 in either direction
    sent = c.get_parent()
    closest_other_chem = float('inf')
    for i in range(dis_end, min(len(sent.words), dis_end + dist // 2)):
        et, cid = sent.entity_types[i], sent.entity_cids[i]
        if et == 'Chemical' and cid != sent.entity_cids[chem_start]:
            return -1
    for i in range(max(0, dis_start - dist // 2), dis_start):
        et, cid = sent.entity_types[i], sent.entity_cids[i]
        if et == 'Chemical' and cid != sent.entity_cids[chem_start]:
            return -1
    return 0

### LF_closer_dis
def LF_closer_dis(c):
    # Get distance between chemical and disease
    chem_start, chem_end = c.chemical.get_word_start(), c.chemical.get_word_end()
    dis_start, dis_end = c.disease.get_word_start(), c.disease.get_word_end()
    if dis_start < chem_start:
        dist = chem_start - dis_end
    else:
        dist = dis_start - chem_end
    # Try to find chemical disease than @dist/8 in either direction
    sent = c.get_parent()
    for i in range(chem_end, min(len(sent.words), chem_end + dist // 8)):
        et, cid = sent.entity_types[i], sent.entity_cids[i]
        if et == 'Disease' and cid != sent.entity_cids[dis_start]:
            return -1
    for i in range(max(0, chem_start - dist // 8), chem_start):
        et, cid = sent.entity_types[i], sent.entity_cids[i]
        if et == 'Disease' and cid != sent.entity_cids[dis_start]:
            return -1
    return 0