hexsha
stringlengths
40
40
size
int64
3
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
972
max_stars_repo_name
stringlengths
6
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
sequencelengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
972
max_issues_repo_name
stringlengths
6
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
sequencelengths
1
10
max_issues_count
int64
1
116k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
972
max_forks_repo_name
stringlengths
6
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
sequencelengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
3
1.03M
avg_line_length
float64
1.13
941k
max_line_length
int64
2
941k
alphanum_fraction
float64
0
1
0684a59b5485fb53c2b1588876b4d3d204cb4623
4,046
py
Python
braids/resources/characters.py
oscillating-gate/eurorack
35bf03aa35b01a7a4a9b0a0ca2898677cd3a9f6a
[ "MIT" ]
233
2018-07-02T16:49:36.000Z
2022-02-27T21:45:39.000Z
braids/resources/characters.py
oscillating-gate/eurorack
35bf03aa35b01a7a4a9b0a0ca2898677cd3a9f6a
[ "MIT" ]
24
2018-07-09T11:32:15.000Z
2022-01-07T01:45:43.000Z
braids/resources/characters.py
oscillating-gate/eurorack
35bf03aa35b01a7a4a9b0a0ca2898677cd3a9f6a
[ "MIT" ]
24
2018-07-14T21:55:30.000Z
2021-05-04T04:20:34.000Z
# Copyright 2012 Olivier Gillet. # # Author: Olivier Gillet ([email protected]) # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # See http://creativecommons.org/licenses/MIT/ for more information. # # ----------------------------------------------------------------------------- # # Characters definitions. characters = [] MASKS = { 'a': 0x8000, 'b': 0x4000, 'c': 0x2000, 'd': 0x1000, 'e': 0x0800, 'f': 0x0400, 'g': 0x0200, 'h': 0x0100, 'j': 0x80, 'k': 0x40, 'l': 0x20, 'm': 0x10, 'n': 0x08, 'p': 0x04, } characters = { 'A': 'afepkbc', 'B': 'adhmbck', 'C': 'afed', 'D': 'adhmbc', 'E': 'afedkp', 'F': 'afepk', 'G': 'afedck', 'H': 'febcpk', 'I': 'adhm', 'J': 'bcde', 'K': 'efpjl', 'L': 'def', 'M': 'efgjbc', 'N': 'efglcb', 'O': 'abcdef', 'P': 'abpkef', 'Q': 'abcdefl', 'R': 'abpkefl', 'S': 'afpkcd', 'T': 'ahm', 'U': 'bcdef', 'V': 'fenj', 'W': 'fenlcb', 'X': 'gjln', 'Y': 'gjm', 'Z': 'ajnd', 'a': 'abpkecd', 'b': 'fedlp', 'c': 'pked', 'd': 'bcdnk', 'e': 'afped', 'f': 'afpe', 'g': 'agkbcd', 'h': 'fpkec', 'i': 'mpkd', 'j': 'kcd', 'k': 'hmjl', 'l': 'hm', 'm': 'epkmc', 'n': 'mkc', 'o': 'pkecd', 'p': 'afpje', 'q': 'afpkbl', 'r': 'mk', 's': 'agkcd', 't': 'fedp', 'u': 'edc', 'v': 'en', 'w': 'enlc', 'x': 'gnjl', 'y': 'gkbcd', 'z': 'pnd', '0': 'abcdefnj', '1': 'jbc', '2': 'abpked', '3': 'abcdk', '4': 'fpkbc', '5': 'afpkcd', '6': 'afpkcde', '7': 'ajm', '8': 'abcdefpk', '9': 'abcpkfd', '!': 'hm', '"': 'fh', '#': 'pkdhmbc', '$': 'afpkcdhm', '%': 'jnfc', '&': 'aghpeld', '\'': 'h', '(': 'afed', ')': 'abcd', '*': 'ghjmnl', '+': 'hmpk', ',': 'n', '-': 'pk', '.': 'm', '/': 'jn', ':': 'hm', ';': 'hn', '<': 'jl', '>': 'gn', '?': 'fajm', '=': 'pkd', '@': 'kmcbafed', '[': 'afed', ']': 'abcd', '\\': 'gl', '^': 'nl', '_': 'd', '`': 'g', '{': 'pgnad', '|': 'hm', '}': 'ajldk', '~': 'pk', # LRDU '\x80': 'jlbc', '\x81': 'efgn', '\x82': 'agj', '\x83': 'dnl', # LRDU arrow '\x84': 'jkl', '\x85': 'gpn', '\x86': 'ghj', '\x87': 'nml', # Waveforms '\x88': 'njbc', # Saw '\x89': 'enjb', # Centered saw '\x8A': 'mn', # Baby saw '\x8B': 'nl', # Tri '\x8C': 'efabc', # Square '\x8D': 'epkc', # Baby square '\x8E': 'dhm', # Pulse '\x8F': 'efgl', # AD # Spinner '\x90': 'abcdefn', '\x91': 'abcdefp', '\x92': 'abcdefg', '\x93': 'abcdefh', '\x94': 'abcdefj', '\x95': 'abcdefk', '\x96': 'abcdefl', '\x97': 'abcdefm', # Spinner 2 '\x98': 'ab', '\x99': 'abc', '\x9A': 'bcd', '\x9B': 'cde', '\x9C': 'de', '\x9D': 'def', '\x9E': 'efa', '\x9F': 'fab', '\xA0': 'abcdefghjklmnp', '\xFF': 'abcdefghjklmnp', 'null': 'null' } character_table = [] for i in xrange(256): segments = characters.get(chr(i), '') character_table.append(sum(MASKS[segment] for segment in segments)) characters = [('characters', character_table)]
20.129353
79
0.505685
5dde8c9aec8fd941c02d63e3b877a5d9872e789f
1,143
py
Python
core/dense.py
vishalmanes109/nn-from-scratch
53de76f39dfea3f625ec542536f0ab3bc44d0224
[ "MIT" ]
2
2020-10-09T05:50:14.000Z
2021-04-10T08:52:03.000Z
core/dense.py
vishalmanes109/nn-from-scratch
53de76f39dfea3f625ec542536f0ab3bc44d0224
[ "MIT" ]
null
null
null
core/dense.py
vishalmanes109/nn-from-scratch
53de76f39dfea3f625ec542536f0ab3bc44d0224
[ "MIT" ]
null
null
null
from .layer import Layer import numpy as np import config class Dense(Layer): # input_size = Number of Input Neurons # output_size = Number of Output Neurons def __init__(self, input_size, output_size): self.weights = np.random.rand(input_size, output_size) - 0.5 self.bias = np.random.rand(1, output_size) - 0.5 self.vW = np.zeros([input_size, output_size]) self.vB = np.zeros([1, output_size]) def forward_propagation(self, input_data): self.input = input_data self.output = np.dot(self.input, self.weights) + self.bias return self.output def backward_propagation(self, output_error, optimizer_fn, learning_rate): input_error = np.dot(output_error, self.weights.T) dW = np.dot(self.input.T, output_error) dB = output_error w_updated, b_updated, vW_updated, vB_updated = optimizer_fn.minimize( self.weights, self.bias, dW, dB, self.vW, self.vB, learning_rate ) self.weights = w_updated self.bias = b_updated self.vW = vW_updated self.vB = vB_updated return input_error
34.636364
78
0.657918
747f02f3688a9b2541bc42c21f75e326d7c645b5
978
py
Python
bot.py
RobinMcNally/DiscordBot
5fe03d23e72a7eeb0719f6cb1aa63c9c6c9c67c1
[ "MIT" ]
null
null
null
bot.py
RobinMcNally/DiscordBot
5fe03d23e72a7eeb0719f6cb1aa63c9c6c9c67c1
[ "MIT" ]
null
null
null
bot.py
RobinMcNally/DiscordBot
5fe03d23e72a7eeb0719f6cb1aa63c9c6c9c67c1
[ "MIT" ]
null
null
null
import json import os.path import sys import urllib.request from features.roll_backend import roll_backend from features.asciify_backend import asciify_backend from discord.ext.commands import Bot generic_error = "```I'm just a poor robot. Stop trying to break me!```" #Bot function definitions bot = Bot(command_prefix="!") @bot.event async def on_read(): print("Client logged in") @bot.command() async def asciify(*args): return await bot.say("Asciify coming soon") @bot.command() async def roll(*args): return await bot.say(roll_backend(args)) if __name__ == "__main__": if not os.path.isfile('OAuth.json'): print("Bot cannot execute without OAuth.json") sys.exit() with open('OAuth.json') as token_file: token_data = json.load(token_file) if 'OAuthToken' not in token_data: print("Malformed OAuth.json") sys.exit() OAuthToken = token_data['OAuthToken'] bot.run(OAuthToken)
24.45
71
0.688139
f55c513370946b425d988bc66b2b690b1a68248b
4,113
py
Python
datalad/support/json_py.py
jelmer/datalad
fedc04867d87e0191bd500991d0df97e97113457
[ "MIT" ]
null
null
null
datalad/support/json_py.py
jelmer/datalad
fedc04867d87e0191bd500991d0df97e97113457
[ "MIT" ]
null
null
null
datalad/support/json_py.py
jelmer/datalad
fedc04867d87e0191bd500991d0df97e97113457
[ "MIT" ]
null
null
null
# emacs: -*- mode: python; py-indent-offset: 4; tab-width: 4; indent-tabs-mode: nil -*- # ex: set sts=4 ts=4 sw=4 noet: # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the datalad package for the # copyright and license terms. # # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Simple wrappers to get uniform JSON input and output """ import io import codecs from six import PY2 from os.path import dirname from os.path import exists from os import makedirs import os import os.path as op # wrapped below from simplejson import load as jsonload from simplejson import dump as jsondump # simply mirrored for now from simplejson import loads as json_loads from simplejson import JSONDecodeError # produce relatively compact, but also diff-friendly format json_dump_kwargs = dict( indent=0, separators=(',', ':\n'), sort_keys=True, ensure_ascii=False, encoding='utf-8', ) # achieve minimal representation, but still deterministic compressed_json_dump_kwargs = dict( json_dump_kwargs, indent=None, separators=(',', ':')) # Let's just reuse top level one for now from ..log import lgr from ..dochelpers import exc_str def dump(obj, fname): indir = dirname(fname) if not exists(indir): makedirs(indir) with io.open(fname, 'wb') as f: return dump2fileobj(obj, f) def dump2fileobj(obj, fileobj): return jsondump( obj, codecs.getwriter('utf-8')(fileobj), **json_dump_kwargs) def LZMAFile(*args, **kwargs): """A little decorator to overcome a bug in lzma A unique to yoh and some others bug with pyliblzma calling dir() helps to avoid AttributeError __exit__ see https://bugs.launchpad.net/pyliblzma/+bug/1219296 """ from .lzma import lzma lzmafile = lzma.LZMAFile(*args, **kwargs) dir(lzmafile) return lzmafile def dump2stream(obj, fname, compressed=False): _open = LZMAFile if compressed else open indir = dirname(fname) if op.lexists(fname): os.remove(fname) elif indir and not exists(indir): makedirs(indir) with _open(fname, mode='wb') as f: jwriter = codecs.getwriter('utf-8')(f) for o in obj: jsondump(o, jwriter, **compressed_json_dump_kwargs) f.write(b'\n') def dump2xzstream(obj, fname): dump2stream(obj, fname, compressed=True) def load_stream(fname, compressed=False): _open = LZMAFile if compressed else open with _open(fname, mode='r') as f: for line in f: yield loads(line) def load_xzstream(fname): for o in load_stream(fname, compressed=True): yield o def loads(s, *args, **kwargs): """Helper to log actual value which failed to be parsed""" try: return json_loads(s, *args, **kwargs) except: lgr.error( "Failed to load content from %r with args=%r kwargs=%r" % (s, args, kwargs) ) raise def load(fname, fixup=True, **kw): """Load JSON from a file, possibly fixing it up if initial load attempt fails Parameters ---------- fixup : bool In case of failed load, apply a set of fixups with hope to resolve issues in JSON **kw Passed into the load (and loads after fixups) function """ with io.open(fname, 'r', encoding='utf-8') as f: try: return jsonload(f, **kw) except JSONDecodeError as exc: if not fixup: raise lgr.warning("Failed to decode content in %s: %s. Trying few tricks", fname, exc_str(exc)) # Load entire content and replace common "abusers" which break JSON comprehension but in general # are Ok with io.open(fname, 'r', encoding='utf-8') as f: s_orig = s = f.read() for o, r in { u"\xa0": " ", # non-breaking space }.items(): s = s.replace(o, r) if s == s_orig: # we have done nothing, so just reraise previous exception raise return loads(s, **kw)
26.197452
101
0.616095
b63b157f0103b6c6cd8cb84646fd73d9f1ce74ec
37,398
py
Python
test/functional/wallet_importmulti.py
stamhe/bitcoin-abc
a1ba303c6b4f164ae94612e83b824e564405a96e
[ "MIT" ]
1
2022-01-09T22:29:10.000Z
2022-01-09T22:29:10.000Z
test/functional/wallet_importmulti.py
EGYVOICE/bitcoin-abc-avalanche
e0f1fe857e1fc85f01903f1c323c2d5c54aecc1c
[ "MIT" ]
17
2021-08-06T21:27:41.000Z
2022-03-31T08:28:08.000Z
test/functional/wallet_importmulti.py
EGYVOICE/bitcoin-abc-avalanche
e0f1fe857e1fc85f01903f1c323c2d5c54aecc1c
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2014-2019 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the importmulti RPC. Test importmulti by generating keys on node0, importing the scriptPubKeys and addresses on node1 and then testing the address info for the different address variants. - `get_key()` and `get_multisig()` are called to generate keys on node0 and return the privkeys, pubkeys and all variants of scriptPubKey and address. - `test_importmulti()` is called to send an importmulti call to node1, test success, and (if unsuccessful) test the error code and error message returned. - `test_address()` is called to call getaddressinfo for an address on node1 and test the values returned.""" from test_framework.descriptors import descsum_create from test_framework.script import OP_NOP, CScript from test_framework.test_framework import BitcoinTestFramework from test_framework.util import ( assert_equal, assert_greater_than, assert_raises_rpc_error, ) from test_framework.wallet_util import get_key, get_multisig, test_address class ImportMultiTest(BitcoinTestFramework): def set_test_params(self): self.num_nodes = 2 self.setup_clean_chain = True def skip_test_if_missing_module(self): self.skip_if_no_wallet() def setup_network(self, split=False): self.setup_nodes() def test_importmulti(self, req, success, error_code=None, error_message=None, warnings=None): """Run importmulti and assert success""" if warnings is None: warnings = [] result = self.nodes[1].importmulti([req]) observed_warnings = [] if 'warnings' in result[0]: observed_warnings = result[0]['warnings'] assert_equal( "\n".join( sorted(warnings)), "\n".join( sorted(observed_warnings))) assert_equal(result[0]['success'], success) if error_code is not None: assert_equal(result[0]['error']['code'], error_code) assert_equal(result[0]['error']['message'], error_message) def run_test(self): self.log.info("Mining blocks...") self.nodes[0].generate(1) self.nodes[1].generate(1) timestamp = self.nodes[1].getblock( self.nodes[1].getbestblockhash())['mediantime'] self.nodes[1].syncwithvalidationinterfacequeue() node0_address1 = self.nodes[0].getaddressinfo( self.nodes[0].getnewaddress()) # Check only one address assert_equal(node0_address1['ismine'], True) # Node 1 sync test assert_equal(self.nodes[1].getblockcount(), 1) # Address Test - before import address_info = self.nodes[1].getaddressinfo(node0_address1['address']) assert_equal(address_info['iswatchonly'], False) assert_equal(address_info['ismine'], False) # RPC importmulti ----------------------------------------------- # Bitcoin Address (implicit non-internal) self.log.info("Should import an address") key = get_key(self.nodes[0]) self.test_importmulti({"scriptPubKey": {"address": key.p2pkh_addr}, "timestamp": "now"}, success=True) test_address(self.nodes[1], key.p2pkh_addr, iswatchonly=True, ismine=False, timestamp=timestamp, ischange=False) watchonly_address = key.p2pkh_addr watchonly_timestamp = timestamp self.log.info("Should not import an invalid address") self.test_importmulti({"scriptPubKey": {"address": "not valid address"}, "timestamp": "now"}, success=False, error_code=-5, error_message='Invalid address \"not valid address\"') # ScriptPubKey + internal self.log.info("Should import a scriptPubKey with internal flag") key = get_key(self.nodes[0]) self.test_importmulti({"scriptPubKey": key.p2pkh_script, "timestamp": "now", "internal": True}, success=True) test_address(self.nodes[1], key.p2pkh_addr, iswatchonly=True, ismine=False, timestamp=timestamp, ischange=True) # ScriptPubKey + internal + label self.log.info( "Should not allow a label to be specified when internal is true") key = get_key(self.nodes[0]) self.test_importmulti({"scriptPubKey": key.p2pkh_script, "timestamp": "now", "internal": True, "label": "Unsuccessful labelling for internal addresses"}, success=False, error_code=-8, error_message='Internal addresses should not have a label') # Nonstandard scriptPubKey + !internal self.log.info( "Should not import a nonstandard scriptPubKey without internal flag") nonstandardScriptPubKey = key.p2pkh_script + CScript([OP_NOP]).hex() key = get_key(self.nodes[0]) self.test_importmulti({"scriptPubKey": nonstandardScriptPubKey, "timestamp": "now"}, success=False, error_code=-8, error_message='Internal must be set to true for nonstandard scriptPubKey imports.') test_address(self.nodes[1], key.p2pkh_addr, iswatchonly=False, ismine=False, timestamp=None) # Address + Public key + !Internal(explicit) self.log.info("Should import an address with public key") key = get_key(self.nodes[0]) self.test_importmulti({"scriptPubKey": {"address": key.p2pkh_addr}, "timestamp": "now", "pubkeys": [key.pubkey], "internal": False}, success=True, warnings=["Some private keys are missing, outputs will be considered watchonly. If this is intentional, specify the watchonly flag."]) test_address(self.nodes[1], key.p2pkh_addr, iswatchonly=True, ismine=False, timestamp=timestamp) # ScriptPubKey + Public key + internal self.log.info( "Should import a scriptPubKey with internal and with public key") key = get_key(self.nodes[0]) self.test_importmulti({"scriptPubKey": key.p2pkh_script, "timestamp": "now", "pubkeys": [key.pubkey], "internal": True}, success=True, warnings=["Some private keys are missing, outputs will be considered watchonly. If this is intentional, specify the watchonly flag."]) test_address(self.nodes[1], key.p2pkh_addr, iswatchonly=True, ismine=False, timestamp=timestamp) # Nonstandard scriptPubKey + Public key + !internal self.log.info( "Should not import a nonstandard scriptPubKey without internal and with public key") key = get_key(self.nodes[0]) self.test_importmulti({"scriptPubKey": nonstandardScriptPubKey, "timestamp": "now", "pubkeys": [key.pubkey]}, success=False, error_code=-8, error_message='Internal must be set to true for nonstandard scriptPubKey imports.') test_address(self.nodes[1], key.p2pkh_addr, iswatchonly=False, ismine=False, timestamp=None) # Address + Private key + !watchonly self.log.info("Should import an address with private key") key = get_key(self.nodes[0]) self.test_importmulti({"scriptPubKey": {"address": key.p2pkh_addr}, "timestamp": "now", "keys": [key.privkey]}, success=True) test_address(self.nodes[1], key.p2pkh_addr, iswatchonly=False, ismine=True, timestamp=timestamp) self.log.info( "Should not import an address with private key if is already imported") self.test_importmulti({"scriptPubKey": {"address": key.p2pkh_addr}, "timestamp": "now", "keys": [key.privkey]}, success=False, error_code=-4, error_message='The wallet already contains the private key for this address or script ("' + key.p2pkh_script + '")') # Address + Private key + watchonly self.log.info( "Should import an address with private key and with watchonly") key = get_key(self.nodes[0]) self.test_importmulti({"scriptPubKey": {"address": key.p2pkh_addr}, "timestamp": "now", "keys": [key.privkey], "watchonly": True}, success=True, warnings=["All private keys are provided, outputs will be considered spendable. If this is intentional, do not specify the watchonly flag."]) test_address(self.nodes[1], key.p2pkh_addr, iswatchonly=False, ismine=True, timestamp=timestamp) # ScriptPubKey + Private key + internal self.log.info( "Should import a scriptPubKey with internal and with private key") key = get_key(self.nodes[0]) self.test_importmulti({"scriptPubKey": key.p2pkh_script, "timestamp": "now", "keys": [key.privkey], "internal": True}, success=True) test_address(self.nodes[1], key.p2pkh_addr, iswatchonly=False, ismine=True, timestamp=timestamp) # Nonstandard scriptPubKey + Private key + !internal self.log.info( "Should not import a nonstandard scriptPubKey without internal and with private key") key = get_key(self.nodes[0]) self.test_importmulti({"scriptPubKey": nonstandardScriptPubKey, "timestamp": "now", "keys": [key.privkey]}, success=False, error_code=-8, error_message='Internal must be set to true for nonstandard scriptPubKey imports.') test_address(self.nodes[1], key.p2pkh_addr, iswatchonly=False, ismine=False, timestamp=None) # P2SH address multisig = get_multisig(self.nodes[0]) self.nodes[1].generate(100) self.nodes[1].sendtoaddress(multisig.p2sh_addr, 10.00) self.nodes[1].generate(1) timestamp = self.nodes[1].getblock( self.nodes[1].getbestblockhash())['mediantime'] self.nodes[1].syncwithvalidationinterfacequeue() self.log.info("Should import a p2sh") self.test_importmulti({"scriptPubKey": {"address": multisig.p2sh_addr}, "timestamp": "now"}, success=True) test_address(self.nodes[1], multisig.p2sh_addr, isscript=True, iswatchonly=True, timestamp=timestamp) p2shunspent = self.nodes[1].listunspent( 0, 999999, [multisig.p2sh_addr])[0] assert_equal(p2shunspent['spendable'], False) assert_equal(p2shunspent['solvable'], False) # P2SH + Redeem script multisig = get_multisig(self.nodes[0]) self.nodes[1].generate(100) self.nodes[1].sendtoaddress(multisig.p2sh_addr, 10.00) self.nodes[1].generate(1) timestamp = self.nodes[1].getblock( self.nodes[1].getbestblockhash())['mediantime'] self.nodes[1].syncwithvalidationinterfacequeue() self.log.info("Should import a p2sh with respective redeem script") self.test_importmulti({"scriptPubKey": {"address": multisig.p2sh_addr}, "timestamp": "now", "redeemscript": multisig.redeem_script}, success=True, warnings=["Some private keys are missing, outputs will be considered watchonly. If this is intentional, specify the watchonly flag."]) test_address( self.nodes[1], multisig.p2sh_addr, timestamp=timestamp, iswatchonly=True, ismine=False, solvable=True) p2shunspent = self.nodes[1].listunspent( 0, 999999, [multisig.p2sh_addr])[0] assert_equal(p2shunspent['spendable'], False) assert_equal(p2shunspent['solvable'], True) # P2SH + Redeem script + Private Keys + !Watchonly multisig = get_multisig(self.nodes[0]) self.nodes[1].generate(100) self.nodes[1].sendtoaddress(multisig.p2sh_addr, 10.00) self.nodes[1].generate(1) timestamp = self.nodes[1].getblock( self.nodes[1].getbestblockhash())['mediantime'] self.nodes[1].syncwithvalidationinterfacequeue() self.log.info( "Should import a p2sh with respective redeem script and private keys") self.test_importmulti({"scriptPubKey": {"address": multisig.p2sh_addr}, "timestamp": "now", "redeemscript": multisig.redeem_script, "keys": multisig.privkeys[0:2]}, success=True, warnings=["Some private keys are missing, outputs will be considered watchonly. If this is intentional, specify the watchonly flag."]) test_address(self.nodes[1], multisig.p2sh_addr, timestamp=timestamp, ismine=False, iswatchonly=True, solvable=True) p2shunspent = self.nodes[1].listunspent( 0, 999999, [multisig.p2sh_addr])[0] assert_equal(p2shunspent['spendable'], False) assert_equal(p2shunspent['solvable'], True) # P2SH + Redeem script + Private Keys + Watchonly multisig = get_multisig(self.nodes[0]) self.nodes[1].generate(100) self.nodes[1].sendtoaddress(multisig.p2sh_addr, 10.00) self.nodes[1].generate(1) timestamp = self.nodes[1].getblock( self.nodes[1].getbestblockhash())['mediantime'] self.nodes[1].syncwithvalidationinterfacequeue() self.log.info( "Should import a p2sh with respective redeem script and private keys") self.test_importmulti({"scriptPubKey": {"address": multisig.p2sh_addr}, "timestamp": "now", "redeemscript": multisig.redeem_script, "keys": multisig.privkeys[0:2], "watchonly": True}, success=True) test_address(self.nodes[1], multisig.p2sh_addr, iswatchonly=True, ismine=False, solvable=True, timestamp=timestamp) # Address + Public key + !Internal + Wrong pubkey self.log.info( "Should not import an address with the wrong public key as non-solvable") key = get_key(self.nodes[0]) wrong_key = get_key(self.nodes[0]).pubkey self.test_importmulti({"scriptPubKey": {"address": key.p2pkh_addr}, "timestamp": "now", "pubkeys": [wrong_key]}, success=True, warnings=["Importing as non-solvable: some required keys are missing. If this is intentional, don't provide any keys, pubkeys or redeemscript.", "Some private keys are missing, outputs will be considered watchonly. If this is intentional, specify the watchonly flag."]) test_address(self.nodes[1], key.p2pkh_addr, iswatchonly=True, ismine=False, solvable=False, timestamp=timestamp) # ScriptPubKey + Public key + internal + Wrong pubkey self.log.info( "Should import a scriptPubKey with internal and with a wrong public key as non-solvable") key = get_key(self.nodes[0]) wrong_key = get_key(self.nodes[0]).pubkey self.test_importmulti({"scriptPubKey": key.p2pkh_script, "timestamp": "now", "pubkeys": [wrong_key], "internal": True}, success=True, warnings=["Importing as non-solvable: some required keys are missing. If this is intentional, don't provide any keys, pubkeys or redeemscript.", "Some private keys are missing, outputs will be considered watchonly. If this is intentional, specify the watchonly flag."]) test_address(self.nodes[1], key.p2pkh_addr, iswatchonly=True, ismine=False, solvable=False, timestamp=timestamp) # Address + Private key + !watchonly + Wrong private key self.log.info( "Should import an address with a wrong private key as non-solvable") key = get_key(self.nodes[0]) wrong_privkey = get_key(self.nodes[0]).privkey self.test_importmulti({"scriptPubKey": {"address": key.p2pkh_addr}, "timestamp": "now", "keys": [wrong_privkey]}, success=True, warnings=["Importing as non-solvable: some required keys are missing. If this is intentional, don't provide any keys, pubkeys or redeemscript.", "Some private keys are missing, outputs will be considered watchonly. If this is intentional, specify the watchonly flag."]) test_address(self.nodes[1], key.p2pkh_addr, iswatchonly=True, ismine=False, solvable=False, timestamp=timestamp) # ScriptPubKey + Private key + internal + Wrong private key self.log.info( "Should import a scriptPubKey with internal and with a wrong private key as non-solvable") key = get_key(self.nodes[0]) wrong_privkey = get_key(self.nodes[0]).privkey self.test_importmulti({"scriptPubKey": key.p2pkh_script, "timestamp": "now", "keys": [wrong_privkey], "internal": True}, success=True, warnings=["Importing as non-solvable: some required keys are missing. If this is intentional, don't provide any keys, pubkeys or redeemscript.", "Some private keys are missing, outputs will be considered watchonly. If this is intentional, specify the watchonly flag."]) test_address(self.nodes[1], key.p2pkh_addr, iswatchonly=True, ismine=False, solvable=False, timestamp=timestamp) # Importing existing watch only address with new timestamp should # replace saved timestamp. assert_greater_than(timestamp, watchonly_timestamp) self.log.info("Should replace previously saved watch only timestamp.") self.test_importmulti({"scriptPubKey": {"address": watchonly_address}, "timestamp": "now"}, success=True) test_address(self.nodes[1], watchonly_address, iswatchonly=True, ismine=False, timestamp=timestamp) watchonly_timestamp = timestamp # restart nodes to check for proper serialization/deserialization of # watch only address self.stop_nodes() self.start_nodes() test_address(self.nodes[1], watchonly_address, iswatchonly=True, ismine=False, timestamp=watchonly_timestamp) # Bad or missing timestamps self.log.info("Should throw on invalid or missing timestamp values") assert_raises_rpc_error(-3, 'Missing required timestamp field for key', self.nodes[1].importmulti, [{"scriptPubKey": key.p2pkh_script}]) assert_raises_rpc_error(-3, 'Expected number or "now" timestamp value for key. got type string', self.nodes[1].importmulti, [{ "scriptPubKey": key.p2pkh_script, "timestamp": "" }]) # Test that importing of a P2PKH address via descriptor without # checksum fails key = get_key(self.nodes[0]) self.log.info( "Should fail to import a p2pkh address from descriptor with no checksum") self.test_importmulti({"desc": "pkh(" + key.pubkey + ")", "timestamp": "now", "label": "Descriptor import test"}, success=False, error_code=-5, error_message='Missing checksum') # Test ranged descriptor fails if range is not specified xpriv = "tprv8ZgxMBicQKsPeuVhWwi6wuMQGfPKi9Li5GtX35jVNknACgqe3CY4g5xgkfDDJcmtF7o1QnxWDRYw4H5P26PXq7sbcUkEqeR4fg3Kxp2tigg" # hdkeypath=m/0'/0'/0' and 1' addresses = [ "ecregtest:prvn9ycvgr5atuyh49sua3mapskh2mnnzg7t9yp6dt", "ecregtest:pp3n087yx0njv2e5wcvltahfxqst7l66rutz8ceeat"] # pkh subscripts corresponding to the above addresses addresses += [ "ecregtest:qqdkxd2xnzftq2p8wr3sqqyw8lntap7tncs546s6pr", "ecregtest:qpyryy83jfaec5u0gpzldk6teadsuq8zlyqh5l30uq", ] desc = "sh(pkh(" + xpriv + "/0'/0'/*'" + "))" self.log.info( "Ranged descriptor import should fail without a specified range") self.test_importmulti({"desc": descsum_create(desc), "timestamp": "now"}, success=False, error_code=-8, error_message='Descriptor is ranged, please specify the range') # Test importing of a ranged descriptor with xpriv self.log.info( "Should import the ranged descriptor with specified range as solvable") self.test_importmulti({"desc": descsum_create(desc), "timestamp": "now", "range": 1}, success=True) for address in addresses: test_address(self.nodes[1], address, solvable=True, ismine=True) self.test_importmulti({"desc": descsum_create(desc), "timestamp": "now", "range": -1}, success=False, error_code=-8, error_message='End of range is too high') self.test_importmulti({"desc": descsum_create(desc), "timestamp": "now", "range": [-1, 10]}, success=False, error_code=-8, error_message='Range should be greater or equal than 0') self.test_importmulti({"desc": descsum_create(desc), "timestamp": "now", "range": [(2 << 31 + 1) - 1000000, (2 << 31 + 1)]}, success=False, error_code=-8, error_message='End of range is too high') self.test_importmulti({"desc": descsum_create(desc), "timestamp": "now", "range": [2, 1]}, success=False, error_code=-8, error_message='Range specified as [begin,end] must not have begin after end') self.test_importmulti({"desc": descsum_create(desc), "timestamp": "now", "range": [0, 1000001]}, success=False, error_code=-8, error_message='Range is too large') # Test importing a descriptor containing a WIF private key wif_priv = "cTe1f5rdT8A8DFgVWTjyPwACsDPJM9ff4QngFxUixCSvvbg1x6sh" # Note: in Core's test, this address refers to the sh(wpkh()) address. # For a sh(pkh()) this does not refer to a key, so we use the subscript # address instead, which returns the same privkey. address = "ecregtest:qzh6rch6st3wjvp0h2ud87gn7xnxvf6h8yrk8gcg8t" desc = "sh(pkh(" + wif_priv + "))" self.log.info( "Should import a descriptor with a WIF private key as spendable") self.test_importmulti({"desc": descsum_create(desc), "timestamp": "now"}, success=True) test_address(self.nodes[1], address, solvable=True, ismine=True) # dump the private key to ensure it matches what was imported privkey = self.nodes[1].dumpprivkey(address) assert_equal(privkey, wif_priv) # Test importing of a P2PKH address via descriptor key = get_key(self.nodes[0]) p2pkh_label = "P2PKH descriptor import" self.log.info("Should import a p2pkh address from descriptor") self.test_importmulti({"desc": descsum_create("pkh(" + key.pubkey + ")"), "timestamp": "now", "label": p2pkh_label}, success=True, warnings=["Some private keys are missing, outputs will be considered watchonly. If this is intentional, specify the watchonly flag."]) test_address(self.nodes[1], key.p2pkh_addr, solvable=True, ismine=False, labels=[p2pkh_label]) # Test import fails if both desc and scriptPubKey are provided key = get_key(self.nodes[0]) self.log.info( "Import should fail if both scriptPubKey and desc are provided") self.test_importmulti({"desc": descsum_create("pkh(" + key.pubkey + ")"), "scriptPubKey": {"address": key.p2pkh_addr}, "timestamp": "now"}, success=False, error_code=-8, error_message='Both a descriptor and a scriptPubKey should not be provided.') # Test import fails if neither desc nor scriptPubKey are present key = get_key(self.nodes[0]) self.log.info( "Import should fail if neither a descriptor nor a scriptPubKey are provided") self.test_importmulti({"timestamp": "now"}, success=False, error_code=-8, error_message='Either a descriptor or scriptPubKey must be provided.') # Test importing of a multisig via descriptor key1 = get_key(self.nodes[0]) key2 = get_key(self.nodes[0]) self.log.info("Should import a 1-of-2 bare multisig from descriptor") self.test_importmulti({"desc": descsum_create("multi(1," + key1.pubkey + "," + key2.pubkey + ")"), "timestamp": "now"}, success=True, warnings=["Some private keys are missing, outputs will be considered watchonly. If this is intentional, specify the watchonly flag."]) self.log.info( "Should not treat individual keys from the imported bare multisig as watchonly") test_address(self.nodes[1], key1.p2pkh_addr, ismine=False, iswatchonly=False) # Import pubkeys with key origin info self.log.info( "Addresses should have hd keypath and master key id after import with key origin") pub_addr = self.nodes[1].getnewaddress() pub_addr = self.nodes[1].getnewaddress() info = self.nodes[1].getaddressinfo(pub_addr) pub = info['pubkey'] pub_keypath = info['hdkeypath'] pub_fpr = info['hdmasterfingerprint'] result = self.nodes[0].importmulti( [{ 'desc': descsum_create("pkh([" + pub_fpr + pub_keypath[1:] + "]" + pub + ")"), "timestamp": "now", }] ) assert result[0]['success'] pub_import_info = self.nodes[0].getaddressinfo(pub_addr) assert_equal(pub_import_info['hdmasterfingerprint'], pub_fpr) assert_equal(pub_import_info['pubkey'], pub) assert_equal(pub_import_info['hdkeypath'], pub_keypath) # Import privkeys with key origin info priv_addr = self.nodes[1].getnewaddress() info = self.nodes[1].getaddressinfo(priv_addr) priv = self.nodes[1].dumpprivkey(priv_addr) priv_keypath = info['hdkeypath'] priv_fpr = info['hdmasterfingerprint'] result = self.nodes[0].importmulti( [{ 'desc': descsum_create("pkh([" + priv_fpr + priv_keypath[1:] + "]" + priv + ")"), "timestamp": "now", }] ) assert result[0]['success'] priv_import_info = self.nodes[0].getaddressinfo(priv_addr) assert_equal(priv_import_info['hdmasterfingerprint'], priv_fpr) assert_equal(priv_import_info['hdkeypath'], priv_keypath) # Make sure the key origin info are still there after a restart self.stop_nodes() self.start_nodes() import_info = self.nodes[0].getaddressinfo(pub_addr) assert_equal(import_info['hdmasterfingerprint'], pub_fpr) assert_equal(import_info['hdkeypath'], pub_keypath) import_info = self.nodes[0].getaddressinfo(priv_addr) assert_equal(import_info['hdmasterfingerprint'], priv_fpr) assert_equal(import_info['hdkeypath'], priv_keypath) # Check legacy import does not import key origin info self.log.info("Legacy imports don't have key origin info") pub_addr = self.nodes[1].getnewaddress() info = self.nodes[1].getaddressinfo(pub_addr) pub = info['pubkey'] result = self.nodes[0].importmulti( [{ 'scriptPubKey': {'address': pub_addr}, 'pubkeys': [pub], "timestamp": "now", }] ) assert result[0]['success'] pub_import_info = self.nodes[0].getaddressinfo(pub_addr) assert_equal(pub_import_info['pubkey'], pub) assert 'hdmasterfingerprint' not in pub_import_info assert 'hdkeypath' not in pub_import_info # Import some public keys to the keypool of a no privkey wallet self.log.info("Adding pubkey to keypool of disableprivkey wallet") self.nodes[1].createwallet( wallet_name="noprivkeys", disable_private_keys=True) wrpc = self.nodes[1].get_wallet_rpc("noprivkeys") addr1 = self.nodes[0].getnewaddress() addr2 = self.nodes[0].getnewaddress() pub1 = self.nodes[0].getaddressinfo(addr1)['pubkey'] pub2 = self.nodes[0].getaddressinfo(addr2)['pubkey'] result = wrpc.importmulti( [{ 'desc': descsum_create('pkh(' + pub1 + ')'), 'keypool': True, "timestamp": "now", }, { 'desc': descsum_create('pkh(' + pub2 + ')'), 'keypool': True, "timestamp": "now", }] ) assert result[0]['success'] assert result[1]['success'] assert_equal(wrpc.getwalletinfo()["keypoolsize"], 2) newaddr1 = wrpc.getnewaddress() assert_equal(addr1, newaddr1) newaddr2 = wrpc.getnewaddress() assert_equal(addr2, newaddr2) # Import some public keys to the internal keypool of a no privkey # wallet self.log.info( "Adding pubkey to internal keypool of disableprivkey wallet") addr1 = self.nodes[0].getnewaddress() addr2 = self.nodes[0].getnewaddress() pub1 = self.nodes[0].getaddressinfo(addr1)['pubkey'] pub2 = self.nodes[0].getaddressinfo(addr2)['pubkey'] result = wrpc.importmulti( [{ 'desc': descsum_create('pkh(' + pub1 + ')'), 'keypool': True, 'internal': True, "timestamp": "now", }, { 'desc': descsum_create('pkh(' + pub2 + ')'), 'keypool': True, 'internal': True, "timestamp": "now", }] ) assert result[0]['success'] assert result[1]['success'] assert_equal(wrpc.getwalletinfo()["keypoolsize_hd_internal"], 2) newaddr1 = wrpc.getrawchangeaddress() assert_equal(addr1, newaddr1) newaddr2 = wrpc.getrawchangeaddress() assert_equal(addr2, newaddr2) # Import a multisig and make sure the keys don't go into the keypool self.log.info( 'Imported scripts with pubkeys shoud not have their pubkeys go into the keypool') addr1 = self.nodes[0].getnewaddress() addr2 = self.nodes[0].getnewaddress() pub1 = self.nodes[0].getaddressinfo(addr1)['pubkey'] pub2 = self.nodes[0].getaddressinfo(addr2)['pubkey'] result = wrpc.importmulti( [{ 'desc': descsum_create('sh(multi(2,' + pub1 + ',' + pub2 + '))'), 'keypool': True, "timestamp": "now", }] ) assert result[0]['success'] assert_equal(wrpc.getwalletinfo()["keypoolsize"], 0) # Cannot import those pubkeys to keypool of wallet with privkeys self.log.info( "Pubkeys cannot be added to the keypool of a wallet with private keys") wrpc = self.nodes[1].get_wallet_rpc(self.default_wallet_name) assert wrpc.getwalletinfo()['private_keys_enabled'] result = wrpc.importmulti( [{ 'desc': descsum_create('pkh(' + pub1 + ')'), 'keypool': True, "timestamp": "now", }] ) assert_equal(result[0]['error']['code'], -8) assert_equal( result[0]['error']['message'], "Keys can only be imported to the keypool when private keys are disabled") # Make sure ranged imports import keys in order self.log.info('Key ranges should be imported in order') wrpc = self.nodes[1].get_wallet_rpc("noprivkeys") assert_equal(wrpc.getwalletinfo()["keypoolsize"], 0) assert_equal(wrpc.getwalletinfo()["private_keys_enabled"], False) xpub = "tpubDAXcJ7s7ZwicqjprRaEWdPoHKrCS215qxGYxpusRLLmJuT69ZSicuGdSfyvyKpvUNYBW1s2U3NSrT6vrCYB9e6nZUEvrqnwXPF8ArTCRXMY" addresses = [ 'ecregtest:qp0v86h53rc92hjrlpwzpjtdlgzsxu25svv6g40fpl', # m/0'/0'/0 'ecregtest:qqasy0zlkdleqt4pkn8fs4ehm5gnnz6qpgdcpt90fq', # m/0'/0'/1 'ecregtest:qp0sp4wlhctvprqvdt2dgvqcfdjssu04xgey0l3syw', # m/0'/0'/2 'ecregtest:qrhn24tegn04cptfv4ldhtkduxq55zcwrycjfdj9vr', # m/0'/0'/3 'ecregtest:qzpqhett2uwltq803vrxv7zkqhft5vsnmcjeh50v0p', # m/0'/0'/4 ] result = wrpc.importmulti( [{ 'desc': descsum_create('pkh([80002067/0h/0h]' + xpub + '/*)'), 'keypool': True, 'timestamp': 'now', 'range': [0, 4], }] ) self.log.info(result) for i in range(0, 5): addr = wrpc.getnewaddress('') assert_equal(addr, addresses[i]) if __name__ == '__main__': ImportMultiTest().main()
47.459391
299
0.552142
86b3348ca8f6adc57a37a549254eae6794e335dd
8,665
py
Python
src/models/udt/train.py
alexmlamb/SPUDT
5d4ff32c9e37a485c176d3e68c58723e544972e5
[ "MIT" ]
null
null
null
src/models/udt/train.py
alexmlamb/SPUDT
5d4ff32c9e37a485c176d3e68c58723e544972e5
[ "MIT" ]
null
null
null
src/models/udt/train.py
alexmlamb/SPUDT
5d4ff32c9e37a485c176d3e68c58723e544972e5
[ "MIT" ]
null
null
null
import time import os import torch import torch.nn.functional as F from torch import optim from common.util import sample, save_models from evaluation.fid import calculate_fid from common.initialize import initialize, infer_iteration from . import model def gp_loss(x, y, d, device): batch_size = x.size()[0] gp_alpha = torch.rand(batch_size, 1, 1, 1, device=device) interp = gp_alpha * x.data + (1 - gp_alpha) * y.data interp.requires_grad = True d_interp = d(interp) grad_interp = torch.autograd.grad(outputs=d_interp, inputs=interp, grad_outputs=torch.ones(d_interp.size(), device=device), create_graph=True, retain_graph=True, only_inputs=True)[0] grad_interp = grad_interp.view(grad_interp.size(0), -1) diff = grad_interp.norm(2, dim=1) - 1 diff = torch.clamp(diff, 0) return torch.mean(diff**2) def semantic_loss(data, nz, generator, classifier, device): label = classifier(data).argmax(1) z = torch.randn(data.shape[0], nz, device=device) gen = generator(data, z) pred = classifier(gen) return F.cross_entropy(pred, label) def cycle_loss(data, nz, generator1, generator2, device): z = torch.randn(data.shape[0], nz, device=device) gen = generator1(data, z) z = torch.randn(data.shape[0], nz, device=device) cycle = generator2(gen, z) return F.l1_loss(data, cycle) def identity_loss(data, nz, generator, device): z = torch.randn(data.shape[0], nz, device=device) gen = generator(data, z) return F.l1_loss(gen, data) def compute_critic_loss(data, nz, target, critic, generator, device): z = torch.randn(data.shape[0], nz, device=device) gen = generator(data, z).detach() pos_loss = critic(target).mean() neg_loss = critic(gen).mean() gp = gp_loss(gen, target, critic, device) return pos_loss - neg_loss + 10*gp def generator_loss(data, nz, critic, generator, device): z = torch.randn(data.shape[0], nz, device=device) gen = generator(data, z) return critic(gen).mean() def define_models(shape1, **parameters): critic = model.Critic(shape1[0], **parameters) generator = model.Generator(shape1[0], **parameters) return { 'critic': critic, 'generator': generator, } @torch.no_grad() def evaluate(loader, nz, transfer, classifier, device): correct = 0 total = 0 for data, label in loader: data, label = data.to(device), label.to(device) z = torch.randn(data.shape[0], nz, device=device) gen = transfer(data, z) pred = F.softmax(classifier(gen), 1).argmax(1) correct += (pred == label).sum().cpu().float() total += len(pred) accuracy = correct / total accuracy = accuracy.cpu().numpy() return accuracy @torch.no_grad() def plot_transfer(visualiser, data, target, nz, transfer, id, i, device): z = torch.randn(data.shape[0], nz, device=device) transfered = transfer(data, z) merged = len(data)*2 * [None] merged[:2*len(data):2] = data merged[1:2*len(transfered):2] = transfered merged = torch.stack(merged) visualiser.image(merged.cpu().numpy(), f'Comparison{id}', i) visualiser.image(target.cpu().numpy(), title=f'Target {id}', step=i) def train(args): parameters = vars(args) train_loader1, valid_loader1, test_loader1 = args.loaders1 train_loader2, valid_loader2, test_loader2 = args.loaders2 models = define_models(**parameters) initialize(models, args.reload, args.save_path, args.model_path) critic = models['critic'].to(args.device) generator = models['generator'].to(args.device) evalY = args.evalY.to(args.device).eval() semantic = args.semantic.to(args.device).eval() print(generator) print(critic) print(semantic) optim_critic = optim.Adam(critic.parameters(), lr=args.lr, betas=(args.beta1, args.beta2)) optim_generator = optim.Adam(generator.parameters(), lr=args.lr, betas=(args.beta1, args.beta2)) iter1 = iter(train_loader1) iter2 = iter(train_loader2) iteration = infer_iteration(list(models.keys())[0], args.reload, args.model_path, args.save_path) t0 = time.time() for i in range(iteration, args.iterations): critic.train() generator.train() for _ in range(args.d_updates): batchx, iter1 = sample(iter1, train_loader1) datax = batchx[0].to(args.device) batchy, iter2 = sample(iter2, train_loader2) datay = batchy[0].to(args.device) critic_lossy = compute_critic_loss(datax, args.z_dim, datay, critic, generator, args.device) optim_critic.zero_grad() critic_lossy.backward() optim_critic.step() batchx, iter1 = sample(iter1, train_loader1) datax = batchx[0].to(args.device) batchy, iter2 = sample(iter2, train_loader2) datay = batchy[0].to(args.device) glossxy = generator_loss(datax, args.z_dim, critic, generator, args.device) slossxy = semantic_loss(datax, args.z_dim, generator, semantic, args.device) optim_generator.zero_grad() glossxy.backward() (args.gsxy*slossxy).backward() optim_generator.step() if i % args.evaluate == 0: print('Iter: %s' % i, time.time() - t0) generator.eval() save_path = args.save_path plot_transfer(args.visualiser, datax, datay, args.z_dim, generator, 'x-y', i, args.device) test_accuracy_xy = evaluate(test_loader1, args.z_dim, generator, evalY, args.device) with open(os.path.join(save_path, 'glossxy'), 'a') as f: f.write(f'{i},{glossxy.cpu().item()}\n') with open(os.path.join(save_path, 'slossxy'), 'a') as f: f.write(f'{i},{slossxy.cpu().item()}\n') with open(os.path.join(save_path, 'test_accuracy_xy'), 'a') as f: f.write(f'{i},{test_accuracy_xy}\n') args.visualiser.plot(critic_lossy.cpu().detach().numpy(), title='critic_lossy', step=i) args.visualiser.plot(glossxy.cpu().detach().numpy(), title='glossxy', step=i) args.visualiser.plot(slossxy.cpu().detach().numpy(), title='slossxy', step=i) args.visualiser.plot(test_accuracy_xy, title=f'Test transfer accuracy X-Y', step=i) t0 = time.time() save_models(models, 0, args.model_path, args.checkpoint) @torch.no_grad() def evaluate_fid(args): parameters = vars(args) _, _, test_loader1 = args.loaders1 _, _, test_loader2 = args.loaders2 models = define_models(**parameters) initialize(models, True, args.save_path, args.model_path) generatorXY = models['generatorXY'].to(args.device) generatorYX = models['generatorYX'].to(args.device) datas1 = [] labels1 = [] gens1 = [] for i, (data, label) in enumerate(test_loader1): data, label = data.to(args.device), label.to(args.device) datas1 += [data] labels1 += [label] z = torch.randn(len(data), args.z_dim, device=args.device) gen = generatorXY(data, z) gens1 += [gen] datas1 = torch.cat(datas1) labels1 = torch.cat(labels1) gens1 = torch.cat(gens1) datas2 = [] labels2 = [] gens2 = [] for i, (data, label) in enumerate(test_loader2): data, label = data.to(args.device), label.to(args.device) datas2 += [data] labels2 += [label] z = torch.randn(len(data), args.z_dim, device=args.device) gen = generatorYX(data, z) gens2 += [gen] datas2 = torch.cat(datas2) labels2 = torch.cat(labels2) gens2 = torch.cat(gens2) #fid = calculate_fid(datas1[:1000], datas1[1000:2000], 50, args.device, 2048) #print(f'fid datasetX: {fid}') #fid = calculate_fid(datas2[:1000], datas2[1000:2000], 50, args.device, 2048) #print(f'fid datasetY: {fid}') fid = calculate_fid(datas1, gens2, 50, args.device, 2048) save_path = args.save_path with open(os.path.join(save_path, 'fid_yx'), 'w') as f: f.write(f'{fid}\n') print(f'fid Y->X: {fid}') fid = calculate_fid(datas2, gens1, 50, args.device, 2048) with open(os.path.join(save_path, 'fid_xy'), 'w') as f: f.write(f'{fid}\n') print(f'fid X->Y: {fid}') #for i in range(10): # l1 = labels1 == i # l2 = labels2 == i # d, g = datas1[l1], gens2[l2] # fid = calculate_fid(d, g, 50, args.device, 2048) # print(f'intra-fid label {i} Y->X: {fid}') # d, g = datas2[l2], gens1[l1] # fid = calculate_fid(d, g, 50, args.device, 2048) # print(f'intra-fid label {i} X->Y: {fid}')
36.87234
114
0.633353
9af5dc5f75cc9a70253e14625aab13e5e4dc1558
114,849
py
Python
mypy/nodes.py
aghast/mypy
13ae58ffe8bedb7da9f4c657297f0d61e681d671
[ "PSF-2.0" ]
null
null
null
mypy/nodes.py
aghast/mypy
13ae58ffe8bedb7da9f4c657297f0d61e681d671
[ "PSF-2.0" ]
null
null
null
mypy/nodes.py
aghast/mypy
13ae58ffe8bedb7da9f4c657297f0d61e681d671
[ "PSF-2.0" ]
null
null
null
"""Abstract syntax tree node classes (i.e. parse tree).""" import os from abc import abstractmethod from mypy.ordered_dict import OrderedDict from collections import defaultdict from typing import ( Any, TypeVar, List, Tuple, cast, Set, Dict, Union, Optional, Callable, Sequence, Iterator ) from typing_extensions import DefaultDict, Final, TYPE_CHECKING from mypy_extensions import trait import mypy.strconv from mypy.util import short_type from mypy.visitor import NodeVisitor, StatementVisitor, ExpressionVisitor from mypy.bogus_type import Bogus class Context: """Base type for objects that are valid as error message locations.""" __slots__ = ('line', 'column', 'end_line') def __init__(self, line: int = -1, column: int = -1) -> None: self.line = line self.column = column self.end_line = None # type: Optional[int] def set_line(self, target: Union['Context', int], column: Optional[int] = None, end_line: Optional[int] = None) -> None: """If target is a node, pull line (and column) information into this node. If column is specified, this will override any column information coming from a node. """ if isinstance(target, int): self.line = target else: self.line = target.line self.column = target.column self.end_line = target.end_line if column is not None: self.column = column if end_line is not None: self.end_line = end_line def get_line(self) -> int: """Don't use. Use x.line.""" return self.line def get_column(self) -> int: """Don't use. Use x.column.""" return self.column if TYPE_CHECKING: # break import cycle only needed for mypy import mypy.types T = TypeVar('T') JsonDict = Dict[str, Any] # Symbol table node kinds # # TODO rename to use more descriptive names LDEF = 0 # type: Final[int] GDEF = 1 # type: Final[int] MDEF = 2 # type: Final[int] # Placeholder for a name imported via 'from ... import'. Second phase of # semantic will replace this the actual imported reference. This is # needed so that we can detect whether a name has been imported during # XXX what? UNBOUND_IMPORTED = 3 # type: Final[int] # RevealExpr node kinds REVEAL_TYPE = 0 # type: Final[int] REVEAL_LOCALS = 1 # type: Final[int] LITERAL_YES = 2 # type: Final LITERAL_TYPE = 1 # type: Final LITERAL_NO = 0 # type: Final node_kinds = { LDEF: 'Ldef', GDEF: 'Gdef', MDEF: 'Mdef', UNBOUND_IMPORTED: 'UnboundImported', } # type: Final inverse_node_kinds = {_kind: _name for _name, _kind in node_kinds.items()} # type: Final implicit_module_attrs = {'__name__': '__builtins__.str', '__doc__': None, # depends on Python version, see semanal.py '__file__': '__builtins__.str', '__package__': '__builtins__.str'} # type: Final # These aliases exist because built-in class objects are not subscriptable. # For example `list[int]` fails at runtime. Instead List[int] should be used. type_aliases = { 'typing.List': 'builtins.list', 'typing.Dict': 'builtins.dict', 'typing.Set': 'builtins.set', 'typing.FrozenSet': 'builtins.frozenset', 'typing.ChainMap': 'collections.ChainMap', 'typing.Counter': 'collections.Counter', 'typing.DefaultDict': 'collections.defaultdict', 'typing.Deque': 'collections.deque', } # type: Final # This keeps track of the oldest supported Python version where the corresponding # alias _target_ is available. type_aliases_target_versions = { 'typing.List': (2, 7), 'typing.Dict': (2, 7), 'typing.Set': (2, 7), 'typing.FrozenSet': (2, 7), 'typing.ChainMap': (3, 3), 'typing.Counter': (2, 7), 'typing.DefaultDict': (2, 7), 'typing.Deque': (2, 7), } # type: Final reverse_builtin_aliases = { 'builtins.list': 'typing.List', 'builtins.dict': 'typing.Dict', 'builtins.set': 'typing.Set', 'builtins.frozenset': 'typing.FrozenSet', } # type: Final nongen_builtins = {'builtins.tuple': 'typing.Tuple', 'builtins.enumerate': ''} # type: Final nongen_builtins.update((name, alias) for alias, name in type_aliases.items()) RUNTIME_PROTOCOL_DECOS = ('typing.runtime_checkable', 'typing_extensions.runtime', 'typing_extensions.runtime_checkable') # type: Final class Node(Context): """Common base class for all non-type parse tree nodes.""" __slots__ = () def __str__(self) -> str: ans = self.accept(mypy.strconv.StrConv()) if ans is None: return repr(self) return ans def accept(self, visitor: NodeVisitor[T]) -> T: raise RuntimeError('Not implemented') @trait class Statement(Node): """A statement node.""" __slots__ = () def accept(self, visitor: StatementVisitor[T]) -> T: raise RuntimeError('Not implemented') @trait class Expression(Node): """An expression node.""" __slots__ = () def accept(self, visitor: ExpressionVisitor[T]) -> T: raise RuntimeError('Not implemented') class FakeExpression(Expression): """A dummy expression. We need a dummy expression in one place, and can't instantiate Expression because it is a trait and mypyc barfs. """ pass # TODO: # Lvalue = Union['NameExpr', 'MemberExpr', 'IndexExpr', 'SuperExpr', 'StarExpr' # 'TupleExpr']; see #1783. Lvalue = Expression @trait class SymbolNode(Node): """Nodes that can be stored in a symbol table.""" __slots__ = () @property @abstractmethod def name(self) -> str: pass # fullname can often be None even though the type system # disagrees. We mark this with Bogus to let mypyc know not to # worry about it. @property @abstractmethod def fullname(self) -> Bogus[str]: pass @abstractmethod def serialize(self) -> JsonDict: pass @classmethod def deserialize(cls, data: JsonDict) -> 'SymbolNode': classname = data['.class'] method = deserialize_map.get(classname) if method is not None: return method(data) raise NotImplementedError('unexpected .class {}'.format(classname)) # Items: fullname, related symbol table node, surrounding type (if any) Definition = Tuple[str, 'SymbolTableNode', Optional['TypeInfo']] class MypyFile(SymbolNode): """The abstract syntax tree of a single source file.""" # Fully qualified module name _fullname = None # type: Bogus[str] # Path to the file (empty string if not known) path = '' # Top-level definitions and statements defs = None # type: List[Statement] # Type alias dependencies as mapping from target to set of alias full names alias_deps = None # type: DefaultDict[str, Set[str]] # Is there a UTF-8 BOM at the start? is_bom = False names = None # type: SymbolTable # All import nodes within the file (also ones within functions etc.) imports = None # type: List[ImportBase] # Lines on which to ignore certain errors when checking. # If the value is empty, ignore all errors; otherwise, the list contains all # error codes to ignore. ignored_lines = None # type: Dict[int, List[str]] # Is this file represented by a stub file (.pyi)? is_stub = False # Is this loaded from the cache and thus missing the actual body of the file? is_cache_skeleton = False # Does this represent an __init__.pyi stub with a module __getattr__ # (i.e. a partial stub package), for such packages we suppress any missing # module errors in addition to missing attribute errors. is_partial_stub_package = False # Plugin-created dependencies plugin_deps = None # type: Dict[str, Set[str]] def __init__(self, defs: List[Statement], imports: List['ImportBase'], is_bom: bool = False, ignored_lines: Optional[Dict[int, List[str]]] = None) -> None: super().__init__() self.defs = defs self.line = 1 # Dummy line number self.imports = imports self.is_bom = is_bom self.alias_deps = defaultdict(set) self.plugin_deps = {} if ignored_lines: self.ignored_lines = ignored_lines else: self.ignored_lines = {} def local_definitions(self) -> Iterator[Definition]: """Return all definitions within the module (including nested). This doesn't include imported definitions. """ return local_definitions(self.names, self.fullname) @property def name(self) -> str: return '' if not self._fullname else self._fullname.split('.')[-1] @property def fullname(self) -> Bogus[str]: return self._fullname def accept(self, visitor: NodeVisitor[T]) -> T: return visitor.visit_mypy_file(self) def is_package_init_file(self) -> bool: return len(self.path) != 0 and os.path.basename(self.path).startswith('__init__.') def serialize(self) -> JsonDict: return {'.class': 'MypyFile', '_fullname': self._fullname, 'names': self.names.serialize(self._fullname), 'is_stub': self.is_stub, 'path': self.path, 'is_partial_stub_package': self.is_partial_stub_package, } @classmethod def deserialize(cls, data: JsonDict) -> 'MypyFile': assert data['.class'] == 'MypyFile', data tree = MypyFile([], []) tree._fullname = data['_fullname'] tree.names = SymbolTable.deserialize(data['names']) tree.is_stub = data['is_stub'] tree.path = data['path'] tree.is_partial_stub_package = data['is_partial_stub_package'] tree.is_cache_skeleton = True return tree class ImportBase(Statement): """Base class for all import statements.""" is_unreachable = False # Set by semanal.SemanticAnalyzerPass1 if inside `if False` etc. is_top_level = False # Ditto if outside any class or def is_mypy_only = False # Ditto if inside `if TYPE_CHECKING` or `if MYPY` # If an import replaces existing definitions, we construct dummy assignment # statements that assign the imported names to the names in the current scope, # for type checking purposes. Example: # # x = 1 # from m import x <-- add assignment representing "x = m.x" assignments = None # type: List[AssignmentStmt] def __init__(self) -> None: super().__init__() self.assignments = [] class Import(ImportBase): """import m [as n]""" ids = None # type: List[Tuple[str, Optional[str]]] # (module id, as id) def __init__(self, ids: List[Tuple[str, Optional[str]]]) -> None: super().__init__() self.ids = ids def accept(self, visitor: StatementVisitor[T]) -> T: return visitor.visit_import(self) class ImportFrom(ImportBase): """from m import x [as y], ...""" id = None # type: str relative = None # type: int names = None # type: List[Tuple[str, Optional[str]]] # Tuples (name, as name) def __init__(self, id: str, relative: int, names: List[Tuple[str, Optional[str]]]) -> None: super().__init__() self.id = id self.names = names self.relative = relative def accept(self, visitor: StatementVisitor[T]) -> T: return visitor.visit_import_from(self) class ImportAll(ImportBase): """from m import *""" id = None # type: str relative = None # type: int # NOTE: Only filled and used by old semantic analyzer. imported_names = None # type: List[str] def __init__(self, id: str, relative: int) -> None: super().__init__() self.id = id self.relative = relative self.imported_names = [] def accept(self, visitor: StatementVisitor[T]) -> T: return visitor.visit_import_all(self) class ImportedName(SymbolNode): """Indirect reference to a fullname stored in symbol table. This node is not present in the original program as such. This is just a temporary artifact in binding imported names. After semantic analysis pass 2, these references should be replaced with direct reference to a real AST node. Note that this is neither a Statement nor an Expression so this can't be visited. """ def __init__(self, target_fullname: str) -> None: super().__init__() self.target_fullname = target_fullname @property def name(self) -> str: return self.target_fullname.split('.')[-1] @property def fullname(self) -> str: return self.target_fullname def serialize(self) -> JsonDict: assert False, "ImportedName leaked from semantic analysis" @classmethod def deserialize(cls, data: JsonDict) -> 'ImportedName': assert False, "ImportedName should never be serialized" def __str__(self) -> str: return 'ImportedName(%s)' % self.target_fullname FUNCBASE_FLAGS = [ 'is_property', 'is_class', 'is_static', 'is_final' ] # type: Final class FuncBase(Node): """Abstract base class for function-like nodes. N.B: Although this has SymbolNode subclasses (FuncDef, OverloadedFuncDef), avoid calling isinstance(..., FuncBase) on something that is typed as SymbolNode. This is to work around mypy bug #3603, in which mypy doesn't understand multiple inheritance very well, and will assume that a SymbolNode cannot be a FuncBase. Instead, test against SYMBOL_FUNCBASE_TYPES, which enumerates SymbolNode subclasses that are also FuncBase subclasses. """ __slots__ = ('type', 'unanalyzed_type', 'info', 'is_property', 'is_class', # Uses "@classmethod" (explicit or implicit) 'is_static', # Uses "@staticmethod" 'is_final', # Uses "@final" '_fullname', ) def __init__(self) -> None: super().__init__() # Type signature. This is usually CallableType or Overloaded, but it can be # something else for decorated functions. self.type = None # type: Optional[mypy.types.ProperType] # Original, not semantically analyzed type (used for reprocessing) self.unanalyzed_type = None # type: Optional[mypy.types.ProperType] # If method, reference to TypeInfo # TODO: Type should be Optional[TypeInfo] self.info = FUNC_NO_INFO self.is_property = False self.is_class = False self.is_static = False self.is_final = False # Name with module prefix # TODO: Type should be Optional[str] self._fullname = cast(Bogus[str], None) @property @abstractmethod def name(self) -> str: pass @property def fullname(self) -> Bogus[str]: return self._fullname OverloadPart = Union['FuncDef', 'Decorator'] class OverloadedFuncDef(FuncBase, SymbolNode, Statement): """A logical node representing all the variants of a multi-declaration function. A multi-declaration function is often an @overload, but can also be a @property with a setter and a/or a deleter. This node has no explicit representation in the source program. Overloaded variants must be consecutive in the source file. """ items = None # type: List[OverloadPart] unanalyzed_items = None # type: List[OverloadPart] impl = None # type: Optional[OverloadPart] def __init__(self, items: List['OverloadPart']) -> None: super().__init__() self.items = items self.unanalyzed_items = items.copy() self.impl = None if len(items) > 0: self.set_line(items[0].line, items[0].column) self.is_final = False @property def name(self) -> str: if self.items: return self.items[0].name else: # This may happen for malformed overload assert self.impl is not None return self.impl.name def accept(self, visitor: StatementVisitor[T]) -> T: return visitor.visit_overloaded_func_def(self) def serialize(self) -> JsonDict: return {'.class': 'OverloadedFuncDef', 'items': [i.serialize() for i in self.items], 'type': None if self.type is None else self.type.serialize(), 'fullname': self._fullname, 'impl': None if self.impl is None else self.impl.serialize(), 'flags': get_flags(self, FUNCBASE_FLAGS), } @classmethod def deserialize(cls, data: JsonDict) -> 'OverloadedFuncDef': assert data['.class'] == 'OverloadedFuncDef' res = OverloadedFuncDef([ cast(OverloadPart, SymbolNode.deserialize(d)) for d in data['items']]) if data.get('impl') is not None: res.impl = cast(OverloadPart, SymbolNode.deserialize(data['impl'])) # set line for empty overload items, as not set in __init__ if len(res.items) > 0: res.set_line(res.impl.line) if data.get('type') is not None: typ = mypy.types.deserialize_type(data['type']) assert isinstance(typ, mypy.types.ProperType) res.type = typ res._fullname = data['fullname'] set_flags(res, data['flags']) # NOTE: res.info will be set in the fixup phase. return res class Argument(Node): """A single argument in a FuncItem.""" __slots__ = ('variable', 'type_annotation', 'initializer', 'kind') def __init__(self, variable: 'Var', type_annotation: 'Optional[mypy.types.Type]', initializer: Optional[Expression], kind: int) -> None: super().__init__() self.variable = variable self.type_annotation = type_annotation self.initializer = initializer self.kind = kind # must be an ARG_* constant def set_line(self, target: Union[Context, int], column: Optional[int] = None, end_line: Optional[int] = None) -> None: super().set_line(target, column, end_line) if self.initializer and self.initializer.line < 0: self.initializer.set_line(self.line, self.column, self.end_line) self.variable.set_line(self.line, self.column, self.end_line) FUNCITEM_FLAGS = FUNCBASE_FLAGS + [ 'is_overload', 'is_generator', 'is_coroutine', 'is_async_generator', 'is_awaitable_coroutine', ] # type: Final class FuncItem(FuncBase): """Base class for nodes usable as overloaded function items.""" __slots__ = ('arguments', # Note that can be None if deserialized (type is a lie!) 'arg_names', # Names of arguments 'arg_kinds', # Kinds of arguments 'min_args', # Minimum number of arguments 'max_pos', # Maximum number of positional arguments, -1 if no explicit # limit (*args not included) 'body', # Body of the function 'is_overload', # Is this an overload variant of function with more than # one overload variant? 'is_generator', # Contains a yield statement? 'is_coroutine', # Defined using 'async def' syntax? 'is_async_generator', # Is an async def generator? 'is_awaitable_coroutine', # Decorated with '@{typing,asyncio}.coroutine'? 'expanded', # Variants of function with type variables with values expanded ) def __init__(self, arguments: List[Argument], body: 'Block', typ: 'Optional[mypy.types.FunctionLike]' = None) -> None: super().__init__() self.arguments = arguments self.arg_names = [arg.variable.name for arg in self.arguments] self.arg_kinds = [arg.kind for arg in self.arguments] # type: List[int] self.max_pos = self.arg_kinds.count(ARG_POS) + self.arg_kinds.count(ARG_OPT) self.body = body self.type = typ self.unanalyzed_type = typ self.is_overload = False self.is_generator = False self.is_coroutine = False self.is_async_generator = False self.is_awaitable_coroutine = False self.expanded = [] # type: List[FuncItem] self.min_args = 0 for i in range(len(self.arguments)): if self.arguments[i] is None and i < self.max_fixed_argc(): self.min_args = i + 1 def max_fixed_argc(self) -> int: return self.max_pos def set_line(self, target: Union[Context, int], column: Optional[int] = None, end_line: Optional[int] = None) -> None: super().set_line(target, column, end_line) for arg in self.arguments: arg.set_line(self.line, self.column, self.end_line) def is_dynamic(self) -> bool: return self.type is None FUNCDEF_FLAGS = FUNCITEM_FLAGS + [ 'is_decorated', 'is_conditional', 'is_abstract', ] # type: Final class FuncDef(FuncItem, SymbolNode, Statement): """Function definition. This is a non-lambda function defined using 'def'. """ __slots__ = ('_name', 'is_decorated', 'is_conditional', 'is_abstract', 'original_def', ) def __init__(self, name: str, # Function name arguments: List[Argument], body: 'Block', typ: 'Optional[mypy.types.FunctionLike]' = None) -> None: super().__init__(arguments, body, typ) self._name = name self.is_decorated = False self.is_conditional = False # Defined conditionally (within block)? self.is_abstract = False self.is_final = False # Original conditional definition self.original_def = None # type: Union[None, FuncDef, Var, Decorator] @property def name(self) -> str: return self._name def accept(self, visitor: StatementVisitor[T]) -> T: return visitor.visit_func_def(self) def serialize(self) -> JsonDict: # We're deliberating omitting arguments and storing only arg_names and # arg_kinds for space-saving reasons (arguments is not used in later # stages of mypy). # TODO: After a FuncDef is deserialized, the only time we use `arg_names` # and `arg_kinds` is when `type` is None and we need to infer a type. Can # we store the inferred type ahead of time? return {'.class': 'FuncDef', 'name': self._name, 'fullname': self._fullname, 'arg_names': self.arg_names, 'arg_kinds': self.arg_kinds, 'type': None if self.type is None else self.type.serialize(), 'flags': get_flags(self, FUNCDEF_FLAGS), # TODO: Do we need expanded, original_def? } @classmethod def deserialize(cls, data: JsonDict) -> 'FuncDef': assert data['.class'] == 'FuncDef' body = Block([]) ret = FuncDef(data['name'], [], body, (None if data['type'] is None else cast(mypy.types.FunctionLike, mypy.types.deserialize_type(data['type'])))) ret._fullname = data['fullname'] set_flags(ret, data['flags']) # NOTE: ret.info is set in the fixup phase. ret.arg_names = data['arg_names'] ret.arg_kinds = data['arg_kinds'] # Leave these uninitialized so that future uses will trigger an error del ret.arguments del ret.max_pos del ret.min_args return ret # All types that are both SymbolNodes and FuncBases. See the FuncBase # docstring for the rationale. SYMBOL_FUNCBASE_TYPES = (OverloadedFuncDef, FuncDef) class Decorator(SymbolNode, Statement): """A decorated function. A single Decorator object can include any number of function decorators. """ func = None # type: FuncDef # Decorated function decorators = None # type: List[Expression] # Decorators (may be empty) # Some decorators are removed by semanal, keep the original here. original_decorators = None # type: List[Expression] # TODO: This is mostly used for the type; consider replacing with a 'type' attribute var = None # type: Var # Represents the decorated function obj is_overload = False def __init__(self, func: FuncDef, decorators: List[Expression], var: 'Var') -> None: super().__init__() self.func = func self.decorators = decorators self.original_decorators = decorators.copy() self.var = var self.is_overload = False @property def name(self) -> str: return self.func.name @property def fullname(self) -> Bogus[str]: return self.func.fullname @property def is_final(self) -> bool: return self.func.is_final @property def info(self) -> 'TypeInfo': return self.func.info @property def type(self) -> 'Optional[mypy.types.Type]': return self.var.type def accept(self, visitor: StatementVisitor[T]) -> T: return visitor.visit_decorator(self) def serialize(self) -> JsonDict: return {'.class': 'Decorator', 'func': self.func.serialize(), 'var': self.var.serialize(), 'is_overload': self.is_overload, } @classmethod def deserialize(cls, data: JsonDict) -> 'Decorator': assert data['.class'] == 'Decorator' dec = Decorator(FuncDef.deserialize(data['func']), [], Var.deserialize(data['var'])) dec.is_overload = data['is_overload'] return dec VAR_FLAGS = [ 'is_self', 'is_initialized_in_class', 'is_staticmethod', 'is_classmethod', 'is_property', 'is_settable_property', 'is_suppressed_import', 'is_classvar', 'is_abstract_var', 'is_final', 'final_unset_in_class', 'final_set_in_init', 'explicit_self_type', 'is_ready', ] # type: Final class Var(SymbolNode): """A variable. It can refer to global/local variable or a data attribute. """ __slots__ = ('_name', '_fullname', 'info', 'type', 'final_value', 'is_self', 'is_ready', 'is_inferred', 'is_initialized_in_class', 'is_staticmethod', 'is_classmethod', 'is_property', 'is_settable_property', 'is_classvar', 'is_abstract_var', 'is_final', 'final_unset_in_class', 'final_set_in_init', 'is_suppressed_import', 'explicit_self_type', 'from_module_getattr', ) def __init__(self, name: str, type: 'Optional[mypy.types.Type]' = None) -> None: super().__init__() self._name = name # Name without module prefix # TODO: Should be Optional[str] self._fullname = cast('Bogus[str]', None) # Name with module prefix # TODO: Should be Optional[TypeInfo] self.info = VAR_NO_INFO self.type = type # type: Optional[mypy.types.Type] # Declared or inferred type, or None # Is this the first argument to an ordinary method (usually "self")? self.is_self = False self.is_ready = True # If inferred, is the inferred type available? self.is_inferred = (self.type is None) # Is this initialized explicitly to a non-None value in class body? self.is_initialized_in_class = False self.is_staticmethod = False self.is_classmethod = False self.is_property = False self.is_settable_property = False self.is_classvar = False self.is_abstract_var = False # Set to true when this variable refers to a module we were unable to # parse for some reason (eg a silenced module) self.is_suppressed_import = False # Was this "variable" (rather a constant) defined as Final[...]? self.is_final = False # If constant value is a simple literal, # store the literal value (unboxed) for the benefit of # tools like mypyc. self.final_value = None # type: Optional[Union[int, float, bool, str]] # Where the value was set (only for class attributes) self.final_unset_in_class = False self.final_set_in_init = False # This is True for a variable that was declared on self with an explicit type: # class C: # def __init__(self) -> None: # self.x: int # This case is important because this defines a new Var, even if there is one # present in a superclass (without explicit type this doesn't create a new Var). # See SemanticAnalyzer.analyze_member_lvalue() for details. self.explicit_self_type = False # If True, this is an implicit Var created due to module-level __getattr__. self.from_module_getattr = False @property def name(self) -> str: return self._name @property def fullname(self) -> Bogus[str]: return self._fullname def accept(self, visitor: NodeVisitor[T]) -> T: return visitor.visit_var(self) def serialize(self) -> JsonDict: # TODO: Leave default values out? # NOTE: Sometimes self.is_ready is False here, but we don't care. data = {'.class': 'Var', 'name': self._name, 'fullname': self._fullname, 'type': None if self.type is None else self.type.serialize(), 'flags': get_flags(self, VAR_FLAGS), } # type: JsonDict if self.final_value is not None: data['final_value'] = self.final_value return data @classmethod def deserialize(cls, data: JsonDict) -> 'Var': assert data['.class'] == 'Var' name = data['name'] type = None if data['type'] is None else mypy.types.deserialize_type(data['type']) v = Var(name, type) v.is_ready = False # Override True default set in __init__ v._fullname = data['fullname'] set_flags(v, data['flags']) v.final_value = data.get('final_value') return v class ClassDef(Statement): """Class definition""" name = None # type: str # Name of the class without module prefix fullname = None # type: Bogus[str] # Fully qualified name of the class defs = None # type: Block type_vars = None # type: List[mypy.types.TypeVarDef] # Base class expressions (not semantically analyzed -- can be arbitrary expressions) base_type_exprs = None # type: List[Expression] # Special base classes like Generic[...] get moved here during semantic analysis removed_base_type_exprs = None # type: List[Expression] info = None # type: TypeInfo # Related TypeInfo metaclass = None # type: Optional[Expression] decorators = None # type: List[Expression] keywords = None # type: OrderedDict[str, Expression] analyzed = None # type: Optional[Expression] has_incompatible_baseclass = False def __init__(self, name: str, defs: 'Block', type_vars: Optional[List['mypy.types.TypeVarDef']] = None, base_type_exprs: Optional[List[Expression]] = None, metaclass: Optional[Expression] = None, keywords: Optional[List[Tuple[str, Expression]]] = None) -> None: super().__init__() self.name = name self.defs = defs self.type_vars = type_vars or [] self.base_type_exprs = base_type_exprs or [] self.removed_base_type_exprs = [] self.info = CLASSDEF_NO_INFO self.metaclass = metaclass self.decorators = [] self.keywords = OrderedDict(keywords or []) def accept(self, visitor: StatementVisitor[T]) -> T: return visitor.visit_class_def(self) def is_generic(self) -> bool: return self.info.is_generic() def serialize(self) -> JsonDict: # Not serialized: defs, base_type_exprs, metaclass, decorators, # analyzed (for named tuples etc.) return {'.class': 'ClassDef', 'name': self.name, 'fullname': self.fullname, 'type_vars': [v.serialize() for v in self.type_vars], } @classmethod def deserialize(self, data: JsonDict) -> 'ClassDef': assert data['.class'] == 'ClassDef' res = ClassDef(data['name'], Block([]), [mypy.types.TypeVarDef.deserialize(v) for v in data['type_vars']], ) res.fullname = data['fullname'] return res class GlobalDecl(Statement): """Declaration global x, y, ...""" names = None # type: List[str] def __init__(self, names: List[str]) -> None: super().__init__() self.names = names def accept(self, visitor: StatementVisitor[T]) -> T: return visitor.visit_global_decl(self) class NonlocalDecl(Statement): """Declaration nonlocal x, y, ...""" names = None # type: List[str] def __init__(self, names: List[str]) -> None: super().__init__() self.names = names def accept(self, visitor: StatementVisitor[T]) -> T: return visitor.visit_nonlocal_decl(self) class Block(Statement): __slots__ = ('body', 'is_unreachable') def __init__(self, body: List[Statement]) -> None: super().__init__() self.body = body # True if we can determine that this block is not executed during semantic # analysis. For example, this applies to blocks that are protected by # something like "if PY3:" when using Python 2. However, some code is # only considered unreachable during type checking and this is not true # in those cases. self.is_unreachable = False def accept(self, visitor: StatementVisitor[T]) -> T: return visitor.visit_block(self) # Statements class ExpressionStmt(Statement): """An expression as a statement, such as print(s).""" expr = None # type: Expression def __init__(self, expr: Expression) -> None: super().__init__() self.expr = expr def accept(self, visitor: StatementVisitor[T]) -> T: return visitor.visit_expression_stmt(self) class AssignmentStmt(Statement): """Assignment statement. The same node class is used for single assignment, multiple assignment (e.g. x, y = z) and chained assignment (e.g. x = y = z), assignments that define new names, and assignments with explicit types ("# type: t" or "x: t [= ...]"). An lvalue can be NameExpr, TupleExpr, ListExpr, MemberExpr, or IndexExpr. """ lvalues = None # type: List[Lvalue] # This is a TempNode if and only if no rvalue (x: t). rvalue = None # type: Expression # Declared type in a comment, may be None. type = None # type: Optional[mypy.types.Type] # Original, not semantically analyzed type in annotation (used for reprocessing) unanalyzed_type = None # type: Optional[mypy.types.Type] # This indicates usage of PEP 526 type annotation syntax in assignment. new_syntax = False # type: bool # Does this assignment define a type alias? is_alias_def = False # Is this a final definition? # Final attributes can't be re-assigned once set, and can't be overridden # in a subclass. This flag is not set if an attempted declaration was found to # be invalid during semantic analysis. It is still set to `True` if # a final declaration overrides another final declaration (this is checked # during type checking when MROs are known). is_final_def = False def __init__(self, lvalues: List[Lvalue], rvalue: Expression, type: 'Optional[mypy.types.Type]' = None, new_syntax: bool = False) -> None: super().__init__() self.lvalues = lvalues self.rvalue = rvalue self.type = type self.unanalyzed_type = type self.new_syntax = new_syntax def accept(self, visitor: StatementVisitor[T]) -> T: return visitor.visit_assignment_stmt(self) class OperatorAssignmentStmt(Statement): """Operator assignment statement such as x += 1""" op = '' lvalue = None # type: Lvalue rvalue = None # type: Expression def __init__(self, op: str, lvalue: Lvalue, rvalue: Expression) -> None: super().__init__() self.op = op self.lvalue = lvalue self.rvalue = rvalue def accept(self, visitor: StatementVisitor[T]) -> T: return visitor.visit_operator_assignment_stmt(self) class WhileStmt(Statement): expr = None # type: Expression body = None # type: Block else_body = None # type: Optional[Block] def __init__(self, expr: Expression, body: Block, else_body: Optional[Block]) -> None: super().__init__() self.expr = expr self.body = body self.else_body = else_body def accept(self, visitor: StatementVisitor[T]) -> T: return visitor.visit_while_stmt(self) class ForStmt(Statement): # Index variables index = None # type: Lvalue # Type given by type comments for index, can be None index_type = None # type: Optional[mypy.types.Type] # Original, not semantically analyzed type in annotation (used for reprocessing) unanalyzed_index_type = None # type: Optional[mypy.types.Type] # Inferred iterable item type inferred_item_type = None # type: Optional[mypy.types.Type] # Inferred iterator type inferred_iterator_type = None # type: Optional[mypy.types.Type] # Expression to iterate expr = None # type: Expression body = None # type: Block else_body = None # type: Optional[Block] is_async = False # True if `async for ...` (PEP 492, Python 3.5) def __init__(self, index: Lvalue, expr: Expression, body: Block, else_body: Optional[Block], index_type: 'Optional[mypy.types.Type]' = None) -> None: super().__init__() self.index = index self.index_type = index_type self.unanalyzed_index_type = index_type self.expr = expr self.body = body self.else_body = else_body def accept(self, visitor: StatementVisitor[T]) -> T: return visitor.visit_for_stmt(self) class ReturnStmt(Statement): expr = None # type: Optional[Expression] def __init__(self, expr: Optional[Expression]) -> None: super().__init__() self.expr = expr def accept(self, visitor: StatementVisitor[T]) -> T: return visitor.visit_return_stmt(self) class AssertStmt(Statement): expr = None # type: Expression msg = None # type: Optional[Expression] def __init__(self, expr: Expression, msg: Optional[Expression] = None) -> None: super().__init__() self.expr = expr self.msg = msg def accept(self, visitor: StatementVisitor[T]) -> T: return visitor.visit_assert_stmt(self) class DelStmt(Statement): expr = None # type: Lvalue def __init__(self, expr: Lvalue) -> None: super().__init__() self.expr = expr def accept(self, visitor: StatementVisitor[T]) -> T: return visitor.visit_del_stmt(self) class BreakStmt(Statement): def accept(self, visitor: StatementVisitor[T]) -> T: return visitor.visit_break_stmt(self) class ContinueStmt(Statement): def accept(self, visitor: StatementVisitor[T]) -> T: return visitor.visit_continue_stmt(self) class PassStmt(Statement): def accept(self, visitor: StatementVisitor[T]) -> T: return visitor.visit_pass_stmt(self) class IfStmt(Statement): expr = None # type: List[Expression] body = None # type: List[Block] else_body = None # type: Optional[Block] def __init__(self, expr: List[Expression], body: List[Block], else_body: Optional[Block]) -> None: super().__init__() self.expr = expr self.body = body self.else_body = else_body def accept(self, visitor: StatementVisitor[T]) -> T: return visitor.visit_if_stmt(self) class RaiseStmt(Statement): # Plain 'raise' is a valid statement. expr = None # type: Optional[Expression] from_expr = None # type: Optional[Expression] def __init__(self, expr: Optional[Expression], from_expr: Optional[Expression]) -> None: super().__init__() self.expr = expr self.from_expr = from_expr def accept(self, visitor: StatementVisitor[T]) -> T: return visitor.visit_raise_stmt(self) class TryStmt(Statement): body = None # type: Block # Try body # Plain 'except:' also possible types = None # type: List[Optional[Expression]] # Except type expressions vars = None # type: List[Optional[NameExpr]] # Except variable names handlers = None # type: List[Block] # Except bodies else_body = None # type: Optional[Block] finally_body = None # type: Optional[Block] def __init__(self, body: Block, vars: List['Optional[NameExpr]'], types: List[Optional[Expression]], handlers: List[Block], else_body: Optional[Block], finally_body: Optional[Block]) -> None: super().__init__() self.body = body self.vars = vars self.types = types self.handlers = handlers self.else_body = else_body self.finally_body = finally_body def accept(self, visitor: StatementVisitor[T]) -> T: return visitor.visit_try_stmt(self) class WithStmt(Statement): expr = None # type: List[Expression] target = None # type: List[Optional[Lvalue]] # Type given by type comments for target, can be None unanalyzed_type = None # type: Optional[mypy.types.Type] # Semantically analyzed types from type comment (TypeList type expanded) analyzed_types = None # type: List[mypy.types.Type] body = None # type: Block is_async = False # True if `async with ...` (PEP 492, Python 3.5) def __init__(self, expr: List[Expression], target: List[Optional[Lvalue]], body: Block, target_type: 'Optional[mypy.types.Type]' = None) -> None: super().__init__() self.expr = expr self.target = target self.unanalyzed_type = target_type self.analyzed_types = [] self.body = body def accept(self, visitor: StatementVisitor[T]) -> T: return visitor.visit_with_stmt(self) class PrintStmt(Statement): """Python 2 print statement""" args = None # type: List[Expression] newline = False # The file-like target object (given using >>). target = None # type: Optional[Expression] def __init__(self, args: List[Expression], newline: bool, target: Optional[Expression] = None) -> None: super().__init__() self.args = args self.newline = newline self.target = target def accept(self, visitor: StatementVisitor[T]) -> T: return visitor.visit_print_stmt(self) class ExecStmt(Statement): """Python 2 exec statement""" expr = None # type: Expression globals = None # type: Optional[Expression] locals = None # type: Optional[Expression] def __init__(self, expr: Expression, globals: Optional[Expression], locals: Optional[Expression]) -> None: super().__init__() self.expr = expr self.globals = globals self.locals = locals def accept(self, visitor: StatementVisitor[T]) -> T: return visitor.visit_exec_stmt(self) # Expressions class IntExpr(Expression): """Integer literal""" value = 0 def __init__(self, value: int) -> None: super().__init__() self.value = value def accept(self, visitor: ExpressionVisitor[T]) -> T: return visitor.visit_int_expr(self) # How mypy uses StrExpr, BytesExpr, and UnicodeExpr: # In Python 2 mode: # b'x', 'x' -> StrExpr # u'x' -> UnicodeExpr # BytesExpr is unused # # In Python 3 mode: # b'x' -> BytesExpr # 'x', u'x' -> StrExpr # UnicodeExpr is unused class StrExpr(Expression): """String literal""" value = '' # Keeps track of whether this string originated from Python 2 source code vs # Python 3 source code. We need to keep track of this information so we can # correctly handle types that have "nested strings". For example, consider this # type alias, where we have a forward reference to a literal type: # # Alias = List["Literal['foo']"] # # When parsing this, we need to know whether the outer string and alias came from # Python 2 code vs Python 3 code so we can determine whether the inner `Literal['foo']` # is meant to be `Literal[u'foo']` or `Literal[b'foo']`. # # This field keeps track of that information. from_python_3 = True def __init__(self, value: str, from_python_3: bool = False) -> None: super().__init__() self.value = value self.from_python_3 = from_python_3 def accept(self, visitor: ExpressionVisitor[T]) -> T: return visitor.visit_str_expr(self) class BytesExpr(Expression): """Bytes literal""" # Note: we deliberately do NOT use bytes here because it ends up # unnecessarily complicating a lot of the result logic. For example, # we'd have to worry about converting the bytes into a format we can # easily serialize/deserialize to and from JSON, would have to worry # about turning the bytes into a human-readable representation in # error messages... # # It's more convenient to just store the human-readable representation # from the very start. value = '' def __init__(self, value: str) -> None: super().__init__() self.value = value def accept(self, visitor: ExpressionVisitor[T]) -> T: return visitor.visit_bytes_expr(self) class UnicodeExpr(Expression): """Unicode literal (Python 2.x)""" value = '' def __init__(self, value: str) -> None: super().__init__() self.value = value def accept(self, visitor: ExpressionVisitor[T]) -> T: return visitor.visit_unicode_expr(self) class FloatExpr(Expression): """Float literal""" value = 0.0 def __init__(self, value: float) -> None: super().__init__() self.value = value def accept(self, visitor: ExpressionVisitor[T]) -> T: return visitor.visit_float_expr(self) class ComplexExpr(Expression): """Complex literal""" def __init__(self, value: complex) -> None: super().__init__() self.value = value def accept(self, visitor: ExpressionVisitor[T]) -> T: return visitor.visit_complex_expr(self) class EllipsisExpr(Expression): """Ellipsis (...)""" def accept(self, visitor: ExpressionVisitor[T]) -> T: return visitor.visit_ellipsis(self) class StarExpr(Expression): """Star expression""" expr = None # type: Expression def __init__(self, expr: Expression) -> None: super().__init__() self.expr = expr # Whether this starred expression is used in a tuple/list and as lvalue self.valid = False def accept(self, visitor: ExpressionVisitor[T]) -> T: return visitor.visit_star_expr(self) class RefExpr(Expression): """Abstract base class for name-like constructs""" __slots__ = ('kind', 'node', 'fullname', 'is_new_def', 'is_inferred_def', 'is_alias_rvalue') def __init__(self) -> None: super().__init__() # LDEF/GDEF/MDEF/... (None if not available) self.kind = None # type: Optional[int] # Var, FuncDef or TypeInfo that describes this self.node = None # type: Optional[SymbolNode] # Fully qualified name (or name if not global) self.fullname = None # type: Optional[str] # Does this define a new name? self.is_new_def = False # Does this define a new name with inferred type? # # For members, after semantic analysis, this does not take base # classes into consideration at all; the type checker deals with these. self.is_inferred_def = False # Is this expression appears as an rvalue of a valid type alias definition? self.is_alias_rvalue = False class NameExpr(RefExpr): """Name expression This refers to a local name, global name or a module. """ __slots__ = ('name', 'is_special_form') def __init__(self, name: str) -> None: super().__init__() self.name = name # Name referred to (may be qualified) # Is this a l.h.s. of a special form assignment like typed dict or type variable? self.is_special_form = False def accept(self, visitor: ExpressionVisitor[T]) -> T: return visitor.visit_name_expr(self) def serialize(self) -> JsonDict: assert False, "Serializing NameExpr: %s" % (self,) class MemberExpr(RefExpr): """Member access expression x.y""" __slots__ = ('expr', 'name', 'def_var') def __init__(self, expr: Expression, name: str) -> None: super().__init__() self.expr = expr self.name = name # The variable node related to a definition through 'self.x = <initializer>'. # The nodes of other kinds of member expressions are resolved during type checking. self.def_var = None # type: Optional[Var] def accept(self, visitor: ExpressionVisitor[T]) -> T: return visitor.visit_member_expr(self) # Kinds of arguments # Positional argument ARG_POS = 0 # type: Final[int] # Positional, optional argument (functions only, not calls) ARG_OPT = 1 # type: Final[int] # *arg argument ARG_STAR = 2 # type: Final[int] # Keyword argument x=y in call, or keyword-only function arg ARG_NAMED = 3 # type: Final[int] # **arg argument ARG_STAR2 = 4 # type: Final[int] # In an argument list, keyword-only and also optional ARG_NAMED_OPT = 5 # type: Final[int] class CallExpr(Expression): """Call expression. This can also represent several special forms that are syntactically calls such as cast(...) and None # type: .... """ __slots__ = ('callee', 'args', 'arg_kinds', 'arg_names', 'analyzed') def __init__(self, callee: Expression, args: List[Expression], arg_kinds: List[int], arg_names: List[Optional[str]], analyzed: Optional[Expression] = None) -> None: super().__init__() if not arg_names: arg_names = [None] * len(args) self.callee = callee self.args = args self.arg_kinds = arg_kinds # ARG_ constants # Each name can be None if not a keyword argument. self.arg_names = arg_names # type: List[Optional[str]] # If not None, the node that represents the meaning of the CallExpr. For # cast(...) this is a CastExpr. self.analyzed = analyzed def accept(self, visitor: ExpressionVisitor[T]) -> T: return visitor.visit_call_expr(self) class YieldFromExpr(Expression): expr = None # type: Expression def __init__(self, expr: Expression) -> None: super().__init__() self.expr = expr def accept(self, visitor: ExpressionVisitor[T]) -> T: return visitor.visit_yield_from_expr(self) class YieldExpr(Expression): expr = None # type: Optional[Expression] def __init__(self, expr: Optional[Expression]) -> None: super().__init__() self.expr = expr def accept(self, visitor: ExpressionVisitor[T]) -> T: return visitor.visit_yield_expr(self) class IndexExpr(Expression): """Index expression x[y]. Also wraps type application such as List[int] as a special form. """ base = None # type: Expression index = None # type: Expression # Inferred __getitem__ method type method_type = None # type: Optional[mypy.types.Type] # If not None, this is actually semantically a type application # Class[type, ...] or a type alias initializer. analyzed = None # type: Union[TypeApplication, TypeAliasExpr, None] def __init__(self, base: Expression, index: Expression) -> None: super().__init__() self.base = base self.index = index self.analyzed = None def accept(self, visitor: ExpressionVisitor[T]) -> T: return visitor.visit_index_expr(self) class UnaryExpr(Expression): """Unary operation""" op = '' expr = None # type: Expression # Inferred operator method type method_type = None # type: Optional[mypy.types.Type] def __init__(self, op: str, expr: Expression) -> None: super().__init__() self.op = op self.expr = expr def accept(self, visitor: ExpressionVisitor[T]) -> T: return visitor.visit_unary_expr(self) class AssignmentExpr(Expression): """Assignment expressions in Python 3.8+, like "a := 2".""" def __init__(self, target: Expression, value: Expression) -> None: super().__init__() self.target = target self.value = value def accept(self, visitor: ExpressionVisitor[T]) -> T: return visitor.visit_assignment_expr(self) # Map from binary operator id to related method name (in Python 3). op_methods = { '+': '__add__', '-': '__sub__', '*': '__mul__', '/': '__truediv__', '%': '__mod__', 'divmod': '__divmod__', '//': '__floordiv__', '**': '__pow__', '@': '__matmul__', '&': '__and__', '|': '__or__', '^': '__xor__', '<<': '__lshift__', '>>': '__rshift__', '==': '__eq__', '!=': '__ne__', '<': '__lt__', '>=': '__ge__', '>': '__gt__', '<=': '__le__', 'in': '__contains__', } # type: Final[Dict[str, str]] op_methods_to_symbols = {v: k for (k, v) in op_methods.items()} # type: Final op_methods_to_symbols['__div__'] = '/' comparison_fallback_method = '__cmp__' # type: Final ops_falling_back_to_cmp = {'__ne__', '__eq__', '__lt__', '__le__', '__gt__', '__ge__'} # type: Final ops_with_inplace_method = { '+', '-', '*', '/', '%', '//', '**', '@', '&', '|', '^', '<<', '>>'} # type: Final inplace_operator_methods = set( '__i' + op_methods[op][2:] for op in ops_with_inplace_method) # type: Final reverse_op_methods = { '__add__': '__radd__', '__sub__': '__rsub__', '__mul__': '__rmul__', '__truediv__': '__rtruediv__', '__mod__': '__rmod__', '__divmod__': '__rdivmod__', '__floordiv__': '__rfloordiv__', '__pow__': '__rpow__', '__matmul__': '__rmatmul__', '__and__': '__rand__', '__or__': '__ror__', '__xor__': '__rxor__', '__lshift__': '__rlshift__', '__rshift__': '__rrshift__', '__eq__': '__eq__', '__ne__': '__ne__', '__lt__': '__gt__', '__ge__': '__le__', '__gt__': '__lt__', '__le__': '__ge__', } # type: Final # Suppose we have some class A. When we do A() + A(), Python will only check # the output of A().__add__(A()) and skip calling the __radd__ method entirely. # This shortcut is used only for the following methods: op_methods_that_shortcut = { '__add__', '__sub__', '__mul__', '__div__', '__truediv__', '__mod__', '__divmod__', '__floordiv__', '__pow__', '__matmul__', '__and__', '__or__', '__xor__', '__lshift__', '__rshift__', } # type: Final normal_from_reverse_op = dict((m, n) for n, m in reverse_op_methods.items()) # type: Final reverse_op_method_set = set(reverse_op_methods.values()) # type: Final unary_op_methods = { '-': '__neg__', '+': '__pos__', '~': '__invert__', } # type: Final class OpExpr(Expression): """Binary operation (other than . or [] or comparison operators, which have specific nodes).""" op = '' left = None # type: Expression right = None # type: Expression # Inferred type for the operator method type (when relevant). method_type = None # type: Optional[mypy.types.Type] # Is the right side going to be evaluated every time? right_always = False # Is the right side unreachable? right_unreachable = False def __init__(self, op: str, left: Expression, right: Expression) -> None: super().__init__() self.op = op self.left = left self.right = right def accept(self, visitor: ExpressionVisitor[T]) -> T: return visitor.visit_op_expr(self) class ComparisonExpr(Expression): """Comparison expression (e.g. a < b > c < d).""" operators = None # type: List[str] operands = None # type: List[Expression] # Inferred type for the operator methods (when relevant; None for 'is'). method_types = None # type: List[Optional[mypy.types.Type]] def __init__(self, operators: List[str], operands: List[Expression]) -> None: super().__init__() self.operators = operators self.operands = operands self.method_types = [] def pairwise(self) -> Iterator[Tuple[str, Expression, Expression]]: """If this comparison expr is "a < b is c == d", yields the sequence ("<", a, b), ("is", b, c), ("==", c, d) """ for i, operator in enumerate(self.operators): yield operator, self.operands[i], self.operands[i + 1] def accept(self, visitor: ExpressionVisitor[T]) -> T: return visitor.visit_comparison_expr(self) class SliceExpr(Expression): """Slice expression (e.g. 'x:y', 'x:', '::2' or ':'). This is only valid as index in index expressions. """ begin_index = None # type: Optional[Expression] end_index = None # type: Optional[Expression] stride = None # type: Optional[Expression] def __init__(self, begin_index: Optional[Expression], end_index: Optional[Expression], stride: Optional[Expression]) -> None: super().__init__() self.begin_index = begin_index self.end_index = end_index self.stride = stride def accept(self, visitor: ExpressionVisitor[T]) -> T: return visitor.visit_slice_expr(self) class CastExpr(Expression): """Cast expression cast(type, expr).""" expr = None # type: Expression type = None # type: mypy.types.Type def __init__(self, expr: Expression, typ: 'mypy.types.Type') -> None: super().__init__() self.expr = expr self.type = typ def accept(self, visitor: ExpressionVisitor[T]) -> T: return visitor.visit_cast_expr(self) class RevealExpr(Expression): """Reveal type expression reveal_type(expr) or reveal_locals() expression.""" expr = None # type: Optional[Expression] kind = 0 # type: int local_nodes = None # type: Optional[List[Var]] def __init__( self, kind: int, expr: Optional[Expression] = None, local_nodes: 'Optional[List[Var]]' = None) -> None: super().__init__() self.expr = expr self.kind = kind self.local_nodes = local_nodes def accept(self, visitor: ExpressionVisitor[T]) -> T: return visitor.visit_reveal_expr(self) class SuperExpr(Expression): """Expression super().name""" name = '' info = None # type: Optional[TypeInfo] # Type that contains this super expression call = None # type: CallExpr # The expression super(...) def __init__(self, name: str, call: CallExpr) -> None: super().__init__() self.name = name self.call = call def accept(self, visitor: ExpressionVisitor[T]) -> T: return visitor.visit_super_expr(self) class LambdaExpr(FuncItem, Expression): """Lambda expression""" @property def name(self) -> str: return '<lambda>' def expr(self) -> Expression: """Return the expression (the body) of the lambda.""" ret = cast(ReturnStmt, self.body.body[-1]) expr = ret.expr assert expr is not None # lambda can't have empty body return expr def accept(self, visitor: ExpressionVisitor[T]) -> T: return visitor.visit_lambda_expr(self) def is_dynamic(self) -> bool: return False class ListExpr(Expression): """List literal expression [...].""" items = None # type: List[Expression] def __init__(self, items: List[Expression]) -> None: super().__init__() self.items = items def accept(self, visitor: ExpressionVisitor[T]) -> T: return visitor.visit_list_expr(self) class DictExpr(Expression): """Dictionary literal expression {key: value, ...}.""" items = None # type: List[Tuple[Optional[Expression], Expression]] def __init__(self, items: List[Tuple[Optional[Expression], Expression]]) -> None: super().__init__() self.items = items def accept(self, visitor: ExpressionVisitor[T]) -> T: return visitor.visit_dict_expr(self) class TupleExpr(Expression): """Tuple literal expression (..., ...) Also lvalue sequences (..., ...) and [..., ...]""" items = None # type: List[Expression] def __init__(self, items: List[Expression]) -> None: super().__init__() self.items = items def accept(self, visitor: ExpressionVisitor[T]) -> T: return visitor.visit_tuple_expr(self) class SetExpr(Expression): """Set literal expression {value, ...}.""" items = None # type: List[Expression] def __init__(self, items: List[Expression]) -> None: super().__init__() self.items = items def accept(self, visitor: ExpressionVisitor[T]) -> T: return visitor.visit_set_expr(self) class GeneratorExpr(Expression): """Generator expression ... for ... in ... [ for ... in ... ] [ if ... ].""" left_expr = None # type: Expression sequences = None # type: List[Expression] condlists = None # type: List[List[Expression]] is_async = None # type: List[bool] indices = None # type: List[Lvalue] def __init__(self, left_expr: Expression, indices: List[Lvalue], sequences: List[Expression], condlists: List[List[Expression]], is_async: List[bool]) -> None: super().__init__() self.left_expr = left_expr self.sequences = sequences self.condlists = condlists self.indices = indices self.is_async = is_async def accept(self, visitor: ExpressionVisitor[T]) -> T: return visitor.visit_generator_expr(self) class ListComprehension(Expression): """List comprehension (e.g. [x + 1 for x in a])""" generator = None # type: GeneratorExpr def __init__(self, generator: GeneratorExpr) -> None: super().__init__() self.generator = generator def accept(self, visitor: ExpressionVisitor[T]) -> T: return visitor.visit_list_comprehension(self) class SetComprehension(Expression): """Set comprehension (e.g. {x + 1 for x in a})""" generator = None # type: GeneratorExpr def __init__(self, generator: GeneratorExpr) -> None: super().__init__() self.generator = generator def accept(self, visitor: ExpressionVisitor[T]) -> T: return visitor.visit_set_comprehension(self) class DictionaryComprehension(Expression): """Dictionary comprehension (e.g. {k: v for k, v in a}""" key = None # type: Expression value = None # type: Expression sequences = None # type: List[Expression] condlists = None # type: List[List[Expression]] is_async = None # type: List[bool] indices = None # type: List[Lvalue] def __init__(self, key: Expression, value: Expression, indices: List[Lvalue], sequences: List[Expression], condlists: List[List[Expression]], is_async: List[bool]) -> None: super().__init__() self.key = key self.value = value self.sequences = sequences self.condlists = condlists self.indices = indices self.is_async = is_async def accept(self, visitor: ExpressionVisitor[T]) -> T: return visitor.visit_dictionary_comprehension(self) class ConditionalExpr(Expression): """Conditional expression (e.g. x if y else z)""" cond = None # type: Expression if_expr = None # type: Expression else_expr = None # type: Expression def __init__(self, cond: Expression, if_expr: Expression, else_expr: Expression) -> None: super().__init__() self.cond = cond self.if_expr = if_expr self.else_expr = else_expr def accept(self, visitor: ExpressionVisitor[T]) -> T: return visitor.visit_conditional_expr(self) class BackquoteExpr(Expression): """Python 2 expression `...`.""" expr = None # type: Expression def __init__(self, expr: Expression) -> None: super().__init__() self.expr = expr def accept(self, visitor: ExpressionVisitor[T]) -> T: return visitor.visit_backquote_expr(self) class TypeApplication(Expression): """Type application expr[type, ...]""" expr = None # type: Expression types = None # type: List[mypy.types.Type] def __init__(self, expr: Expression, types: List['mypy.types.Type']) -> None: super().__init__() self.expr = expr self.types = types def accept(self, visitor: ExpressionVisitor[T]) -> T: return visitor.visit_type_application(self) # Variance of a type variable. For example, T in the definition of # List[T] is invariant, so List[int] is not a subtype of List[object], # and also List[object] is not a subtype of List[int]. # # The T in Iterable[T] is covariant, so Iterable[int] is a subtype of # Iterable[object], but not vice versa. # # If T is contravariant in Foo[T], Foo[object] is a subtype of # Foo[int], but not vice versa. INVARIANT = 0 # type: Final[int] COVARIANT = 1 # type: Final[int] CONTRAVARIANT = 2 # type: Final[int] class TypeVarLikeExpr(SymbolNode, Expression): """Base class for TypeVarExpr and ParamSpecExpr.""" _name = '' _fullname = '' # Upper bound: only subtypes of upper_bound are valid as values. By default # this is 'object', meaning no restriction. upper_bound = None # type: mypy.types.Type # Variance of the type variable. Invariant is the default. # TypeVar(..., covariant=True) defines a covariant type variable. # TypeVar(..., contravariant=True) defines a contravariant type # variable. variance = INVARIANT def __init__( self, name: str, fullname: str, upper_bound: 'mypy.types.Type', variance: int = INVARIANT ) -> None: super().__init__() self._name = name self._fullname = fullname self.upper_bound = upper_bound self.variance = variance @property def name(self) -> str: return self._name @property def fullname(self) -> str: return self._fullname class TypeVarExpr(TypeVarLikeExpr): """Type variable expression TypeVar(...). This is also used to represent type variables in symbol tables. A type variable is not valid as a type unless bound in a TypeVarScope. That happens within: 1. a generic class that uses the type variable as a type argument or 2. a generic function that refers to the type variable in its signature. """ # Value restriction: only types in the list are valid as values. If the # list is empty, there is no restriction. values = None # type: List[mypy.types.Type] def __init__(self, name: str, fullname: str, values: List['mypy.types.Type'], upper_bound: 'mypy.types.Type', variance: int = INVARIANT) -> None: super().__init__(name, fullname, upper_bound, variance) self.values = values def accept(self, visitor: ExpressionVisitor[T]) -> T: return visitor.visit_type_var_expr(self) def serialize(self) -> JsonDict: return {'.class': 'TypeVarExpr', 'name': self._name, 'fullname': self._fullname, 'values': [t.serialize() for t in self.values], 'upper_bound': self.upper_bound.serialize(), 'variance': self.variance, } @classmethod def deserialize(cls, data: JsonDict) -> 'TypeVarExpr': assert data['.class'] == 'TypeVarExpr' return TypeVarExpr(data['name'], data['fullname'], [mypy.types.deserialize_type(v) for v in data['values']], mypy.types.deserialize_type(data['upper_bound']), data['variance']) class ParamSpecExpr(TypeVarLikeExpr): def accept(self, visitor: ExpressionVisitor[T]) -> T: return visitor.visit_paramspec_expr(self) def serialize(self) -> JsonDict: return { '.class': 'ParamSpecExpr', 'name': self._name, 'fullname': self._fullname, 'upper_bound': self.upper_bound.serialize(), 'variance': self.variance, } @classmethod def deserialize(cls, data: JsonDict) -> 'ParamSpecExpr': assert data['.class'] == 'ParamSpecExpr' return ParamSpecExpr( data['name'], data['fullname'], mypy.types.deserialize_type(data['upper_bound']), data['variance'] ) class TypeAliasExpr(Expression): """Type alias expression (rvalue).""" # The target type. type = None # type: mypy.types.Type # Names of unbound type variables used to define the alias tvars = None # type: List[str] # Whether this alias was defined in bare form. Used to distinguish # between # A = List # and # A = List[Any] no_args = False # type: bool def __init__(self, node: 'TypeAlias') -> None: super().__init__() self.type = node.target self.tvars = node.alias_tvars self.no_args = node.no_args self.node = node def accept(self, visitor: ExpressionVisitor[T]) -> T: return visitor.visit_type_alias_expr(self) class NamedTupleExpr(Expression): """Named tuple expression namedtuple(...) or NamedTuple(...).""" # The class representation of this named tuple (its tuple_type attribute contains # the tuple item types) info = None # type: TypeInfo is_typed = False # whether this class was created with typing.NamedTuple def __init__(self, info: 'TypeInfo', is_typed: bool = False) -> None: super().__init__() self.info = info self.is_typed = is_typed def accept(self, visitor: ExpressionVisitor[T]) -> T: return visitor.visit_namedtuple_expr(self) class TypedDictExpr(Expression): """Typed dict expression TypedDict(...).""" # The class representation of this typed dict info = None # type: TypeInfo def __init__(self, info: 'TypeInfo') -> None: super().__init__() self.info = info def accept(self, visitor: ExpressionVisitor[T]) -> T: return visitor.visit_typeddict_expr(self) class EnumCallExpr(Expression): """Named tuple expression Enum('name', 'val1 val2 ...').""" # The class representation of this enumerated type info = None # type: TypeInfo # The item names (for debugging) items = None # type: List[str] values = None # type: List[Optional[Expression]] def __init__(self, info: 'TypeInfo', items: List[str], values: List[Optional[Expression]]) -> None: super().__init__() self.info = info self.items = items self.values = values def accept(self, visitor: ExpressionVisitor[T]) -> T: return visitor.visit_enum_call_expr(self) class PromoteExpr(Expression): """Ducktype class decorator expression _promote(...).""" type = None # type: mypy.types.Type def __init__(self, type: 'mypy.types.Type') -> None: super().__init__() self.type = type def accept(self, visitor: ExpressionVisitor[T]) -> T: return visitor.visit__promote_expr(self) class NewTypeExpr(Expression): """NewType expression NewType(...).""" name = None # type: str # The base type (the second argument to NewType) old_type = None # type: Optional[mypy.types.Type] # The synthesized class representing the new type (inherits old_type) info = None # type: Optional[TypeInfo] def __init__(self, name: str, old_type: 'Optional[mypy.types.Type]', line: int, column: int) -> None: super().__init__() self.name = name self.old_type = old_type self.line = line self.column = column def accept(self, visitor: ExpressionVisitor[T]) -> T: return visitor.visit_newtype_expr(self) class AwaitExpr(Expression): """Await expression (await ...).""" expr = None # type: Expression def __init__(self, expr: Expression) -> None: super().__init__() self.expr = expr def accept(self, visitor: ExpressionVisitor[T]) -> T: return visitor.visit_await_expr(self) # Constants class TempNode(Expression): """Temporary dummy node used during type checking. This node is not present in the original program; it is just an artifact of the type checker implementation. It only represents an opaque node with some fixed type. """ type = None # type: mypy.types.Type # Is this TempNode used to indicate absence of a right hand side in an annotated assignment? # (e.g. for 'x: int' the rvalue is TempNode(AnyType(TypeOfAny.special_form), no_rhs=True)) no_rhs = False # type: bool def __init__(self, typ: 'mypy.types.Type', no_rhs: bool = False, *, context: Optional[Context] = None) -> None: """Construct a dummy node; optionally borrow line/column from context object.""" super().__init__() self.type = typ self.no_rhs = no_rhs if context is not None: self.line = context.line self.column = context.column def __repr__(self) -> str: return 'TempNode:%d(%s)' % (self.line, str(self.type)) def accept(self, visitor: ExpressionVisitor[T]) -> T: return visitor.visit_temp_node(self) class TypeInfo(SymbolNode): """The type structure of a single class. Each TypeInfo corresponds one-to-one to a ClassDef, which represents the AST of the class. In type-theory terms, this is a "type constructor", and if the class is generic then it will be a type constructor of higher kind. Where the class is used in an actual type, it's in the form of an Instance, which amounts to a type application of the tycon to the appropriate number of arguments. """ _fullname = None # type: Bogus[str] # Fully qualified name # Fully qualified name for the module this type was defined in. This # information is also in the fullname, but is harder to extract in the # case of nested class definitions. module_name = None # type: str defn = None # type: ClassDef # Corresponding ClassDef # Method Resolution Order: the order of looking up attributes. The first # value always to refers to this class. mro = None # type: List[TypeInfo] # Used to stash the names of the mro classes temporarily between # deserialization and fixup. See deserialize() for why. _mro_refs = None # type: Optional[List[str]] bad_mro = False # Could not construct full MRO declared_metaclass = None # type: Optional[mypy.types.Instance] metaclass_type = None # type: Optional[mypy.types.Instance] names = None # type: SymbolTable # Names defined directly in this type is_abstract = False # Does the class have any abstract attributes? is_protocol = False # Is this a protocol class? runtime_protocol = False # Does this protocol support isinstance checks? abstract_attributes = None # type: List[str] # The attributes 'assuming' and 'assuming_proper' represent structural subtype matrices. # # In languages with structural subtyping, one can keep a global subtype matrix like this: # . A B C . # A 1 0 0 # B 1 1 1 # C 1 0 1 # . # where 1 indicates that the type in corresponding row is a subtype of the type # in corresponding column. This matrix typically starts filled with all 1's and # a typechecker tries to "disprove" every subtyping relation using atomic (or nominal) types. # However, we don't want to keep this huge global state. Instead, we keep the subtype # information in the form of list of pairs (subtype, supertype) shared by all 'Instance's # with given supertype's TypeInfo. When we enter a subtype check we push a pair in this list # thus assuming that we started with 1 in corresponding matrix element. Such algorithm allows # to treat recursive and mutually recursive protocols and other kinds of complex situations. # # If concurrent/parallel type checking will be added in future, # then there should be one matrix per thread/process to avoid false negatives # during the type checking phase. assuming = None # type: List[Tuple[mypy.types.Instance, mypy.types.Instance]] assuming_proper = None # type: List[Tuple[mypy.types.Instance, mypy.types.Instance]] # Ditto for temporary 'inferring' stack of recursive constraint inference. # It contains Instance's of protocol types that appeared as an argument to # constraints.infer_constraints(). We need 'inferring' to avoid infinite recursion for # recursive and mutually recursive protocols. # # We make 'assuming' and 'inferring' attributes here instead of passing they as kwargs, # since this would require to pass them in many dozens of calls. In particular, # there is a dependency infer_constraint -> is_subtype -> is_callable_subtype -> # -> infer_constraints. inferring = None # type: List[mypy.types.Instance] # 'inferring' and 'assuming' can't be made sets, since we need to use # is_same_type to correctly treat unions. # Classes inheriting from Enum shadow their true members with a __getattr__, so we # have to treat them as a special case. is_enum = False # If true, any unknown attributes should have type 'Any' instead # of generating a type error. This would be true if there is a # base class with type 'Any', but other use cases may be # possible. This is similar to having __getattr__ that returns Any # (and __setattr__), but without the __getattr__ method. fallback_to_any = False # Information related to type annotations. # Generic type variable names (full names) type_vars = None # type: List[str] # Direct base classes. bases = None # type: List[mypy.types.Instance] # Another type which this type will be treated as a subtype of, # even though it's not a subclass in Python. The non-standard # `@_promote` decorator introduces this, and there are also # several builtin examples, in particular `int` -> `float`. _promote = None # type: Optional[mypy.types.Type] # Representation of a Tuple[...] base class, if the class has any # (e.g., for named tuples). If this is not None, the actual Type # object used for this class is not an Instance but a TupleType; # the corresponding Instance is set as the fallback type of the # tuple type. tuple_type = None # type: Optional[mypy.types.TupleType] # Is this a named tuple type? is_named_tuple = False # If this class is defined by the TypedDict type constructor, # then this is not None. typeddict_type = None # type: Optional[mypy.types.TypedDictType] # Is this a newtype type? is_newtype = False # Is this a synthesized intersection type? is_intersection = False # This is a dictionary that will be serialized and un-serialized as is. # It is useful for plugins to add their data to save in the cache. metadata = None # type: Dict[str, JsonDict] FLAGS = [ 'is_abstract', 'is_enum', 'fallback_to_any', 'is_named_tuple', 'is_newtype', 'is_protocol', 'runtime_protocol', 'is_final', 'is_intersection', ] # type: Final[List[str]] def __init__(self, names: 'SymbolTable', defn: ClassDef, module_name: str) -> None: """Initialize a TypeInfo.""" super().__init__() self.names = names self.defn = defn self.module_name = module_name self.type_vars = [] self.bases = [] self.mro = [] self._fullname = defn.fullname self.is_abstract = False self.abstract_attributes = [] self.assuming = [] self.assuming_proper = [] self.inferring = [] self.add_type_vars() self.metadata = {} self.is_final = False def add_type_vars(self) -> None: if self.defn.type_vars: for vd in self.defn.type_vars: self.type_vars.append(vd.fullname) @property def name(self) -> str: """Short name.""" return self.defn.name @property def fullname(self) -> Bogus[str]: return self._fullname def is_generic(self) -> bool: """Is the type generic (i.e. does it have type variables)?""" return len(self.type_vars) > 0 def get(self, name: str) -> 'Optional[SymbolTableNode]': for cls in self.mro: n = cls.names.get(name) if n: return n return None def get_containing_type_info(self, name: str) -> 'Optional[TypeInfo]': for cls in self.mro: if name in cls.names: return cls return None @property def protocol_members(self) -> List[str]: # Protocol members are names of all attributes/methods defined in a protocol # and in all its supertypes (except for 'object'). members = set() # type: Set[str] assert self.mro, "This property can be only accessed after MRO is (re-)calculated" for base in self.mro[:-1]: # we skip "object" since everyone implements it if base.is_protocol: for name in base.names: members.add(name) return sorted(list(members)) def __getitem__(self, name: str) -> 'SymbolTableNode': n = self.get(name) if n: return n else: raise KeyError(name) def __repr__(self) -> str: return '<TypeInfo %s>' % self.fullname def __bool__(self) -> bool: # We defined this here instead of just overriding it in # FakeInfo so that mypyc can generate a direct call instead of # using the generic bool handling. return not isinstance(self, FakeInfo) def has_readable_member(self, name: str) -> bool: return self.get(name) is not None def get_method(self, name: str) -> Optional[FuncBase]: for cls in self.mro: if name in cls.names: node = cls.names[name].node if isinstance(node, FuncBase): return node else: return None return None def calculate_metaclass_type(self) -> 'Optional[mypy.types.Instance]': declared = self.declared_metaclass if declared is not None and not declared.type.has_base('builtins.type'): return declared if self._fullname == 'builtins.type': return mypy.types.Instance(self, []) candidates = [s.declared_metaclass for s in self.mro if s.declared_metaclass is not None and s.declared_metaclass.type is not None] for c in candidates: if all(other.type in c.type.mro for other in candidates): return c return None def is_metaclass(self) -> bool: return (self.has_base('builtins.type') or self.fullname == 'abc.ABCMeta' or self.fallback_to_any) def has_base(self, fullname: str) -> bool: """Return True if type has a base type with the specified name. This can be either via extension or via implementation. """ for cls in self.mro: if cls.fullname == fullname: return True return False def direct_base_classes(self) -> 'List[TypeInfo]': """Return a direct base classes. Omit base classes of other base classes. """ return [base.type for base in self.bases] def __str__(self) -> str: """Return a string representation of the type. This includes the most important information about the type. """ return self.dump() def dump(self, str_conv: 'Optional[mypy.strconv.StrConv]' = None, type_str_conv: 'Optional[mypy.types.TypeStrVisitor]' = None) -> str: """Return a string dump of the contents of the TypeInfo.""" if not str_conv: str_conv = mypy.strconv.StrConv() base = '' # type: str def type_str(typ: 'mypy.types.Type') -> str: if type_str_conv: return typ.accept(type_str_conv) return str(typ) head = 'TypeInfo' + str_conv.format_id(self) if self.bases: base = 'Bases({})'.format(', '.join(type_str(base) for base in self.bases)) mro = 'Mro({})'.format(', '.join(item.fullname + str_conv.format_id(item) for item in self.mro)) names = [] for name in sorted(self.names): description = name + str_conv.format_id(self.names[name].node) node = self.names[name].node if isinstance(node, Var) and node.type: description += ' ({})'.format(type_str(node.type)) names.append(description) items = [ 'Name({})'.format(self.fullname), base, mro, ('Names', names), ] if self.declared_metaclass: items.append('DeclaredMetaclass({})'.format(type_str(self.declared_metaclass))) if self.metaclass_type: items.append('MetaclassType({})'.format(type_str(self.metaclass_type))) return mypy.strconv.dump_tagged( items, head, str_conv=str_conv) def serialize(self) -> JsonDict: # NOTE: This is where all ClassDefs originate, so there shouldn't be duplicates. data = {'.class': 'TypeInfo', 'module_name': self.module_name, 'fullname': self.fullname, 'names': self.names.serialize(self.fullname), 'defn': self.defn.serialize(), 'abstract_attributes': self.abstract_attributes, 'type_vars': self.type_vars, 'bases': [b.serialize() for b in self.bases], 'mro': [c.fullname for c in self.mro], '_promote': None if self._promote is None else self._promote.serialize(), 'declared_metaclass': (None if self.declared_metaclass is None else self.declared_metaclass.serialize()), 'metaclass_type': None if self.metaclass_type is None else self.metaclass_type.serialize(), 'tuple_type': None if self.tuple_type is None else self.tuple_type.serialize(), 'typeddict_type': None if self.typeddict_type is None else self.typeddict_type.serialize(), 'flags': get_flags(self, TypeInfo.FLAGS), 'metadata': self.metadata, } return data @classmethod def deserialize(cls, data: JsonDict) -> 'TypeInfo': names = SymbolTable.deserialize(data['names']) defn = ClassDef.deserialize(data['defn']) module_name = data['module_name'] ti = TypeInfo(names, defn, module_name) ti._fullname = data['fullname'] # TODO: Is there a reason to reconstruct ti.subtypes? ti.abstract_attributes = data['abstract_attributes'] ti.type_vars = data['type_vars'] ti.bases = [mypy.types.Instance.deserialize(b) for b in data['bases']] ti._promote = (None if data['_promote'] is None else mypy.types.deserialize_type(data['_promote'])) ti.declared_metaclass = (None if data['declared_metaclass'] is None else mypy.types.Instance.deserialize(data['declared_metaclass'])) ti.metaclass_type = (None if data['metaclass_type'] is None else mypy.types.Instance.deserialize(data['metaclass_type'])) # NOTE: ti.mro will be set in the fixup phase based on these # names. The reason we need to store the mro instead of just # recomputing it from base classes has to do with a subtle # point about fine-grained incremental: the cache files might # not be loaded until after a class in the mro has changed its # bases, which causes the mro to change. If we recomputed our # mro, we would compute the *new* mro, which leaves us with no # way to detect that the mro has changed! Thus we need to make # sure to load the original mro so that once the class is # rechecked, it can tell that the mro has changed. ti._mro_refs = data['mro'] ti.tuple_type = (None if data['tuple_type'] is None else mypy.types.TupleType.deserialize(data['tuple_type'])) ti.typeddict_type = (None if data['typeddict_type'] is None else mypy.types.TypedDictType.deserialize(data['typeddict_type'])) ti.metadata = data['metadata'] set_flags(ti, data['flags']) return ti class FakeInfo(TypeInfo): # types.py defines a single instance of this class, called types.NOT_READY. # This instance is used as a temporary placeholder in the process of de-serialization # of 'Instance' types. The de-serialization happens in two steps: In the first step, # Instance.type is set to NOT_READY. In the second step (in fixup.py) it is replaced by # an actual TypeInfo. If you see the assertion error below, then most probably something # went wrong during the second step and an 'Instance' that raised this error was not fixed. # Note: # 'None' is not used as a dummy value for two reasons: # 1. This will require around 80-100 asserts to make 'mypy --strict-optional mypy' # pass cleanly. # 2. If NOT_READY value is accidentally used somewhere, it will be obvious where the value # is from, whereas a 'None' value could come from anywhere. # # Additionally, this serves as a more general-purpose placeholder # for missing TypeInfos in a number of places where the excuses # for not being Optional are a little weaker. # # TypeInfo defines a __bool__ method that returns False for FakeInfo # so that it can be conveniently tested against in the same way that it # would be if things were properly optional. def __init__(self, msg: str) -> None: self.msg = msg def __getattribute__(self, attr: str) -> None: # Handle __class__ so that isinstance still works... if attr == '__class__': return object.__getattribute__(self, attr) raise AssertionError(object.__getattribute__(self, 'msg')) VAR_NO_INFO = FakeInfo('Var is lacking info') # type: Final[TypeInfo] CLASSDEF_NO_INFO = FakeInfo('ClassDef is lacking info') # type: Final[TypeInfo] FUNC_NO_INFO = FakeInfo('FuncBase for non-methods lack info') # type: Final[TypeInfo] class TypeAlias(SymbolNode): """ A symbol node representing a type alias. Type alias is a static concept, in contrast to variables with types like Type[...]. Namely: * type aliases - can be used in type context (annotations) - cannot be re-assigned * variables with type Type[...] - cannot be used in type context - but can be re-assigned An alias can be defined only by an assignment to a name (not any other lvalues). Such assignment defines an alias by default. To define a variable, an explicit Type[...] annotation is required. As an exception, at non-global scope non-subscripted rvalue creates a variable even without an annotation. This exception exists to accommodate the common use case of class-valued attributes. See SemanticAnalyzerPass2.check_and_set_up_type_alias for details. Aliases can be generic. Currently, mypy uses unbound type variables for generic aliases and identifies them by name. Essentially, type aliases work as macros that expand textually. The definition and expansion rules are following: 1. An alias targeting a generic class without explicit variables act as the given class (this doesn't apply to Tuple and Callable, which are not proper classes but special type constructors): A = List AA = List[Any] x: A # same as List[Any] x: A[int] # same as List[int] x: AA # same as List[Any] x: AA[int] # Error! C = Callable # Same as Callable[..., Any] T = Tuple # Same as Tuple[Any, ...] 2. An alias using explicit type variables in its rvalue expects replacements (type arguments) for these variables. If missing, they are treated as Any, like for other generics: B = List[Tuple[T, T]] x: B # same as List[Tuple[Any, Any]] x: B[int] # same as List[Tuple[int, int]] def f(x: B[T]) -> T: ... # without T, Any would be used here 3. An alias can be defined using another aliases. In the definition rvalue the Any substitution doesn't happen for top level unsubscripted generic classes: A = List B = A # here A is expanded to List, _not_ List[Any], # to match the Python runtime behaviour x: B[int] # same as List[int] C = List[A] # this expands to List[List[Any]] AA = List[T] D = AA # here AA expands to List[Any] x: D[int] # Error! Note: the fact that we support aliases like `A = List` means that the target type will be initially an instance type with wrong number of type arguments. Such instances are all fixed in the third pass of semantic analyzis. We therefore store the difference between `List` and `List[Any]` rvalues (targets) using the `no_args` flag. See also TypeAliasExpr.no_args. Meaning of other fields: target: The target type. For generic aliases contains unbound type variables as nested types. _fullname: Qualified name of this type alias. This is used in particular to track fine grained dependencies from aliases. alias_tvars: Names of unbound type variables used to define this alias. normalized: Used to distinguish between `A = List`, and `A = list`. Both are internally stored using `builtins.list` (because `typing.List` is itself an alias), while the second cannot be subscripted because of Python runtime limitation. line and column: Line an column on the original alias definition. """ __slots__ = ('target', '_fullname', 'alias_tvars', 'no_args', 'normalized', 'line', 'column', '_is_recursive') def __init__(self, target: 'mypy.types.Type', fullname: str, line: int, column: int, *, alias_tvars: Optional[List[str]] = None, no_args: bool = False, normalized: bool = False) -> None: self._fullname = fullname self.target = target if alias_tvars is None: alias_tvars = [] self.alias_tvars = alias_tvars self.no_args = no_args self.normalized = normalized # This attribute is manipulated by TypeAliasType. If non-None, # it is the cached value. self._is_recursive = None # type: Optional[bool] super().__init__(line, column) @property def name(self) -> str: return self._fullname.split('.')[-1] @property def fullname(self) -> str: return self._fullname def serialize(self) -> JsonDict: data = {'.class': 'TypeAlias', 'fullname': self._fullname, 'target': self.target.serialize(), 'alias_tvars': self.alias_tvars, 'no_args': self.no_args, 'normalized': self.normalized, 'line': self.line, 'column': self.column } # type: JsonDict return data def accept(self, visitor: NodeVisitor[T]) -> T: return visitor.visit_type_alias(self) @classmethod def deserialize(cls, data: JsonDict) -> 'TypeAlias': assert data['.class'] == 'TypeAlias' fullname = data['fullname'] alias_tvars = data['alias_tvars'] target = mypy.types.deserialize_type(data['target']) no_args = data['no_args'] normalized = data['normalized'] line = data['line'] column = data['column'] return cls(target, fullname, line, column, alias_tvars=alias_tvars, no_args=no_args, normalized=normalized) class PlaceholderNode(SymbolNode): """Temporary symbol node that will later become a real SymbolNode. These are only present during semantic analysis when using the new semantic analyzer. These are created if some essential dependencies of a definition are not yet complete. A typical use is for names imported from a module which is still incomplete (within an import cycle): from m import f # Initially may create PlaceholderNode This is particularly important if the imported shadows a name from an enclosing scope or builtins: from m import int # Placeholder avoids mixups with builtins.int Another case where this is useful is when there is another definition or assignment: from m import f def f() -> None: ... In the above example, the presence of PlaceholderNode allows us to handle the second definition as a redefinition. They are also used to create PlaceholderType instances for types that refer to incomplete types. Example: class C(Sequence[C]): ... We create a PlaceholderNode (with becomes_typeinfo=True) for C so that the type C in Sequence[C] can be bound. Attributes: fullname: Full name of of the PlaceholderNode. node: AST node that contains the definition that caused this to be created. This is useful for tracking order of incomplete definitions and for debugging. becomes_typeinfo: If True, this refers something that could later become a TypeInfo. It can't be used with type variables, in particular, as this would cause issues with class type variable detection. The long-term purpose of placeholder nodes/types is to evolve into something that can support general recursive types. """ def __init__(self, fullname: str, node: Node, line: int, *, becomes_typeinfo: bool = False) -> None: self._fullname = fullname self.node = node self.becomes_typeinfo = becomes_typeinfo self.line = line @property def name(self) -> str: return self._fullname.split('.')[-1] @property def fullname(self) -> str: return self._fullname def serialize(self) -> JsonDict: assert False, "PlaceholderNode can't be serialized" def accept(self, visitor: NodeVisitor[T]) -> T: return visitor.visit_placeholder_node(self) class SymbolTableNode: """Description of a name binding in a symbol table. These are only used as values in module (global), function (local) and class symbol tables (see SymbolTable). The name that is bound is the key in SymbolTable. Symbol tables don't contain direct references to AST nodes primarily because there can be multiple symbol table references to a single AST node (due to imports and aliases), and different references can behave differently. This class describes the unique properties of each reference. The most fundamental attribute is 'node', which is the AST node that the name refers to. The kind is usually one of LDEF, GDEF or MDEF, depending on the scope of the definition. These three kinds can usually be used interchangeably and the difference between local, global and class scopes is mostly descriptive, with no semantic significance. However, some tools that consume mypy ASTs may care about these so they should be correct. Attributes: node: AST node of definition. Among others, this can be one of FuncDef, Var, TypeInfo, TypeVarExpr or MypyFile -- or None for cross_ref that hasn't been fixed up yet. kind: Kind of node. Possible values: - LDEF: local definition - GDEF: global (module-level) definition - MDEF: class member definition - UNBOUND_IMPORTED: temporary kind for imported names (we don't know the final kind yet) module_public: If False, this name won't be imported via 'from <module> import *'. This has no effect on names within classes. module_hidden: If True, the name will be never exported (needed for stub files) cross_ref: For deserialized MypyFile nodes, the referenced module name; for other nodes, optionally the name of the referenced object. implicit: Was this defined by assignment to self attribute? plugin_generated: Was this symbol generated by a plugin? (And therefore needs to be removed in aststrip.) no_serialize: Do not serialize this node if True. This is used to prevent keys in the cache that refer to modules on which this file does not depend. Currently this can happen if there is a module not in build used e.g. like this: import a.b.c # type: ignore This will add a submodule symbol to parent module `a` symbol table, but `a.b` is _not_ added as its dependency. Therefore, we should not serialize these symbols as they may not be found during fixup phase, instead they will be re-added during subsequent patch parents phase. TODO: Refactor build.py to make dependency tracking more transparent and/or refactor look-up functions to not require parent patching. NOTE: No other attributes should be added to this class unless they are shared by all node kinds. """ __slots__ = ('kind', 'node', 'module_public', 'module_hidden', 'cross_ref', 'implicit', 'plugin_generated', 'no_serialize', ) def __init__(self, kind: int, node: Optional[SymbolNode], module_public: bool = True, implicit: bool = False, module_hidden: bool = False, *, plugin_generated: bool = False, no_serialize: bool = False) -> None: self.kind = kind self.node = node self.module_public = module_public self.implicit = implicit self.module_hidden = module_hidden self.cross_ref = None # type: Optional[str] self.plugin_generated = plugin_generated self.no_serialize = no_serialize @property def fullname(self) -> Optional[str]: if self.node is not None: return self.node.fullname else: return None @property def type(self) -> 'Optional[mypy.types.Type]': node = self.node if isinstance(node, (Var, SYMBOL_FUNCBASE_TYPES)) and node.type is not None: return node.type elif isinstance(node, Decorator): return node.var.type else: return None def copy(self) -> 'SymbolTableNode': new = SymbolTableNode(self.kind, self.node, self.module_public, self.implicit, self.module_hidden) new.cross_ref = self.cross_ref return new def __str__(self) -> str: s = '{}/{}'.format(node_kinds[self.kind], short_type(self.node)) if isinstance(self.node, SymbolNode): s += ' ({})'.format(self.node.fullname) # Include declared type of variables and functions. if self.type is not None: s += ' : {}'.format(self.type) return s def serialize(self, prefix: str, name: str) -> JsonDict: """Serialize a SymbolTableNode. Args: prefix: full name of the containing module or class; or None name: name of this object relative to the containing object """ data = {'.class': 'SymbolTableNode', 'kind': node_kinds[self.kind], } # type: JsonDict if self.module_hidden: data['module_hidden'] = True if not self.module_public: data['module_public'] = False if self.implicit: data['implicit'] = True if self.plugin_generated: data['plugin_generated'] = True if isinstance(self.node, MypyFile): data['cross_ref'] = self.node.fullname else: assert self.node is not None, '%s:%s' % (prefix, name) if prefix is not None: fullname = self.node.fullname if (fullname is not None and '.' in fullname and fullname != prefix + '.' + name and not (isinstance(self.node, Var) and self.node.from_module_getattr)): assert not isinstance(self.node, PlaceholderNode) data['cross_ref'] = fullname return data data['node'] = self.node.serialize() return data @classmethod def deserialize(cls, data: JsonDict) -> 'SymbolTableNode': assert data['.class'] == 'SymbolTableNode' kind = inverse_node_kinds[data['kind']] if 'cross_ref' in data: # This will be fixed up later. stnode = SymbolTableNode(kind, None) stnode.cross_ref = data['cross_ref'] else: assert 'node' in data, data node = SymbolNode.deserialize(data['node']) stnode = SymbolTableNode(kind, node) if 'module_hidden' in data: stnode.module_hidden = data['module_hidden'] if 'module_public' in data: stnode.module_public = data['module_public'] if 'implicit' in data: stnode.implicit = data['implicit'] if 'plugin_generated' in data: stnode.plugin_generated = data['plugin_generated'] return stnode class SymbolTable(Dict[str, SymbolTableNode]): """Static representation of a namespace dictionary. This is used for module, class and function namespaces. """ def __str__(self) -> str: a = [] # type: List[str] for key, value in self.items(): # Filter out the implicit import of builtins. if isinstance(value, SymbolTableNode): if (value.fullname != 'builtins' and (value.fullname or '').split('.')[-1] not in implicit_module_attrs): a.append(' ' + str(key) + ' : ' + str(value)) else: a.append(' <invalid item>') a = sorted(a) a.insert(0, 'SymbolTable(') a[-1] += ')' return '\n'.join(a) def copy(self) -> 'SymbolTable': return SymbolTable([(key, node.copy()) for key, node in self.items()]) def serialize(self, fullname: str) -> JsonDict: data = {'.class': 'SymbolTable'} # type: JsonDict for key, value in self.items(): # Skip __builtins__: it's a reference to the builtins # module that gets added to every module by # SemanticAnalyzerPass2.visit_file(), but it shouldn't be # accessed by users of the module. if key == '__builtins__' or value.no_serialize: continue data[key] = value.serialize(fullname, key) return data @classmethod def deserialize(cls, data: JsonDict) -> 'SymbolTable': assert data['.class'] == 'SymbolTable' st = SymbolTable() for key, value in data.items(): if key != '.class': st[key] = SymbolTableNode.deserialize(value) return st def get_flags(node: Node, names: List[str]) -> List[str]: return [name for name in names if getattr(node, name)] def set_flags(node: Node, flags: List[str]) -> None: for name in flags: setattr(node, name, True) def get_member_expr_fullname(expr: MemberExpr) -> Optional[str]: """Return the qualified name representation of a member expression. Return a string of form foo.bar, foo.bar.baz, or similar, or None if the argument cannot be represented in this form. """ initial = None # type: Optional[str] if isinstance(expr.expr, NameExpr): initial = expr.expr.name elif isinstance(expr.expr, MemberExpr): initial = get_member_expr_fullname(expr.expr) else: return None return '{}.{}'.format(initial, expr.name) deserialize_map = { key: obj.deserialize for key, obj in globals().items() if type(obj) is not FakeInfo and isinstance(obj, type) and issubclass(obj, SymbolNode) and obj is not SymbolNode } # type: Final def check_arg_kinds(arg_kinds: List[int], nodes: List[T], fail: Callable[[str, T], None]) -> None: is_var_arg = False is_kw_arg = False seen_named = False seen_opt = False for kind, node in zip(arg_kinds, nodes): if kind == ARG_POS: if is_var_arg or is_kw_arg or seen_named or seen_opt: fail("Required positional args may not appear " "after default, named or var args", node) break elif kind == ARG_OPT: if is_var_arg or is_kw_arg or seen_named: fail("Positional default args may not appear after named or var args", node) break seen_opt = True elif kind == ARG_STAR: if is_var_arg or is_kw_arg or seen_named: fail("Var args may not appear after named or var args", node) break is_var_arg = True elif kind == ARG_NAMED or kind == ARG_NAMED_OPT: seen_named = True if is_kw_arg: fail("A **kwargs argument must be the last argument", node) break elif kind == ARG_STAR2: if is_kw_arg: fail("You may only have one **kwargs argument", node) break is_kw_arg = True def check_arg_names(names: Sequence[Optional[str]], nodes: List[T], fail: Callable[[str, T], None], description: str = 'function definition') -> None: seen_names = set() # type: Set[Optional[str]] for name, node in zip(names, nodes): if name is not None and name in seen_names: fail("Duplicate argument '{}' in {}".format(name, description), node) break seen_names.add(name) def is_class_var(expr: NameExpr) -> bool: """Return whether the expression is ClassVar[...]""" if isinstance(expr.node, Var): return expr.node.is_classvar return False def is_final_node(node: Optional[SymbolNode]) -> bool: """Check whether `node` corresponds to a final attribute.""" return isinstance(node, (Var, FuncDef, OverloadedFuncDef, Decorator)) and node.is_final def local_definitions(names: SymbolTable, name_prefix: str, info: Optional[TypeInfo] = None) -> Iterator[Definition]: """Iterate over local definitions (not imported) in a symbol table. Recursively iterate over class members and nested classes. """ # TODO: What should the name be? Or maybe remove it? for name, symnode in names.items(): shortname = name if '-redef' in name: # Restore original name from mangled name of multiply defined function shortname = name.split('-redef')[0] fullname = name_prefix + '.' + shortname node = symnode.node if node and node.fullname == fullname: yield fullname, symnode, info if isinstance(node, TypeInfo): yield from local_definitions(node.names, fullname, node)
35.327284
99
0.618926
14f101791d2fe3da76d97db64c0d8c720765b1e2
237
py
Python
config/app_config.py
Juyeon125/Multi_pred
048986428434d9927989f86e93ea6fa6ce33d0ae
[ "MIT" ]
1
2020-10-15T08:05:41.000Z
2020-10-15T08:05:41.000Z
config/app_config.py
Juyeon125/Multi_pred
048986428434d9927989f86e93ea6fa6ce33d0ae
[ "MIT" ]
null
null
null
config/app_config.py
Juyeon125/Multi_pred
048986428434d9927989f86e93ea6fa6ce33d0ae
[ "MIT" ]
null
null
null
import os class LocalLevelConfig: ENV = "development" DEBUG = True SECRET_KEY = "ce7ea57bcec4ea045191c43a" class ProductionLevelConfig: ENV = "production" DEBUG = False SECRET_KEY = "5ae9fc9c349602a1111ef1d4"
16.928571
43
0.71308
5a65d2ad4d0faf195a86a3cd8d1a394318396e23
354
py
Python
visual_novel/visual_novel/settings/local.py
dolamroth/visual_novel
c67379df395561b3bca7e91e2db6547d2e943330
[ "MIT" ]
9
2018-03-11T12:53:12.000Z
2020-12-19T14:21:53.000Z
visual_novel/visual_novel/settings/local.py
dolamroth/visual_novel
c67379df395561b3bca7e91e2db6547d2e943330
[ "MIT" ]
6
2020-02-11T22:19:22.000Z
2022-03-11T23:20:10.000Z
visual_novel/visual_novel/settings/local.py
dolamroth/visual_novel
c67379df395561b3bca7e91e2db6547d2e943330
[ "MIT" ]
null
null
null
from .base import * DEBUG = True STATIC_ROOT = os.path.join(BASE_DIR, '') STATICFILES_DIRS = [ os.path.join(BASE_DIR, "static"), ] ALLOWED_HOSTS += ['127.0.0.1'] CACHES = { "default": { "BACKEND": "django.core.cache.backends.db.DatabaseCache", "LOCATION": "cache_table_for_local_development" } } WSGI_APPLICATION = None
16.857143
65
0.649718
d6695af7d9358a0cad2ad2f4a628fd0deb2f7cc6
673
py
Python
pyrival/algebra/discrete_log.py
MattJDavidson/aoc2021
1c26697da55e58408f36525639d201303f808b1b
[ "Apache-2.0" ]
748
2018-09-27T01:08:12.000Z
2022-03-25T17:31:56.000Z
pyrival/algebra/discrete_log.py
MattJDavidson/aoc2021
1c26697da55e58408f36525639d201303f808b1b
[ "Apache-2.0" ]
38
2019-02-24T14:50:02.000Z
2022-03-25T01:27:50.000Z
pyrival/algebra/discrete_log.py
MattJDavidson/aoc2021
1c26697da55e58408f36525639d201303f808b1b
[ "Apache-2.0" ]
288
2018-10-29T11:55:57.000Z
2022-03-20T04:37:27.000Z
def discrete_log(a, b, mod): """ Returns smallest x > 0 s.t. pow(a, x, mod) == b or None if no such x exists. Note: works even if a and mod are not coprime. """ n = int(mod**0.5) + 1 # tiny_step[x] = maximum j <= n s.t. b * a^j % mod = x tiny_step, e = {}, 1 for j in range(1, n + 1): e = e * a % mod if e == b: return j tiny_step[b * e % mod] = j # find (i, j) s.t. a^(n * i) % mod = b * a^j % mod factor = e for i in range(2, n + 2): e = e * factor % mod if e in tiny_step: j = tiny_step[e] return n * i - j if pow(a, n * i - j, mod) == b else None
29.26087
80
0.454681
fd3b253adf92e534ce06a5619ca9a08e2fdfce41
1,234
py
Python
coinnews/pipelines.py
jlparadox/coinnews
09a99e67115eda36084219cbd77967e73b6017c7
[ "Apache-2.0" ]
null
null
null
coinnews/pipelines.py
jlparadox/coinnews
09a99e67115eda36084219cbd77967e73b6017c7
[ "Apache-2.0" ]
null
null
null
coinnews/pipelines.py
jlparadox/coinnews
09a99e67115eda36084219cbd77967e73b6017c7
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html import pymongo from scrapy.conf import settings from scrapy.exceptions import DropItem from scrapy import log class CoinnewsPipeline(object): collection_name = 'coin_articles' def __init__(self, mongo_uri, mongo_db): self.mongo_uri = mongo_uri self.mongo_db = mongo_db @classmethod def from_crawler(cls, crawler): return cls( mongo_uri=crawler.settings.get('MONGO_URI'), mongo_db=crawler.settings.get('MONGO_DATABASE', 'items') ) def open_spider(self, spider): self.client = pymongo.MongoClient(self.mongo_uri) self.db = self.client[self.mongo_db] def close_spider(self, spider): self.client.close() def process_item(self, item, spider): for data in item: if not data: raise DropItem("Missing data!") self.db[self.collection_name].insert_one(dict(item)) log.msg("Question added to MongoDB database!", level=log.DEBUG, spider=spider) return item
28.697674
68
0.657212
219ca34c168633e3585fa899e4bfe6606dc0f89c
566
py
Python
ontask/migrations/0017_auto_20180523_1611.py
pinheiroo27/ontask_b
23fee8caf4e1c5694a710a77f3004ca5d9effeac
[ "MIT" ]
33
2017-12-02T04:09:24.000Z
2021-11-07T08:41:57.000Z
ontask/migrations/0017_auto_20180523_1611.py
pinheiroo27/ontask_b
23fee8caf4e1c5694a710a77f3004ca5d9effeac
[ "MIT" ]
189
2017-11-16T04:06:29.000Z
2022-03-11T23:35:59.000Z
ontask/migrations/0017_auto_20180523_1611.py
pinheiroo27/ontask_b
23fee8caf4e1c5694a710a77f3004ca5d9effeac
[ "MIT" ]
30
2017-11-30T03:35:44.000Z
2022-01-31T03:08:08.000Z
# -*- coding: utf-8 -*- # Generated by Django 1.11.12 on 2018-05-23 06:41 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('ontask', '0016_auto_20180522_2146'), ] operations = [ migrations.AlterModelOptions( name='condition', options={'ordering': ('created',)}, ), migrations.AlterUniqueTogether( name='condition', unique_together=set([('action', 'name', 'is_filter')]), ), ]
23.583333
67
0.591873
2188bbcebceafaf01e068c75c5ac436615cf0a98
16,695
py
Python
mmhuman3d/core/visualization/renderer/matplotlib3d_renderer.py
yl-1993/mmhuman3d
61a7427b7882d5e5f5fe623272a5c455c3d3b009
[ "Apache-2.0" ]
472
2021-12-03T03:12:55.000Z
2022-03-31T01:33:13.000Z
mmhuman3d/core/visualization/renderer/matplotlib3d_renderer.py
yl-1993/mmhuman3d
61a7427b7882d5e5f5fe623272a5c455c3d3b009
[ "Apache-2.0" ]
127
2021-12-03T05:00:14.000Z
2022-03-31T13:47:33.000Z
mmhuman3d/core/visualization/renderer/matplotlib3d_renderer.py
yl-1993/mmhuman3d
61a7427b7882d5e5f5fe623272a5c455c3d3b009
[ "Apache-2.0" ]
37
2021-12-03T03:23:22.000Z
2022-03-31T08:41:58.000Z
import io import os import shutil from pathlib import Path from typing import Iterable, List, Optional, Union import cv2 import mmcv import numpy as np from matplotlib import pyplot as plt from matplotlib.lines import Line2D from mpl_toolkits.mplot3d import Axes3D from mmhuman3d.core.conventions.cameras.convert_convention import \ enc_camera_convention # prevent yapf isort conflict from mmhuman3d.utils import get_different_colors from mmhuman3d.utils.ffmpeg_utils import images_to_video from mmhuman3d.utils.path_utils import check_path_suffix class Axes3dBaseRenderer(object): """Base renderer.""" def init_camera(self, cam_elev_angle=10, cam_elev_speed=0.0, cam_hori_angle=45, cam_hori_speed=0.5): """Initiate the route of camera with arguments. Args: cam_elev_angle (int, optional): The pitch angle where camera starts. Defaults to 10. cam_elev_speed (float, optional): The pitch angle camera steps in one frame. It will go back and forth between -30 and 30 degree. Defaults to 0.0. cam_hori_angle (int, optional): The yaw angle where camera starts. Defaults to 45. cam_hori_speed (float, optional): The yaw angle camera steps in one frame. It will go back and forth between 0 and 90 degree. Defaults to 0.5. """ self.cam_elevation_args = [cam_elev_angle, cam_elev_speed] self.cam_horizon_args = [cam_hori_angle, cam_hori_speed] self.if_camera_init = True def _get_camera_vector_list(self, frame_number): """Generate self.cam_vector_list according to hori and elev arguments. Args: frame_number (int): Number of frames. Returns: List[List[float, float]]: A list of float vectors. """ self.cam_vector_list = [ [self.cam_elevation_args[0], self.cam_horizon_args[0]], ] ele_sign = 1 hor_sign = 1 for _ in range(frame_number - 1): new_ele_angle = ele_sign * self.cam_elevation_args[ 1] + self.cam_vector_list[-1][0] # if elevation angle out of range, go backwards if new_ele_angle <= self.cam_elevation_args[ 1] or new_ele_angle >= 30: ele_sign = (-1) * ele_sign new_ele_angle = ( ele_sign * self.cam_elevation_args[1] + self.cam_vector_list[-1][0]) new_hor_angle = ( hor_sign * self.cam_horizon_args[1] + self.cam_vector_list[-1][1]) # if horizon angle out of range, go backwards if new_hor_angle >= 90 - 2 * self.cam_horizon_args[ 1] or new_hor_angle <= 2 * self.cam_horizon_args[1]: hor_sign = (-1) * hor_sign new_hor_angle = ( hor_sign * self.cam_horizon_args[1] + self.cam_vector_list[-1][1]) self.cam_vector_list.append([new_ele_angle, new_hor_angle]) return self.cam_vector_list @staticmethod def _get_visual_range(points: np.ndarray) -> np.ndarray: """Calculate the visual range according to the input points. It make sure that no point is absent. Args: points (np.ndarray): An array of 3D points. Axis at the last dim. Returns: np.ndarray: An array in shape [3, 2]. It marks the lower bound and the upper bound along each axis. """ axis_num = points.shape[-1] axis_stat = np.zeros(shape=[axis_num, 4]) for axis_index in range(axis_num): axis_data = points[..., axis_index] axis_min = np.min(axis_data) axis_max = np.max(axis_data) axis_mid = (axis_min + axis_max) / 2.0 axis_span = axis_max - axis_min axis_stat[axis_index] = np.asarray( (axis_min, axis_max, axis_mid, axis_span)) max_span = np.max(axis_stat[:, 3]) visual_range = np.zeros(shape=[axis_num, 2]) for axis_index in range(axis_num): visual_range[axis_index, 0] =\ axis_stat[axis_index, 2] - max_span/2.0 visual_range[axis_index, 1] =\ axis_stat[axis_index, 2] + max_span/2.0 return visual_range def _draw_scene(self, visual_range, axis_len=1.0, cam_elev_angle=10, cam_hori_angle=45): """Draw an empty scene according to visual range and camera vector. Args: visual_range (np.ndarray): Return value of _get_visual_range(). axis_len (float, optional): The length of every axis. Defaults to 1.0. cam_elev_angle (int, optional): Pitch angle of the camera. Defaults to 10. cam_hori_angle (int, optional): Yaw angle of the camera. Defaults to 45. Returns: list: Figure and Axes3D """ fig = plt.figure() ax = Axes3D(fig, auto_add_to_figure=False) fig.add_axes(ax) ax.set_xlim(*visual_range[0]) ax.set_ylim(*visual_range[1]) ax.set_zlim(*visual_range[2]) ax.view_init(cam_elev_angle, cam_hori_angle) mid_point = [ np.average(visual_range[0]), np.average(visual_range[1]), np.average(visual_range[2]), ] # draw axis zero_point = np.array([0, 0, 0]) x_axis = np.array([(visual_range[0][1] - mid_point[0]) * axis_len, 0, 0]) y_axis = np.array( [0, (visual_range[1][1] - mid_point[1]) * axis_len, 0]) z_axis = np.array( [0, 0, (visual_range[2][1] - mid_point[2]) * axis_len]) ax = _plot_line_on_fig(ax, zero_point, x_axis, 'r') ax = _plot_line_on_fig(ax, zero_point, y_axis, 'g') ax = _plot_line_on_fig(ax, zero_point, z_axis, 'b') return fig, ax class Axes3dJointsRenderer(Axes3dBaseRenderer): """Render of joints.""" def __init__(self): self.if_camera_init = False self.cam_vector_list = None self.if_connection_setup = False self.if_frame_updated = False self.temp_path = '' def set_connections(self, limbs_connection, limbs_palette): """set body limbs.""" self.limbs_connection = limbs_connection self.limbs_palette = limbs_palette self.if_connection_setup = True def render_kp3d_to_video( self, keypoints_np: np.ndarray, output_path: Optional[str] = None, convention='opencv', fps: Union[float, int] = 30, resolution: Iterable[int] = (720, 720), visual_range: Iterable[int] = (-100, 100), frame_names: Optional[List[str]] = None, disable_limbs: bool = False, return_array: bool = False, ) -> None: """Render 3d keypoints to a video. Args: keypoints_np (np.ndarray): shape of input array should be (f * n * J * 3). output_path (str): output video path or frame folder. sign (Iterable[int], optional): direction of the axis. Defaults to (1, 1, 1). axis (str, optional): axis convention. Defaults to 'xzy'. fps (Union[float, int], optional): fps. Defaults to 30. resolution (Iterable[int], optional): (width, height) of output video. Defaults to (720, 720). visual_range (Iterable[int], optional): range of axis value. Defaults to (-100, 100). frame_names (Optional[List[str]], optional): List of string for frame title, no title if None. Defaults to None. disable_limbs (bool, optional): whether need to disable drawing limbs. Defaults to False. Returns: None. """ assert self.if_camera_init is True assert self.if_connection_setup is True sign, axis = enc_camera_convention(convention) if output_path is not None: if check_path_suffix(output_path, ['.mp4', '.gif']): self.temp_path = os.path.join( Path(output_path).parent, Path(output_path).name + '_output_temp') mmcv.mkdir_or_exist(self.temp_path) print('make dir', self.temp_path) self.remove_temp = True else: self.temp_path = output_path self.remove_temp = False else: self.temp_path = None keypoints_np = _set_new_pose(keypoints_np, sign, axis) if not self.if_frame_updated: if self.cam_vector_list is None: self._get_camera_vector_list( frame_number=keypoints_np.shape[0]) assert len(self.cam_vector_list) == keypoints_np.shape[0] if visual_range is None: visual_range = self._get_visual_range(keypoints_np) else: visual_range = np.asarray(visual_range) if len(visual_range.shape) == 1: one_dim_visual_range = np.expand_dims(visual_range, 0) visual_range = one_dim_visual_range.repeat(3, axis=0) image_array = self._export_frames(keypoints_np, resolution, visual_range, frame_names, disable_limbs, return_array) self.if_frame_updated = True if output_path is not None: if check_path_suffix(output_path, '.mp4'): images_to_video( self.temp_path, output_path, img_format='frame_%06d.png', fps=fps) return image_array def _export_frames(self, keypoints_np, resolution, visual_range, frame_names, disable_limbs, return_array): """Write output/temp images.""" image_array = [] for frame_index in range(keypoints_np.shape[0]): keypoints_frame = keypoints_np[frame_index] cam_ele, cam_hor = self.cam_vector_list[frame_index] fig, ax = \ self._draw_scene(visual_range=visual_range, axis_len=0.5, cam_elev_angle=cam_ele, cam_hori_angle=cam_hor) # draw limbs num_person = keypoints_frame.shape[0] for person_index, keypoints_person in enumerate(keypoints_frame): if num_person >= 2: self.limbs_palette = get_different_colors( num_person)[person_index].reshape(-1, 3) if not disable_limbs: for part_name, limbs in self.limbs_connection.items(): if part_name == 'body': linewidth = 2 else: linewidth = 1 if isinstance(self.limbs_palette, np.ndarray): color = self.limbs_palette.astype( np.int32).reshape(-1, 3) elif isinstance(self.limbs_palette, dict): color = np.array( self.limbs_palette[part_name]).astype(np.int32) for limb_index, limb in enumerate(limbs): limb_index = min(limb_index, len(color) - 1) ax = _plot_line_on_fig( ax, keypoints_person[limb[0]], keypoints_person[limb[1]], color=np.array(color[limb_index]) / 255.0, linewidth=linewidth) scatter_points_index = list( set( np.array(self.limbs_connection['body']).reshape( -1).tolist())) ax.scatter( keypoints_person[scatter_points_index, 0], keypoints_person[scatter_points_index, 1], keypoints_person[scatter_points_index, 2], c=np.array([0, 0, 0]).reshape(1, -1), s=10, marker='o') if num_person >= 2: ax.xaxis.set_ticklabels([]) ax.yaxis.set_ticklabels([]) ax.zaxis.set_ticklabels([]) labels = [] custom_lines = [] for person_index in range(num_person): color = get_different_colors( num_person)[person_index].reshape(1, 3) / 255.0 custom_lines.append( Line2D([0], [0], linestyle='-', color=color[0], lw=2, marker='', markeredgecolor='k', markeredgewidth=.1, markersize=20)) labels.append(f'person_{person_index + 1}') ax.legend( handles=custom_lines, labels=labels, loc='upper left', ) plt.close('all') rgb_mat = _get_cv2mat_from_buf(fig) resized_mat = cv2.resize(rgb_mat, resolution) if frame_names is not None: cv2.putText( resized_mat, str(frame_names[frame_index]), (resolution[0] // 10, resolution[1] // 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5 * resolution[0] / 500, np.array([255, 255, 255]).astype(np.int32).tolist(), 2) if self.temp_path is not None: frame_path = os.path.join(self.temp_path, 'frame_%06d.png' % frame_index) cv2.imwrite(frame_path, resized_mat) if return_array: image_array.append(resized_mat[None]) if return_array: image_array = np.concatenate(image_array) return image_array else: return None def __del__(self): """remove temp images.""" self.remove_temp_frames() def remove_temp_frames(self): """remove temp images.""" if self.temp_path is not None: if Path(self.temp_path).is_dir() and self.remove_temp: shutil.rmtree(self.temp_path) def _set_new_pose(pose_np, sign, axis): """set new pose with axis convention.""" target_sign = [-1, 1, -1] target_axis = ['x', 'z', 'y'] pose_rearrange_axis_result = pose_np.copy() for axis_index, axis_name in enumerate(target_axis): src_axis_index = axis.index(axis_name) pose_rearrange_axis_result[..., axis_index] = \ pose_np[..., src_axis_index] for dim_index in range(pose_rearrange_axis_result.shape[-1]): pose_rearrange_axis_result[ ..., dim_index] = sign[dim_index] / target_sign[ dim_index] * pose_rearrange_axis_result[..., dim_index] return pose_rearrange_axis_result def _plot_line_on_fig(ax, point1_location, point2_location, color, linewidth=1): """Draw line on fig with matplotlib.""" ax.plot([point1_location[0], point2_location[0]], [point1_location[1], point2_location[1]], [point1_location[2], point2_location[2]], color=color, linewidth=linewidth) return ax def _get_cv2mat_from_buf(fig, dpi=180): """Get numpy image from IO.""" buf = io.BytesIO() fig.savefig(buf, format='png', dpi=dpi) buf.seek(0) img_arr = np.frombuffer(buf.getvalue(), dtype=np.uint8) buf.close() img = cv2.imdecode(img_arr, 1) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) return img
40.132212
79
0.533753
651a2f915529dc97f2d817be8a67a64930f8fe77
646
py
Python
ComRISB/pygtool/gw_gutz/data2h5.py
comscope/comsuite
d51c43cad0d15dc3b4d1f45e7df777cdddaa9d6c
[ "BSD-3-Clause" ]
18
2019-06-15T18:08:21.000Z
2022-01-30T05:01:29.000Z
ComRISB/pygtool/gw_gutz/data2h5.py
comscope/Comsuite
b80ca9f34c519757d337487c489fb655f7598cc2
[ "BSD-3-Clause" ]
null
null
null
ComRISB/pygtool/gw_gutz/data2h5.py
comscope/Comsuite
b80ca9f34c519757d337487c489fb655f7598cc2
[ "BSD-3-Clause" ]
11
2019-06-05T02:57:55.000Z
2021-12-29T02:54:25.000Z
import h5py import numpy as np evals = np.loadtxt('eigenvalues.dat') evals = evals.T num = 22 numk = evals.shape[1]/num with h5py.File('data.h5', 'w') as f: for ik, ibase in enumerate(range(0, evals.shape[1], num)): f['/evals/ik_{}'.format(ik)] = evals[2,ibase:ibase+num] for ik in range(numk): orbs = np.loadtxt('projector_{}.dat'.format(ik+1)) orbs = orbs.T orbs = orbs[3] + 1.j*orbs[4] orbs = orbs.reshape((2, 22, 5)) orbs = np.swapaxes(orbs, 1, 2) orbs = orbs.reshape((10,22)) orbs = orbs.T.conj() # <psi_k | loc orb> f['/psi_orb/ik_{}'.format(ik)] = orbs
28.086957
63
0.568111
ee7329fa3f2f719ec8b8fbb8ec8405f56b34b1a9
12,951
py
Python
bookstore/bookstore_web/routes.py
stillimproving/e-bookstore
48de381b2d805a6bd8cc4c912234e193483825ae
[ "MIT" ]
null
null
null
bookstore/bookstore_web/routes.py
stillimproving/e-bookstore
48de381b2d805a6bd8cc4c912234e193483825ae
[ "MIT" ]
null
null
null
bookstore/bookstore_web/routes.py
stillimproving/e-bookstore
48de381b2d805a6bd8cc4c912234e193483825ae
[ "MIT" ]
null
null
null
from flask import render_template, flash, redirect, url_for, request from flask_login import current_user, login_user, logout_user, login_required from werkzeug.datastructures import MultiDict from bookstore.models import BooksDB, BookSearchCategory, OrderDB from bookstore.models import CustomersDB, Customer from bookstore.models import Cart from bookstore.bookstore_web import app from bookstore.bookstore_web.forms import EditUserForm, ChangePasswordForm, DeleteUserForm from bookstore.bookstore_web.forms import LoginForm, SignupForm, SearchForm NAME = 'E-BOOKSTORE' CURRENCY = 'PLN' @app.route('/', methods=['GET', 'POST']) @app.route('/index', methods=['GET', 'POST']) def index(): discount = 25 books = BooksDB.search(category=BookSearchCategory.DISCOUNT, search_text=discount, operator='>=')[:5] search = SearchForm(request.form) if request.method == 'POST': return search_results(search) return render_template('index.html', global_title=NAME, position='../', after_title=" | Home", currency=CURRENCY, books=books, search=search, discount=discount) @app.route('/results') def search_results(search): search_string = search.data['search_input'] search_type = search.data['type'] if search_string == '': flash('Empty string is not allowed!') return redirect(url_for('index')) enum_map = { 'Title': BookSearchCategory.TITLE, 'Author': BookSearchCategory.AUTHOR, 'Category': BookSearchCategory.CATEGORY, 'Publisher': BookSearchCategory.PUBLISHER, 'ISBN': BookSearchCategory.ISBN} results = BooksDB.search(category=enum_map[search_type], search_text=search_string) if not results: flash('No results found for ' + search_type + ': "' + search_string + '"!') return redirect('/') return render_template('results.html', global_title=NAME, position='../', after_title=" | Search results", search=search, results=results) @app.route('/login', methods=['GET', 'POST']) def login(): if current_user.is_authenticated: return redirect(url_for('index')) login_form = LoginForm(prefix='log') if login_form.submit.data and login_form.validate_on_submit(): # flash('Login requested for user {}, remember_me={}'.format(form.usermail.data, form.remember_me.data)) customer = CustomersDB.get(login_form.usermail.data) if not customer or not customer.check_pass(login_form.password.data): flash('Invalid username or password') return redirect(url_for('login')) login_user(customer, remember=login_form.remember_me.data) return redirect(url_for('index')) signup_form = SignupForm(prefix='sign') if signup_form.submit.data and signup_form.validate_on_submit(): if CustomersDB.get(signup_form.email.data): flash('Given e-mail already registered') return redirect(url_for('login')) new_user = Customer( name=signup_form.name.data, surname=signup_form.surname.data, password=signup_form.password.data, street=signup_form.street.data, email=signup_form.email.data, phone=signup_form.phone.data, postal_code=signup_form.postal_code.data, city=signup_form.city.data, country=signup_form.country.data ) success = CustomersDB.add(new_user) if success: flash('You are registered, plaease Log in!') else: flash('Something gone wrong, try again') return redirect(url_for('login')) return render_template('login.html', global_title=NAME, position='../', after_title=' | Log In', login_form=login_form, signup_form=signup_form) @app.route('/logout') def logout(): logout_user() return redirect(url_for('index')) @app.route('/user') @login_required def user(): return render_template('user.html', global_title=NAME, position='../', after_title=' | Profile') @app.route('/edit_user', methods=['GET', 'POST']) @login_required def edit_user(): if request.method == 'GET': edit_user_form = EditUserForm( formdata=MultiDict({ 'name': current_user.name, 'surname': current_user.surname, 'phone': current_user.phone, 'street': current_user.street, 'postal_code': current_user.postal_code, 'city': current_user.city, 'country': current_user.country }) ) else: edit_user_form = EditUserForm() if edit_user_form.validate_on_submit(): updated_user = Customer( customer_id=current_user.customer_id, email=current_user.email, password=current_user.password, name=edit_user_form.name.data, surname=edit_user_form.surname.data, street=edit_user_form.street.data, phone=edit_user_form.phone.data, postal_code=edit_user_form.postal_code.data, city=edit_user_form.city.data, country=edit_user_form.country.data ) success = CustomersDB.update(updated_user) if success: flash('Your data has been successfully edited!') return redirect(url_for('user')) else: flash('Something gone wrong, try again') return redirect(url_for('edit_user')) return render_template('edit_user.html', global_title=NAME, position='../', after_title=' | Edit profile', edit_user_form=edit_user_form) @app.route('/change_password', methods=['GET', 'POST']) @login_required def change_password(): change_pass_form = ChangePasswordForm() if change_pass_form.validate_on_submit(): if change_pass_form.old_password.data == current_user.password: new_pass_user = Customer( customer_id=current_user.customer_id, email=current_user.email, password=change_pass_form.new_password.data, name=current_user.name, surname=current_user.surname, street=current_user.street, phone=current_user.phone, postal_code=current_user.postal_code, city=current_user.city, country=current_user.country ) success = CustomersDB.update(new_pass_user) if success: flash('Your password has been successfully changed!') return redirect(url_for('user')) else: flash('Something gone wrong, try again') return redirect(url_for('change_password')) else: flash('Invalid old password') return redirect(url_for('change_password')) return render_template('change_password.html', global_title=NAME, position='../', after_title=' | Change password', change_pass_form=change_pass_form) @app.route('/delete_user', methods=['GET', 'POST']) @login_required def delete_user(): delete_form = DeleteUserForm() if delete_form.is_submitted(): del_user = current_user success = CustomersDB.delete(del_user) if success: flash('Goodbye! :(') return redirect(url_for('logout')) else: flash('Something gone wrong, try again') return redirect(url_for('delete_user')) return render_template('delete_user.html', global_title=NAME, position='../', after_title=' | Delete account', delete_form=delete_form) @app.route('/item/<book_id>', methods=['GET', 'POST']) def item(book_id): book = BooksDB.get(key=book_id) return render_template('item.html', global_title=NAME, position='../../', after_title=" | " + book.title, currency=CURRENCY, book=book) # , add_to_cart_form=add_to_cart_form @app.route('/add_to_cart/<book_id>', methods=['GET']) @login_required def add_to_cart(book_id): user_cart = Cart.get_user_cart(current_user.customer_id) count = 0 if user_cart: count = user_cart.get(book_id, 0) Cart.add_to_cart(current_user.customer_id, book_id, count + 1) return "nothing" @app.route('/cart') @login_required def cart(): ids_cart = Cart.get_user_cart(current_user.customer_id) user_cart = dict() invalid_cart_items = [] no_discount_total = total = 0 if ids_cart: for book_id, quantity in ids_cart.items(): book = BooksDB.get(key=book_id) if quantity <= book.quantity: user_cart[book] = quantity no_discount_total += book.price*quantity total += (book.price - book.price*book.discount/100)*quantity elif quantity > book.quantity != 0: user_cart[book] = book.quantity Cart.add_to_cart(current_user.customer_id, book_id, book.quantity) no_discount_total += book.price*book.quantity total += (book.price - book.price*book.discount/100)*book.quantity else: invalid_cart_items.append((book_id, book)) for invalid in invalid_cart_items: Cart.remove_from_cart(current_user.customer_id, invalid[0]) user_cart.pop(invalid[1], None) return render_template('cart.html', global_title=NAME, position='../', after_title=" | Cart", currency=CURRENCY, user_cart=user_cart, no_discount_total=no_discount_total, total=total) @app.route('/refresh_cart_item/<book_id>', methods=['GET', 'POST']) @login_required def refresh_cart_item(book_id): quantity = int(request.args.get('quantity', '0')) if not quantity: flash('Something wrong, quantity < 1') success = Cart.add_to_cart(current_user.customer_id, book_id, quantity) if success: flash('Item has been updated') else: flash('Something gone wrong, try again') return redirect(url_for('cart')) @app.route('/remove_cart_item/<book_id>', methods=['GET', 'POST']) @login_required def remove_cart_item(book_id): success = Cart.remove_from_cart(current_user.customer_id, book_id) if success: flash('Item has been removed from your cart') else: flash('Something gone wrong, try again') return redirect(url_for('cart')) @app.route('/order') @login_required def order(): missing_fields = [] if not current_user.phone: missing_fields.append('Phone') if not current_user.street: missing_fields.append('Street') if not current_user.postal_code: missing_fields.append('Postal code') if not current_user.city: missing_fields.append('City') if not current_user.country: missing_fields.append('Country') ids_cart = Cart.get_user_cart(current_user.customer_id) user_cart = [] if not ids_cart: flash('System reboot while refreshing order page. Unfortunately you have to complete your cart again') for book_id, quantity in ids_cart.items(): book = BooksDB.get(key=book_id) user_cart.append({ 'name': book.author + ": " + book.title + " (" + str(book.release) + ")", 'price': book.price - book.price * book.discount / 100, 'quantity': quantity, 'cost': quantity * (book.price - book.price * book.discount / 100) }) total = 0 for books_in_cart in user_cart: total += books_in_cart['cost'] return render_template('order.html', global_title=NAME, position='../', after_title=" | Order", currency=CURRENCY, missing_fields=missing_fields, user_cart=user_cart, total=total) @app.route('/buy') @login_required def buy(): ids_cart = Cart.get_user_cart(current_user.customer_id) user_cart = [] for book_id, quantity in ids_cart.items(): book = BooksDB.get(key=book_id) user_cart.append({ 'name': book.author + ": " + book.title + " (" + str(book.release) + ")", 'price': book.price - book.price * book.discount / 100, 'quantity': quantity, 'cost': quantity * (book.price - book.price * book.discount / 100) }) total = 0 for books_in_cart in user_cart: total += books_in_cart['cost'] order_id = OrderDB.submit_order(customer=current_user, total_price=total) return render_template('buy.html', global_title=NAME, position='../', after_title=' | Payment', order_id=order_id) @app.route('/terms_of_use') def terms_of_use(): return render_template('terms_of_use.html', global_title=NAME, position='../', after_title=' | Terms of use') @app.route('/privacy_policy') def privacy_policy(): return render_template('privacy_policy.html', global_title=NAME, position='../', after_title=' | Privacy policy')
39.726994
119
0.644429
caaace50ce5ac2264cbd572cfb6171cdb44ca840
2,920
py
Python
pydeepspeech/wav_transcriber.py
Soebb/pydeepspeech
968ce5b17c8904902fe5e83cf412c434e793c3fc
[ "MIT" ]
null
null
null
pydeepspeech/wav_transcriber.py
Soebb/pydeepspeech
968ce5b17c8904902fe5e83cf412c434e793c3fc
[ "MIT" ]
null
null
null
pydeepspeech/wav_transcriber.py
Soebb/pydeepspeech
968ce5b17c8904902fe5e83cf412c434e793c3fc
[ "MIT" ]
null
null
null
# pylint: skip-file import glob import logging from timeit import default_timer as timer import webrtcvad # type: ignore from deepspeech import Model # type: ignore import pydeepspeech.wav_split as wav_split """ Load the pre-trained model into the memory @param models: Output Grapgh Protocol Buffer file @param scorer: Scorer file @Retval Returns a list [DeepSpeech Object, Model Load Time, Scorer Load Time] """ def load_model(models, scorer): model_load_start = timer() ds = Model(models) model_load_end = timer() - model_load_start logging.debug("Loaded model in %0.3fs." % (model_load_end)) scorer_load_start = timer() ds.enableExternalScorer(scorer) scorer_load_end = timer() - scorer_load_start logging.debug("Loaded external scorer in %0.3fs." % (scorer_load_end)) return [ds, model_load_end, scorer_load_end] """ Run Inference on input audio file @param ds: Deepspeech object @param audio: Input audio for running inference on @param fs: Sample rate of the input audio file @Retval: Returns a list [Inference, Inference Time, Audio Length] """ def stt(ds, audio, fs): inference_time = 0.0 audio_length = len(audio) * (1 / fs) # Run Deepspeech logging.debug("Running inference...") inference_start = timer() output = ds.stt(audio) inference_end = timer() - inference_start inference_time += inference_end logging.debug( "Inference took %0.3fs for %0.3fs audio file." % (inference_end, audio_length) ) return [output, inference_time] """ Resolve directory path for the models and fetch each of them. @param dirName: Path to the directory containing pre-trained models @Retval: Retunns a tuple containing each of the model files (pb, scorer) """ def resolve_models(dirName): pb = glob.glob(dirName + "/*.pbmm")[0] logging.debug("Found Model: %s" % pb) scorer = glob.glob(dirName + "/*.scorer")[0] logging.debug("Found scorer: %s" % scorer) return pb, scorer """ Generate VAD segments. Filters out non-voiced audio frames. @param waveFile: Input wav file to run VAD on.0 @Retval: Returns tuple of segments: a bytearray of multiple smaller audio frames (The longer audio split into mutiple smaller one's) sample_rate: Sample rate of the input audio file audio_length: Duraton of the input audio file """ def vad_segment_generator(wavFile, aggressiveness): logging.debug("Caught the wav file @: %s" % (wavFile)) audio, sample_rate, audio_length = wav_split.read_wave(wavFile) assert ( sample_rate == 16000 ), "Only 16000Hz input WAV files are supported for now!" vad = webrtcvad.Vad(int(aggressiveness)) frames = wav_split.frame_generator(30, audio, sample_rate) frames = list(frames) segments = wav_split.vad_collector(sample_rate, 30, 300, vad, frames) return segments, sample_rate, audio_length
26.306306
74
0.708904
63e907d23c6449656226369f36631c2d61a23326
179
py
Python
irelia/__init__.py
bgraver/Irelia
d1785fac7a3dadfa3af523f0637f5a838f830408
[ "MIT" ]
null
null
null
irelia/__init__.py
bgraver/Irelia
d1785fac7a3dadfa3af523f0637f5a838f830408
[ "MIT" ]
null
null
null
irelia/__init__.py
bgraver/Irelia
d1785fac7a3dadfa3af523f0637f5a838f830408
[ "MIT" ]
null
null
null
from irelia.esports_lib import Lolesports headers = {'x-api-key': '0TvQnueqKa5mxJntVWt0w4LpLfEkrV1Ta8rQBb9Z'} params = {"hl": "en-US"} s11_start_date = "2021-01-01"
17.9
68
0.698324
693a6294de173541f5b91fd437fd0ae3c6046fa8
2,104
py
Python
Python/phonenumbers/data/region_JM.py
skykisl/uberbruns2
26933efce04dba700d93cc75c7b74e069fb02d26
[ "Unlicense" ]
5
2015-04-27T20:10:56.000Z
2018-06-14T18:19:09.000Z
python/phonenumbers/data/region_JM.py
vemel/python-phonenumbers
595c322bf12106a3b95e3f202e948a7c6b6c15b8
[ "Apache-2.0" ]
2
2017-06-08T16:11:13.000Z
2018-05-07T11:50:13.000Z
python/phonenumbers/data/region_JM.py
vemel/python-phonenumbers
595c322bf12106a3b95e3f202e948a7c6b6c15b8
[ "Apache-2.0" ]
6
2015-02-19T11:11:04.000Z
2022-03-15T19:38:31.000Z
"""Auto-generated file, do not edit by hand. JM metadata""" from ..phonemetadata import NumberFormat, PhoneNumberDesc, PhoneMetadata PHONE_METADATA_JM = PhoneMetadata(id='JM', country_code=1, international_prefix='011', general_desc=PhoneNumberDesc(national_number_pattern='[589]\\d{9}', possible_number_pattern='\\d{7}(?:\\d{3})?'), fixed_line=PhoneNumberDesc(national_number_pattern='876(?:5(?:0[12]|1[0-468]|2[35]|63)|6(?:0[1-3579]|1[027-9]|[23]\\d|40|5[06]|6[2-489]|7[05]|8[04]|9[4-9])|7(?:0[2-689]|[1-6]\\d|8[056]|9[45])|9(?:0[1-8]|1[02378]|[2-8]\\d|9[2-468]))\\d{4}', possible_number_pattern='\\d{7}(?:\\d{3})?', example_number='8765123456'), mobile=PhoneNumberDesc(national_number_pattern='876(?:2[1789]\\d|[348]\\d{2}|5(?:08|27|6[0-24-9]|[3-578]\\d)|7(?:0[07]|7\\d|8[1-47-9]|9[0-36-9])|9(?:[01]9|9[0579]))\\d{4}', possible_number_pattern='\\d{10}', example_number='8762101234'), toll_free=PhoneNumberDesc(national_number_pattern='8(?:00|55|66|77|88)[2-9]\\d{6}', possible_number_pattern='\\d{10}', example_number='8002123456'), premium_rate=PhoneNumberDesc(national_number_pattern='900[2-9]\\d{6}', possible_number_pattern='\\d{10}', example_number='9002123456'), shared_cost=PhoneNumberDesc(national_number_pattern='NA', possible_number_pattern='NA'), personal_number=PhoneNumberDesc(national_number_pattern='5(?:00|33|44)[2-9]\\d{6}', possible_number_pattern='\\d{10}', example_number='5002345678'), voip=PhoneNumberDesc(national_number_pattern='NA', possible_number_pattern='NA'), pager=PhoneNumberDesc(national_number_pattern='NA', possible_number_pattern='NA'), uan=PhoneNumberDesc(national_number_pattern='NA', possible_number_pattern='NA'), emergency=PhoneNumberDesc(national_number_pattern='11[09]', possible_number_pattern='\\d{3}', example_number='119'), voicemail=PhoneNumberDesc(national_number_pattern='NA', possible_number_pattern='NA'), no_international_dialling=PhoneNumberDesc(national_number_pattern='NA', possible_number_pattern='NA'), national_prefix='1', national_prefix_for_parsing='1', leading_digits='876')
100.190476
318
0.72576
3aa467a38e2b50e3c1a5d1fccaf89dba7d212b61
7,906
py
Python
tests/test_sampling.py
Rodrigo-Tenorio/nessai
2b4175da61b3a7250d1154a126ad93481836df0d
[ "MIT" ]
16
2021-02-18T00:04:54.000Z
2021-09-01T03:25:45.000Z
tests/test_sampling.py
Rodrigo-Tenorio/nessai
2b4175da61b3a7250d1154a126ad93481836df0d
[ "MIT" ]
59
2021-03-09T11:05:37.000Z
2022-03-30T14:21:14.000Z
tests/test_sampling.py
Rodrigo-Tenorio/nessai
2b4175da61b3a7250d1154a126ad93481836df0d
[ "MIT" ]
1
2022-03-25T12:28:16.000Z
2022-03-25T12:28:16.000Z
# -*- coding: utf-8 -*- """ Integration tests for running the sampler with different configurations. """ import os import torch import pytest import numpy as np from nessai.flowsampler import FlowSampler from nessai.livepoint import numpy_array_to_live_points from nessai.model import Model torch.set_num_threads(1) @pytest.mark.slow_integration_test def test_sampling_with_rescale(model, flow_config, tmpdir): """ Test sampling with rescaling. Checks that flow is trained. """ output = str(tmpdir.mkdir('w_rescale')) fp = FlowSampler(model, output=output, resume=False, nlive=100, plot=False, flow_config=flow_config, training_frequency=10, maximum_uninformed=9, rescale_parameters=True, seed=1234, max_iteration=11, poolsize=10, max_threads=1) fp.run() assert fp.ns.proposal.flow.weights_file is not None assert fp.ns.proposal.training_count == 1 @pytest.mark.slow_integration_test def test_sampling_with_inversion(model, flow_config, tmpdir): """ Test sampling with inversion. Checks that flow is trained. """ output = str(tmpdir.mkdir('w_rescale')) fp = FlowSampler(model, output=output, resume=False, nlive=100, plot=False, flow_config=flow_config, training_frequency=10, maximum_uninformed=9, rescale_parameters=True, seed=1234, max_iteration=11, poolsize=10, max_threads=1, boundary_inversion=True, update_bounds=True) fp.run() assert fp.ns.proposal.boundary_inversion == ['x', 'y'] assert fp.ns.proposal.flow.weights_file is not None assert fp.ns.proposal.training_count == 1 @pytest.mark.slow_integration_test def test_sampling_without_rescale(model, flow_config, tmpdir): """ Test sampling without rescaling. Checks that flow is trained. """ output = str(tmpdir.mkdir('wo_rescale')) fp = FlowSampler(model, output=output, resume=False, nlive=100, plot=False, flow_config=flow_config, training_frequency=10, maximum_uninformed=9, rescale_parameters=False, seed=1234, max_iteration=11, poolsize=10) fp.run() assert fp.ns.proposal.flow.weights_file is not None assert fp.ns.proposal.training_count == 1 @pytest.mark.slow_integration_test def test_sampling_with_maf(model, flow_config, tmpdir): """ Test sampling with MAF. Checks that flow is trained but does not check convergence. """ flow_config['model_config']['ftype'] = 'maf' output = str(tmpdir.mkdir('maf')) fp = FlowSampler(model, output=output, resume=False, nlive=100, plot=False, flow_config=flow_config, training_frequency=10, maximum_uninformed=9, rescale_parameters=True, seed=1234, max_iteration=11, poolsize=10) fp.run() assert fp.ns.proposal.flow.weights_file is not None assert fp.ns.proposal.training_count == 1 @pytest.mark.slow_integration_test @pytest.mark.parametrize('analytic', [False, True]) def test_sampling_uninformed(model, flow_config, tmpdir, analytic): """ Test running the sampler with the two uninformed proposal methods. """ output = str(tmpdir.mkdir('uninformed')) fp = FlowSampler(model, output=output, resume=False, nlive=100, plot=False, flow_config=flow_config, training_frequency=None, maximum_uninformed=10, rescale_parameters=True, seed=1234, max_iteration=11, poolsize=10, analytic_proposal=analytic) fp.run() @pytest.mark.slow_integration_test def test_sampling_with_n_pool(model, flow_config, tmpdir): """ Test running the sampler with multiprocessing. """ output = str(tmpdir.mkdir('pool')) fp = FlowSampler(model, output=output, resume=False, nlive=100, plot=False, flow_config=flow_config, training_frequency=10, maximum_uninformed=9, rescale_parameters=True, seed=1234, max_iteration=11, poolsize=10, max_threads=3, n_pool=2) fp.run() assert fp.ns.proposal.flow.weights_file is not None assert fp.ns.proposal.training_count == 1 assert os.path.exists(output + '/result.json') @pytest.mark.slow_integration_test def test_sampling_resume(model, flow_config, tmpdir): """ Test resuming the sampler. """ output = str(tmpdir.mkdir('resume')) fp = FlowSampler(model, output=output, resume=True, nlive=100, plot=False, flow_config=flow_config, training_frequency=10, maximum_uninformed=9, rescale_parameters=True, seed=1234, max_iteration=11, poolsize=10) fp.run() assert os.path.exists(os.path.join(output, 'nested_sampler_resume.pkl')) fp = FlowSampler(model, output=output, resume=True, flow_config=flow_config) assert fp.ns.iteration == 11 fp.ns.max_iteration = 21 fp.run() assert fp.ns.iteration == 21 assert os.path.exists( os.path.join(output, 'nested_sampler_resume.pkl.old')) @pytest.mark.slow_integration_test def test_sampling_resume_no_max_uninformed(model, flow_config, tmpdir): """ Test resuming the sampler when there is no maximum iteration for the uinformed sampling. This test makes sure the correct proposal is loaded after resuming and re-initialising the sampler. """ output = str(tmpdir.mkdir('resume')) fp = FlowSampler(model, output=output, resume=True, nlive=100, plot=False, flow_config=flow_config, training_frequency=10, maximum_uninformed=9, rescale_parameters=True, seed=1234, max_iteration=11, poolsize=10) fp.run() assert os.path.exists(os.path.join(output, 'nested_sampler_resume.pkl')) fp = FlowSampler(model, output=output, resume=True, flow_config=flow_config) assert fp.ns.iteration == 11 fp.ns.maximum_uninformed = np.inf fp.ns.initialise() assert fp.ns.proposal is fp.ns._flow_proposal fp.ns.max_iteration = 21 fp.run() assert fp.ns.iteration == 21 assert os.path.exists( os.path.join(output, 'nested_sampler_resume.pkl.old')) @pytest.mark.slow_integration_test def test_sampling_with_infinite_prior_bounds(tmpdir): """ Make sure the sampler runs when sampling a parameter with infinite prior \ bounds. """ from scipy.stats import norm output = str(tmpdir.mkdir('infinite_bounds')) class TestModel(Model): names = ['x', 'y'] bounds = {'x': [0, 1], 'y': [-np.inf, np.inf]} reparameterisations = {'x': 'default', 'y': None} def new_point(self, N=1): x = np.concatenate([ np.random.rand(N, 1), np.random.randn(N, 1) ], axis=1) return numpy_array_to_live_points(x, self.names) def log_prior(self, x): log_p = np.log(self.in_bounds(x)) log_p += norm.logpdf(x['y']) return log_p def log_likelihood(self, x): log_l = np.zeros(x.size) for n in self.names: log_l += norm.logpdf(x[n]) return log_l fs = FlowSampler( TestModel(), output=output, nlive=500, plot=False, proposal_plots=False ) fs.run(plot=False) assert fs.ns.condition <= 0.1 @pytest.mark.slow_integration_test def test_constant_volume_mode(model, tmpdir): """Test sampling in constant volume mode""" output = str(tmpdir.mkdir('test')) fs = FlowSampler( model, output=output, nlive=500, plot=False, proposal_plots=False, constant_volume_mode=True ) fs.run(plot=False)
35.294643
79
0.650519
396358b87f03f8cf892084e2ec39f506635d7fdf
46
py
Python
Lib/pylib/__init__.py
cjroehrig/crispyControllers
6a56f7a61d66068824f4fd4b3c46d5b95585439d
[ "BSD-2-Clause" ]
null
null
null
Lib/pylib/__init__.py
cjroehrig/crispyControllers
6a56f7a61d66068824f4fd4b3c46d5b95585439d
[ "BSD-2-Clause" ]
null
null
null
Lib/pylib/__init__.py
cjroehrig/crispyControllers
6a56f7a61d66068824f4fd4b3c46d5b95585439d
[ "BSD-2-Clause" ]
null
null
null
# This is required to be considered a module.
23
45
0.76087
7511f977d68d8db864d7b5e67e9faaaf3a606c1f
2,128
py
Python
tests/integration/player_test.py
egret85/echovr-api
e135f25fb5b188e2931133d04c47c5e66e83a6c5
[ "MIT" ]
7
2018-11-02T18:12:18.000Z
2021-03-08T10:47:59.000Z
tests/integration/player_test.py
egret85/echovr-api
e135f25fb5b188e2931133d04c47c5e66e83a6c5
[ "MIT" ]
null
null
null
tests/integration/player_test.py
egret85/echovr-api
e135f25fb5b188e2931133d04c47c5e66e83a6c5
[ "MIT" ]
4
2018-11-02T18:12:08.000Z
2020-06-19T19:42:39.000Z
import pytest @pytest.fixture def player(standard_public_match_gamestate): return standard_public_match_gamestate.teams[0].players[0] def test_name(player): assert player.name == "Bob" def test_playerid(player): assert player.playerid == 0 def test_userid(player): assert player.userid == 4814054792376258 def test_level(player): assert player.level == 8 def test_number(player): assert player.number == 76 def test_possession(player): assert player.possession == False def test_stunned(player): assert player.stunned == False def test_blocking(player): assert player.blocking == False def test_invulnerable(player): assert player.invulnerable == False def test_position(player): assert player.position != None assert player.position.x == -10.598001 assert player.position.y == 3.9720001 assert player.position.z == 26.736002 def test_velocity(player): assert player.velocity != None assert player.velocity.x == -2.131 assert player.velocity.y == -0.63000005 assert player.velocity.z == 0.33400002 def test_lhand(player): assert player.lhand != None assert player.lhand.x == -10.419001 assert player.lhand.y == 3.5290003 assert player.lhand.z == 26.732 def test_rhand(player): assert player.rhand != None assert player.rhand.x == -10.416 assert player.rhand.y == 3.5430002 assert player.rhand.z == 26.869001 def test_forward(player): assert player.forward != None assert player.forward.x == 0.57100004 assert player.forward.y == -0.26800001 assert player.forward.z == -0.77600002 def test_left(player): assert player.left != None assert player.left.x == -0.80800003 assert player.left.y == -0.017000001 assert player.left.z == -0.58900005 def test_up(player): assert player.up != None assert player.up.x == 0.14500001 assert player.up.y == 0.96300006 assert player.up.z == -0.22600001 def test_stats(player): assert player.stats != None assert player.stats.possession_time == 12.294746 def test_username(player): assert player.username == "Bob"
25.95122
62
0.703947
8442560c7a88c45d382a3a96bac67b0654db0e4c
574
py
Python
balanced-binary-tree/balanced-binary-tree.py
rams1996/Trees
b7d6a92ed76a9e4d01bfe7f85debb7ca2b350ac9
[ "MIT" ]
null
null
null
balanced-binary-tree/balanced-binary-tree.py
rams1996/Trees
b7d6a92ed76a9e4d01bfe7f85debb7ca2b350ac9
[ "MIT" ]
null
null
null
balanced-binary-tree/balanced-binary-tree.py
rams1996/Trees
b7d6a92ed76a9e4d01bfe7f85debb7ca2b350ac9
[ "MIT" ]
null
null
null
# Definition for a binary tree node. # class TreeNode: #     def __init__(self, x): #         self.val = x #         self.left = None #         self.right = None ​ class Solution:    def isBalanced(self, root: TreeNode) -> bool:                def dfs(root):            if not root:                return 0            l=dfs(root.left)            r=dfs(root.right)            if abs(l-r)>1 or l==-1 or r==-1:                return -1            return max(l,r)+1        if dfs(root)==-1:            return False        else:            return True            
23.916667
49
0.447735
3a1e9108a8cd4899977745d0dda89fcc78f83181
2,923
py
Python
e2e_tests/tests/fixtures/pytorch_lightning_amp/mnist.py
gh-determined-ai/determined
9a1ab33a3a356b69681b3351629fef4ab98ddb56
[ "Apache-2.0" ]
1,729
2020-04-27T17:36:40.000Z
2022-03-31T05:48:39.000Z
e2e_tests/tests/fixtures/pytorch_lightning_amp/mnist.py
ChrisW09/determined
5c37bfe9cfcc69174ba29a3f1a115c3e9e3632e0
[ "Apache-2.0" ]
1,940
2020-04-27T17:34:14.000Z
2022-03-31T23:02:28.000Z
e2e_tests/tests/fixtures/pytorch_lightning_amp/mnist.py
ChrisW09/determined
5c37bfe9cfcc69174ba29a3f1a115c3e9e3632e0
[ "Apache-2.0" ]
214
2020-04-27T19:57:28.000Z
2022-03-29T08:17:16.000Z
# The class LitMNIST is modified from the Pytorch Lightning example: # https://colab.research.google.com/github/PytorchLightning/pytorch-lightning/ # blob/master/notebooks/01-mnist-hello-world.ipynb#scrollTo=4DNItffri95Q # # Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from torch import nn from torch.nn import functional as F from torchvision import transforms import pytorch_lightning as pl from pytorch_lightning.metrics.functional import accuracy import data class LitMNIST(pl.LightningModule): def __init__(self, hidden_size=64, learning_rate=2e-4): super().__init__() # Set our init args as class attributes self.hidden_size = hidden_size self.learning_rate = learning_rate # Hardcode some dataset specific attributes self.num_classes = 10 self.dims = (1, 28, 28) channels, width, height = self.dims self.transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ]) # Define PyTorch model self.model = nn.Sequential( nn.Flatten(), nn.Linear(channels * width * height, hidden_size), nn.ReLU(), nn.Dropout(0.1), nn.Linear(hidden_size, hidden_size), nn.ReLU(), nn.Dropout(0.1), nn.Linear(hidden_size, self.num_classes) ) def forward(self, x): x = self.model(x) return F.log_softmax(x, dim=1) def training_step(self, batch, batch_idx): x, y = batch logits = self(x) loss = F.nll_loss(logits, y) self.log('train_loss', loss) return {'loss': loss} def validation_step(self, batch, batch_idx): x, y = batch logits = self(x) loss = F.nll_loss(logits, y) preds = torch.argmax(logits, dim=1) acc = accuracy(preds, y) return {'val_loss': loss, 'accuracy': acc} def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters(), lr=self.learning_rate) return optimizer if __name__ == '__main__': model = LitMNIST() trainer = pl.Trainer(max_epochs=3, default_root_dir='/tmp/lightning') dm = data.MNISTDataModule('https://s3-us-west-2.amazonaws.com/determined-ai-test-data/pytorch_mnist.tar.gz') trainer.fit(model, datamodule=dm)
33.215909
112
0.661991
51afa0cb1a58f33ba5147af912a3f3d17ed2f071
3,607
py
Python
test/functional/wallet_keypool.py
dyennet/bitcoin
be992701b018f256db6d64786624be4cb60d8975
[ "MIT" ]
4,424
2015-10-19T19:04:02.000Z
2022-03-21T12:11:29.000Z
test/functional/wallet_keypool.py
dyennet/bitcoin
be992701b018f256db6d64786624be4cb60d8975
[ "MIT" ]
316
2015-12-05T21:55:16.000Z
2022-03-05T12:28:43.000Z
test/functional/wallet_keypool.py
dyennet/bitcoin
be992701b018f256db6d64786624be4cb60d8975
[ "MIT" ]
208
2016-06-17T23:47:57.000Z
2022-03-16T09:11:26.000Z
#!/usr/bin/env python3 # Copyright (c) 2014-2018 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the wallet keypool and interaction with wallet encryption/locking.""" import time from test_framework.test_framework import BitcoinTestFramework from test_framework.util import assert_equal, assert_raises_rpc_error class KeyPoolTest(BitcoinTestFramework): def set_test_params(self): self.num_nodes = 1 def skip_test_if_missing_module(self): self.skip_if_no_wallet() def run_test(self): nodes = self.nodes addr_before_encrypting = nodes[0].getnewaddress() addr_before_encrypting_data = nodes[0].getaddressinfo(addr_before_encrypting) wallet_info_old = nodes[0].getwalletinfo() assert_equal(wallet_info_old['hdseedid'], wallet_info_old['hdmasterkeyid']) assert(addr_before_encrypting_data['hdseedid'] == wallet_info_old['hdseedid']) # Encrypt wallet and wait to terminate nodes[0].encryptwallet('test') # Keep creating keys addr = nodes[0].getnewaddress() addr_data = nodes[0].getaddressinfo(addr) wallet_info = nodes[0].getwalletinfo() assert_equal(wallet_info['hdseedid'], wallet_info['hdmasterkeyid']) assert(addr_before_encrypting_data['hdseedid'] != wallet_info['hdseedid']) assert(addr_data['hdseedid'] == wallet_info['hdseedid']) assert_raises_rpc_error(-12, "Error: Keypool ran out, please call keypoolrefill first", nodes[0].getnewaddress) # put six (plus 2) new keys in the keypool (100% external-, +100% internal-keys, 1 in min) nodes[0].walletpassphrase('test', 12000) nodes[0].keypoolrefill(6) nodes[0].walletlock() wi = nodes[0].getwalletinfo() assert_equal(wi['keypoolsize_hd_internal'], 6) assert_equal(wi['keypoolsize'], 6) # drain the internal keys nodes[0].getrawchangeaddress() nodes[0].getrawchangeaddress() nodes[0].getrawchangeaddress() nodes[0].getrawchangeaddress() nodes[0].getrawchangeaddress() nodes[0].getrawchangeaddress() addr = set() # the next one should fail assert_raises_rpc_error(-12, "Keypool ran out", nodes[0].getrawchangeaddress) # drain the external keys addr.add(nodes[0].getnewaddress()) addr.add(nodes[0].getnewaddress()) addr.add(nodes[0].getnewaddress()) addr.add(nodes[0].getnewaddress()) addr.add(nodes[0].getnewaddress()) addr.add(nodes[0].getnewaddress()) assert(len(addr) == 6) # the next one should fail assert_raises_rpc_error(-12, "Error: Keypool ran out, please call keypoolrefill first", nodes[0].getnewaddress) # refill keypool with three new addresses nodes[0].walletpassphrase('test', 1) nodes[0].keypoolrefill(3) # test walletpassphrase timeout time.sleep(1.1) assert_equal(nodes[0].getwalletinfo()["unlocked_until"], 0) # drain them by mining nodes[0].generate(1) nodes[0].generate(1) nodes[0].generate(1) assert_raises_rpc_error(-12, "Keypool ran out", nodes[0].generate, 1) nodes[0].walletpassphrase('test', 100) nodes[0].keypoolrefill(100) wi = nodes[0].getwalletinfo() assert_equal(wi['keypoolsize_hd_internal'], 100) assert_equal(wi['keypoolsize'], 100) if __name__ == '__main__': KeyPoolTest().main()
40.077778
119
0.669809
f0c6d060b50b62b29ffbfef3dc2d7bad7f920914
15,251
py
Python
sdk/python/pulumi_azure_nextgen/insights/latest/component.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
31
2020-09-21T09:41:01.000Z
2021-02-26T13:21:59.000Z
sdk/python/pulumi_azure_nextgen/insights/latest/component.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
231
2020-09-21T09:38:45.000Z
2021-03-01T11:16:03.000Z
sdk/python/pulumi_azure_nextgen/insights/latest/component.py
pulumi/pulumi-azure-nextgen
452736b0a1cf584c2d4c04666e017af6e9b2c15c
[ "Apache-2.0" ]
4
2020-09-29T14:14:59.000Z
2021-02-10T20:38:16.000Z
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables from . import outputs from ._enums import * __all__ = ['Component'] warnings.warn("""The 'latest' version is deprecated. Please migrate to the resource in the top-level module: 'azure-nextgen:insights:Component'.""", DeprecationWarning) class Component(pulumi.CustomResource): warnings.warn("""The 'latest' version is deprecated. Please migrate to the resource in the top-level module: 'azure-nextgen:insights:Component'.""", DeprecationWarning) def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, application_type: Optional[pulumi.Input[Union[str, 'ApplicationType']]] = None, disable_ip_masking: Optional[pulumi.Input[bool]] = None, flow_type: Optional[pulumi.Input[Union[str, 'FlowType']]] = None, hockey_app_id: Optional[pulumi.Input[str]] = None, immediate_purge_data_on30_days: Optional[pulumi.Input[bool]] = None, ingestion_mode: Optional[pulumi.Input[Union[str, 'IngestionMode']]] = None, kind: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, request_source: Optional[pulumi.Input[Union[str, 'RequestSource']]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, resource_name_: Optional[pulumi.Input[str]] = None, retention_in_days: Optional[pulumi.Input[int]] = None, sampling_percentage: Optional[pulumi.Input[float]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, __props__=None, __name__=None, __opts__=None): """ An Application Insights component definition. Latest API Version: 2015-05-01. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[Union[str, 'ApplicationType']] application_type: Type of application being monitored. :param pulumi.Input[bool] disable_ip_masking: Disable IP masking. :param pulumi.Input[Union[str, 'FlowType']] flow_type: Used by the Application Insights system to determine what kind of flow this component was created by. This is to be set to 'Bluefield' when creating/updating a component via the REST API. :param pulumi.Input[str] hockey_app_id: The unique application ID created when a new application is added to HockeyApp, used for communications with HockeyApp. :param pulumi.Input[bool] immediate_purge_data_on30_days: Purge data immediately after 30 days. :param pulumi.Input[Union[str, 'IngestionMode']] ingestion_mode: Indicates the flow of the ingestion. :param pulumi.Input[str] kind: The kind of application that this component refers to, used to customize UI. This value is a freeform string, values should typically be one of the following: web, ios, other, store, java, phone. :param pulumi.Input[str] location: Resource location :param pulumi.Input[Union[str, 'RequestSource']] request_source: Describes what tool created this Application Insights component. Customers using this API should set this to the default 'rest'. :param pulumi.Input[str] resource_group_name: The name of the resource group. The name is case insensitive. :param pulumi.Input[str] resource_name_: The name of the Application Insights component resource. :param pulumi.Input[int] retention_in_days: Retention period in days. :param pulumi.Input[float] sampling_percentage: Percentage of the data produced by the application being monitored that is being sampled for Application Insights telemetry. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: Resource tags """ pulumi.log.warn("Component is deprecated: The 'latest' version is deprecated. Please migrate to the resource in the top-level module: 'azure-nextgen:insights:Component'.") if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() if application_type is None: application_type = 'web' if application_type is None and not opts.urn: raise TypeError("Missing required property 'application_type'") __props__['application_type'] = application_type __props__['disable_ip_masking'] = disable_ip_masking if flow_type is None: flow_type = 'Bluefield' __props__['flow_type'] = flow_type __props__['hockey_app_id'] = hockey_app_id __props__['immediate_purge_data_on30_days'] = immediate_purge_data_on30_days if ingestion_mode is None: ingestion_mode = 'ApplicationInsights' __props__['ingestion_mode'] = ingestion_mode if kind is None and not opts.urn: raise TypeError("Missing required property 'kind'") __props__['kind'] = kind __props__['location'] = location if request_source is None: request_source = 'rest' __props__['request_source'] = request_source if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__['resource_group_name'] = resource_group_name __props__['resource_name'] = resource_name_ if retention_in_days is None: retention_in_days = 90 __props__['retention_in_days'] = retention_in_days __props__['sampling_percentage'] = sampling_percentage __props__['tags'] = tags __props__['app_id'] = None __props__['application_id'] = None __props__['connection_string'] = None __props__['creation_date'] = None __props__['hockey_app_token'] = None __props__['instrumentation_key'] = None __props__['name'] = None __props__['private_link_scoped_resources'] = None __props__['provisioning_state'] = None __props__['tenant_id'] = None __props__['type'] = None alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:insights:Component"), pulumi.Alias(type_="azure-nextgen:insights/v20150501:Component"), pulumi.Alias(type_="azure-nextgen:insights/v20180501preview:Component"), pulumi.Alias(type_="azure-nextgen:insights/v20200202preview:Component")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(Component, __self__).__init__( 'azure-nextgen:insights/latest:Component', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'Component': """ Get an existing Component resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() return Component(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="appId") def app_id(self) -> pulumi.Output[str]: """ Application Insights Unique ID for your Application. """ return pulumi.get(self, "app_id") @property @pulumi.getter(name="applicationId") def application_id(self) -> pulumi.Output[str]: """ The unique ID of your application. This field mirrors the 'Name' field and cannot be changed. """ return pulumi.get(self, "application_id") @property @pulumi.getter(name="applicationType") def application_type(self) -> pulumi.Output[str]: """ Type of application being monitored. """ return pulumi.get(self, "application_type") @property @pulumi.getter(name="connectionString") def connection_string(self) -> pulumi.Output[str]: """ Application Insights component connection string. """ return pulumi.get(self, "connection_string") @property @pulumi.getter(name="creationDate") def creation_date(self) -> pulumi.Output[str]: """ Creation Date for the Application Insights component, in ISO 8601 format. """ return pulumi.get(self, "creation_date") @property @pulumi.getter(name="disableIpMasking") def disable_ip_masking(self) -> pulumi.Output[Optional[bool]]: """ Disable IP masking. """ return pulumi.get(self, "disable_ip_masking") @property @pulumi.getter(name="flowType") def flow_type(self) -> pulumi.Output[Optional[str]]: """ Used by the Application Insights system to determine what kind of flow this component was created by. This is to be set to 'Bluefield' when creating/updating a component via the REST API. """ return pulumi.get(self, "flow_type") @property @pulumi.getter(name="hockeyAppId") def hockey_app_id(self) -> pulumi.Output[Optional[str]]: """ The unique application ID created when a new application is added to HockeyApp, used for communications with HockeyApp. """ return pulumi.get(self, "hockey_app_id") @property @pulumi.getter(name="hockeyAppToken") def hockey_app_token(self) -> pulumi.Output[str]: """ Token used to authenticate communications with between Application Insights and HockeyApp. """ return pulumi.get(self, "hockey_app_token") @property @pulumi.getter(name="immediatePurgeDataOn30Days") def immediate_purge_data_on30_days(self) -> pulumi.Output[Optional[bool]]: """ Purge data immediately after 30 days. """ return pulumi.get(self, "immediate_purge_data_on30_days") @property @pulumi.getter(name="ingestionMode") def ingestion_mode(self) -> pulumi.Output[Optional[str]]: """ Indicates the flow of the ingestion. """ return pulumi.get(self, "ingestion_mode") @property @pulumi.getter(name="instrumentationKey") def instrumentation_key(self) -> pulumi.Output[str]: """ Application Insights Instrumentation key. A read-only value that applications can use to identify the destination for all telemetry sent to Azure Application Insights. This value will be supplied upon construction of each new Application Insights component. """ return pulumi.get(self, "instrumentation_key") @property @pulumi.getter def kind(self) -> pulumi.Output[str]: """ The kind of application that this component refers to, used to customize UI. This value is a freeform string, values should typically be one of the following: web, ios, other, store, java, phone. """ return pulumi.get(self, "kind") @property @pulumi.getter def location(self) -> pulumi.Output[str]: """ Resource location """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> pulumi.Output[str]: """ Azure resource name """ return pulumi.get(self, "name") @property @pulumi.getter(name="privateLinkScopedResources") def private_link_scoped_resources(self) -> pulumi.Output[Sequence['outputs.PrivateLinkScopedResourceResponse']]: """ List of linked private link scope resources. """ return pulumi.get(self, "private_link_scoped_resources") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> pulumi.Output[str]: """ Current state of this component: whether or not is has been provisioned within the resource group it is defined. Users cannot change this value but are able to read from it. Values will include Succeeded, Deploying, Canceled, and Failed. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter(name="requestSource") def request_source(self) -> pulumi.Output[Optional[str]]: """ Describes what tool created this Application Insights component. Customers using this API should set this to the default 'rest'. """ return pulumi.get(self, "request_source") @property @pulumi.getter(name="retentionInDays") def retention_in_days(self) -> pulumi.Output[Optional[int]]: """ Retention period in days. """ return pulumi.get(self, "retention_in_days") @property @pulumi.getter(name="samplingPercentage") def sampling_percentage(self) -> pulumi.Output[Optional[float]]: """ Percentage of the data produced by the application being monitored that is being sampled for Application Insights telemetry. """ return pulumi.get(self, "sampling_percentage") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ Resource tags """ return pulumi.get(self, "tags") @property @pulumi.getter(name="tenantId") def tenant_id(self) -> pulumi.Output[str]: """ Azure Tenant Id. """ return pulumi.get(self, "tenant_id") @property @pulumi.getter def type(self) -> pulumi.Output[str]: """ Azure resource type """ return pulumi.get(self, "type") def translate_output_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
45.255193
321
0.657531
4eca88737c0fc9eaa6620fd1195118ca54d793cf
17,625
py
Python
fsspec/implementations/http.py
ysgit/filesystem_spec
f820f46b29f20d7c649509a4995f9cb8b484bbc4
[ "BSD-3-Clause" ]
null
null
null
fsspec/implementations/http.py
ysgit/filesystem_spec
f820f46b29f20d7c649509a4995f9cb8b484bbc4
[ "BSD-3-Clause" ]
null
null
null
fsspec/implementations/http.py
ysgit/filesystem_spec
f820f46b29f20d7c649509a4995f9cb8b484bbc4
[ "BSD-3-Clause" ]
null
null
null
from __future__ import print_function, division, absolute_import import aiohttp import asyncio import logging import re import requests import weakref from urllib.parse import urlparse from fsspec.spec import AbstractBufferedFile from fsspec.utils import tokenize, DEFAULT_BLOCK_SIZE from fsspec.asyn import sync_wrapper, sync, AsyncFileSystem from ..caching import AllBytes # https://stackoverflow.com/a/15926317/3821154 ex = re.compile(r"""<a\s+(?:[^>]*?\s+)?href=(["'])(.*?)\1""") ex2 = re.compile(r"""(http[s]?://[-a-zA-Z0-9@:%_+.~#?&/=]+)""") logger = logging.getLogger("fsspec.http") async def get_client(**kwargs): return aiohttp.ClientSession(**kwargs) class HTTPFileSystem(AsyncFileSystem): """ Simple File-System for fetching data via HTTP(S) ``ls()`` is implemented by loading the parent page and doing a regex match on the result. If simple_link=True, anything of the form "http(s)://server.com/stuff?thing=other"; otherwise only links within HTML href tags will be used. """ sep = "/" def __init__( self, simple_links=True, block_size=None, same_scheme=True, size_policy=None, cache_type="bytes", cache_options=None, asynchronous=False, loop=None, client_kwargs=None, **storage_options ): """ NB: if this is called async, you must await set_client Parameters ---------- block_size: int Blocks to read bytes; if 0, will default to raw requests file-like objects instead of HTTPFile instances simple_links: bool If True, will consider both HTML <a> tags and anything that looks like a URL; if False, will consider only the former. same_scheme: True When doing ls/glob, if this is True, only consider paths that have http/https matching the input URLs. size_policy: this argument is deprecated client_kwargs: dict Passed to aiohttp.ClientSession, see https://docs.aiohttp.org/en/stable/client_reference.html For example, ``{'auth': aiohttp.BasicAuth('user', 'pass')}`` storage_options: key-value Any other parameters passed on to requests cache_type, cache_options: defaults used in open """ super().__init__(self, asynchronous=asynchronous, loop=loop, **storage_options) self.block_size = block_size if block_size is not None else DEFAULT_BLOCK_SIZE self.simple_links = simple_links self.same_schema = same_scheme self.cache_type = cache_type self.cache_options = cache_options self.client_kwargs = client_kwargs or {} self.kwargs = storage_options if not asynchronous: self._session = sync(self.loop, get_client, **self.client_kwargs) weakref.finalize(self, sync, self.loop, self.session.close) else: self._session = None @property def session(self): if self._session is None: raise RuntimeError("please await ``.set_session`` before anything else") return self._session async def set_session(self): self._session = await get_client(**self.client_kwargs) @classmethod def _strip_protocol(cls, path): """For HTTP, we always want to keep the full URL""" return path @classmethod def _parent(cls, path): # override, since _strip_protocol is different for URLs par = super()._parent(path) if len(par) > 7: # "http://..." return par return "" async def _ls(self, url, detail=True, **kwargs): # ignoring URL-encoded arguments kw = self.kwargs.copy() kw.update(kwargs) logger.debug(url) async with self.session.get(url, **self.kwargs) as r: r.raise_for_status() text = await r.text() if self.simple_links: links = ex2.findall(text) + ex.findall(text) else: links = ex.findall(text) out = set() parts = urlparse(url) for l in links: if isinstance(l, tuple): l = l[1] if l.startswith("/") and len(l) > 1: # absolute URL on this server l = parts.scheme + "://" + parts.netloc + l if l.startswith("http"): if self.same_schema and l.startswith(url.rstrip("/") + "/"): out.add(l) elif l.replace("https", "http").startswith( url.replace("https", "http").rstrip("/") + "/" ): # allowed to cross http <-> https out.add(l) else: if l not in ["..", "../"]: # Ignore FTP-like "parent" out.add("/".join([url.rstrip("/"), l.lstrip("/")])) if not out and url.endswith("/"): return await self._ls(url.rstrip("/"), detail=True) if detail: return [ { "name": u, "size": None, "type": "directory" if u.endswith("/") else "file", } for u in out ] else: return list(sorted(out)) async def _cat_file(self, url, start=None, end=None, **kwargs): kw = self.kwargs.copy() kw.update(kwargs) logger.debug(url) if (start is None) ^ (end is None): raise ValueError("Give start and end or neither") if start is not None: headers = kw.pop("headers", {}).copy() headers["Range"] = "bytes=%i-%i" % (start, end - 1) kw["headers"] = headers async with self.session.get(url, **kw) as r: if r.status == 404: raise FileNotFoundError(url) r.raise_for_status() out = await r.read() return out async def _get_file(self, rpath, lpath, chunk_size=5 * 2 ** 20, **kwargs): kw = self.kwargs.copy() kw.update(kwargs) logger.debug(rpath) async with self.session.get(rpath, **self.kwargs) as r: if r.status == 404: raise FileNotFoundError(rpath) r.raise_for_status() with open(lpath, "wb") as fd: chunk = True while chunk: chunk = await r.content.read(chunk_size) fd.write(chunk) async def _exists(self, path, **kwargs): kw = self.kwargs.copy() kw.update(kwargs) try: logger.debug(path) r = await self.session.get(path, **kw) async with r: return r.status < 400 except (requests.HTTPError, aiohttp.client_exceptions.ClientError): return False async def _isfile(self, path, **kwargs): return await self._exists(path, **kwargs) def _open( self, path, mode="rb", block_size=None, autocommit=None, # XXX: This differs from the base class. cache_type=None, cache_options=None, **kwargs ): """Make a file-like object Parameters ---------- path: str Full URL with protocol mode: string must be "rb" block_size: int or None Bytes to download in one request; use instance value if None. If zero, will return a streaming Requests file-like instance. kwargs: key-value Any other parameters, passed to requests calls """ if mode != "rb": raise NotImplementedError block_size = block_size if block_size is not None else self.block_size kw = self.kwargs.copy() kw["asynchronous"] = self.asynchronous kw.update(kwargs) size = self.size(path) if block_size and size: return HTTPFile( self, path, session=self.session, block_size=block_size, mode=mode, size=size, cache_type=cache_type or self.cache_type, cache_options=cache_options or self.cache_options, loop=self.loop, **kw ) else: return HTTPStreamFile( self, path, mode=mode, loop=self.loop, session=self.session, **kw ) def ukey(self, url): """Unique identifier; assume HTTP files are static, unchanging""" return tokenize(url, self.kwargs, self.protocol) async def _info(self, url, **kwargs): """Get info of URL Tries to access location via HEAD, and then GET methods, but does not fetch the data. It is possible that the server does not supply any size information, in which case size will be given as None (and certain operations on the corresponding file will not work). """ size = False for policy in ["head", "get"]: try: size = await _file_size( url, size_policy=policy, session=self.session, **self.kwargs ) if size: break except Exception: pass else: # get failed, so conclude URL does not exist if size is False: raise FileNotFoundError(url) return {"name": url, "size": size or None, "type": "file"} def isdir(self, path): # override, since all URLs are (also) files return bool(self.ls(path)) class HTTPFile(AbstractBufferedFile): """ A file-like object pointing to a remove HTTP(S) resource Supports only reading, with read-ahead of a predermined block-size. In the case that the server does not supply the filesize, only reading of the complete file in one go is supported. Parameters ---------- url: str Full URL of the remote resource, including the protocol session: requests.Session or None All calls will be made within this session, to avoid restarting connections where the server allows this block_size: int or None The amount of read-ahead to do, in bytes. Default is 5MB, or the value configured for the FileSystem creating this file size: None or int If given, this is the size of the file in bytes, and we don't attempt to call the server to find the value. kwargs: all other key-values are passed to requests calls. """ def __init__( self, fs, url, session=None, block_size=None, mode="rb", cache_type="bytes", cache_options=None, size=None, loop=None, asynchronous=False, **kwargs ): if mode != "rb": raise NotImplementedError("File mode not supported") self.asynchronous = asynchronous self.url = url self.session = session self.details = {"name": url, "size": size, "type": "file"} super().__init__( fs=fs, path=url, mode=mode, block_size=block_size, cache_type=cache_type, cache_options=cache_options, **kwargs ) self.loop = loop def read(self, length=-1): """Read bytes from file Parameters ---------- length: int Read up to this many bytes. If negative, read all content to end of file. If the server has not supplied the filesize, attempting to read only part of the data will raise a ValueError. """ if ( (length < 0 and self.loc == 0) or (length > (self.size or length)) # explicit read all or ( # read more than there is self.size and self.size < self.blocksize ) # all fits in one block anyway ): self._fetch_all() if self.size is None: if length < 0: self._fetch_all() else: length = min(self.size - self.loc, length) return super().read(length) async def async_fetch_all(self): """Read whole file in one shot, without caching This is only called when position is still at zero, and read() is called without a byte-count. """ if not isinstance(self.cache, AllBytes): r = await self.session.get(self.url, **self.kwargs) async with r: r.raise_for_status() out = await r.read() self.cache = AllBytes( size=len(out), fetcher=None, blocksize=None, data=out ) self.size = len(out) _fetch_all = sync_wrapper(async_fetch_all) async def async_fetch_range(self, start, end): """Download a block of data The expectation is that the server returns only the requested bytes, with HTTP code 206. If this is not the case, we first check the headers, and then stream the output - if the data size is bigger than we requested, an exception is raised. """ kwargs = self.kwargs.copy() headers = kwargs.pop("headers", {}).copy() headers["Range"] = "bytes=%i-%i" % (start, end - 1) logger.debug(self.url + " : " + headers["Range"]) r = await self.session.get(self.url, headers=headers, **kwargs) async with r: if r.status == 416: # range request outside file return b"" r.raise_for_status() if r.status == 206: # partial content, as expected out = await r.read() elif "Content-Length" in r.headers: cl = int(r.headers["Content-Length"]) if cl <= end - start: # data size OK out = await r.read() else: raise ValueError( "Got more bytes (%i) than requested (%i)" % (cl, end - start) ) else: cl = 0 out = [] while True: chunk = await r.content.read(2 ** 20) # data size unknown, let's see if it goes too big if chunk: out.append(chunk) cl += len(chunk) if cl > end - start: raise ValueError( "Got more bytes so far (>%i) than requested (%i)" % (cl, end - start) ) else: break out = b"".join(out) return out _fetch_range = sync_wrapper(async_fetch_range) def close(self): pass async def get(session, url, **kwargs): return await session.get(url, **kwargs) class HTTPStreamFile(AbstractBufferedFile): def __init__(self, fs, url, mode="rb", loop=None, session=None, **kwargs): self.asynchronous = kwargs.pop("asynchronous", False) self.url = url self.loop = loop self.session = session if mode != "rb": raise ValueError self.details = {"name": url, "size": None} super().__init__(fs=fs, path=url, mode=mode, cache_type="none", **kwargs) self.r = sync(self.loop, get, self.session, url, **kwargs) def seek(self, *args, **kwargs): raise ValueError("Cannot seek streaming HTTP file") async def _read(self, num=-1): out = await self.r.content.read(num) self.loc += len(out) return out read = sync_wrapper(_read) async def _close(self): self.r.close() def close(self): asyncio.run_coroutine_threadsafe(self._close(), self.loop) async def get_range(session, url, start, end, file=None, **kwargs): # explicit get a range when we know it must be safe kwargs = kwargs.copy() headers = kwargs.pop("headers", {}).copy() headers["Range"] = "bytes=%i-%i" % (start, end - 1) r = await session.get(url, headers=headers, **kwargs) r.raise_for_status() async with r: out = await r.read() if file: with open(file, "rb+") as f: f.seek(start) f.write(out) else: return out async def _file_size(url, session=None, size_policy="head", **kwargs): """Call HEAD on the server to get file size Default operation is to explicitly allow redirects and use encoding 'identity' (no compression) to get the true size of the target. """ kwargs = kwargs.copy() ar = kwargs.pop("allow_redirects", True) head = kwargs.get("headers", {}).copy() head["Accept-Encoding"] = "identity" session = session or await get_client() if size_policy == "head": r = await session.head(url, allow_redirects=ar, **kwargs) elif size_policy == "get": r = await session.get(url, allow_redirects=ar, **kwargs) else: raise TypeError('size_policy must be "head" or "get", got %s' "" % size_policy) async with r: if "Content-Length" in r.headers: return int(r.headers["Content-Length"]) elif "Content-Range" in r.headers: return int(r.headers["Content-Range"].split("/")[1]) file_size = sync_wrapper(_file_size)
34.356725
87
0.551149
1f3fff5e89cf44374706ee8514bef430683a2a5e
15,408
py
Python
test/TestUpdateEventName.py
indera/redi
c2a41ce6e5b613f75eaa8e6426ff948e0bfab349
[ "BSD-3-Clause" ]
null
null
null
test/TestUpdateEventName.py
indera/redi
c2a41ce6e5b613f75eaa8e6426ff948e0bfab349
[ "BSD-3-Clause" ]
null
null
null
test/TestUpdateEventName.py
indera/redi
c2a41ce6e5b613f75eaa8e6426ff948e0bfab349
[ "BSD-3-Clause" ]
null
null
null
import unittest from lxml import etree import os from redi import redi file_dir = os.path.dirname(os.path.realpath(__file__)) goal_dir = os.path.join(file_dir, "../") proj_root = os.path.abspath(goal_dir)+'/' DEFAULT_DATA_DIRECTORY = os.getcwd() class TestUpdateEventName(unittest.TestCase): def setUp(self): self.sortedData = """ <study> <subject> <STUDY_ID>11</STUDY_ID> <Collection_Date>07/29/17</Collection_Date> <Collection_Time>11:00</Collection_Time> <Component_Name>WHITE BLOOD CELL COUNT</Component_Name> <loinc_code>1577876</loinc_code> <Reference_Unit>g/dL</Reference_Unit> <Result_Value>8.7</Result_Value> <timestamp>1906-03-15 11:00</timestamp><redcapFormName>cbc</redcapFormName><eventName/><formDateField/><formCompletedFieldName/><timestamp/><redcapFormName/><eventName/><formDateField/><formCompletedFieldName/></subject> <subject> <STUDY_ID>11</STUDY_ID> <Collection_Date>07/29/17</Collection_Date> <Collection_Time>11:00</Collection_Time> <Component_Name>HEMOGLOBIN</Component_Name> <loinc_code>1534435</loinc_code> <Reference_Unit>g/dL</Reference_Unit> <Result_Value>11.3</Result_Value> <timestamp>1906-03-15 11:00</timestamp><redcapFormName>cbc</redcapFormName><eventName/><formDateField/><formCompletedFieldName/><timestamp/><redcapFormName/><eventName/><formDateField/><formCompletedFieldName/></subject> <subject> <STUDY_ID>11</STUDY_ID> <Collection_Date>05/20/20</Collection_Date> <Collection_Time>12:00</Collection_Time> <Component_Name>WHITE BLOOD CELL COUNT</Component_Name> <loinc_code>1577876</loinc_code> <Reference_Unit>g/dL</Reference_Unit> <Result_Value>8.7</Result_Value> <timestamp>1903-04-16 12:00</timestamp><redcapFormName>cbc</redcapFormName><eventName/><formDateField/><formCompletedFieldName/><timestamp/><redcapFormName/><eventName/><formDateField/><formCompletedFieldName/></subject> <subject> <STUDY_ID>11</STUDY_ID> <Collection_Date>05/20/20</Collection_Date> <Collection_Time>12:00</Collection_Time> <Component_Name>HEMOGLOBIN</Component_Name> <loinc_code>1534435</loinc_code> <Reference_Unit>g/dL</Reference_Unit> <Result_Value>11.3</Result_Value> <timestamp>1903-04-16 12:00</timestamp><redcapFormName>cbc</redcapFormName><eventName/><formDateField/><formCompletedFieldName/><timestamp/><redcapFormName/><eventName/><formDateField/><formCompletedFieldName/></subject> <subject> <STUDY_ID>11</STUDY_ID> <Collection_Date>10/12/18</Collection_Date> <Collection_Time>12:38</Collection_Time> <Component_Name>BILIRUBIN DIRECT</Component_Name> <loinc_code>1558221</loinc_code> <Reference_Unit>mg/dL</Reference_Unit> <Result_Value>0.8</Result_Value> <timestamp>1908-07-01 12:38</timestamp><redcapFormName>chemistry</redcapFormName><eventName/><formDateField/><formCompletedFieldName/><timestamp/><redcapFormName/><eventName/><formDateField/><formCompletedFieldName/></subject> <subject> <STUDY_ID>11</STUDY_ID> <Collection_Date>10/12/18</Collection_Date> <Collection_Time>16:01</Collection_Time> <Component_Name>BILIRUBIN DIRECT</Component_Name> <loinc_code>1558221</loinc_code> <Reference_Unit>mg/dL</Reference_Unit> <Result_Value>0.9</Result_Value> <timestamp>1908-07-01 16:01</timestamp><redcapFormName>chemistry</redcapFormName><eventName/><formDateField/><formCompletedFieldName/><timestamp/><redcapFormName/><eventName/><formDateField/><formCompletedFieldName/></subject> <subject> <STUDY_ID>11</STUDY_ID> <Collection_Date>05/20/20</Collection_Date> <Collection_Time>13:50</Collection_Time> <Component_Name>HEMATOCRIT</Component_Name> <loinc_code>1534436</loinc_code> <Reference_Unit>%</Reference_Unit> <Result_Value>34.5</Result_Value> <timestamp>1903-04-16 13:50</timestamp><redcapFormName>undefined</redcapFormName><eventName/><formDateField/><formCompletedFieldName/><timestamp/><redcapFormName/><eventName/><formDateField/><formCompletedFieldName/></subject> <subject> <STUDY_ID>22</STUDY_ID> <Collection_Date>07/29/17</Collection_Date> <Collection_Time>11:00</Collection_Time> <Component_Name>WHITE BLOOD CELL COUNT</Component_Name> <loinc_code>1577876</loinc_code> <Reference_Unit>g/dL</Reference_Unit> <Result_Value>8.7</Result_Value> <timestamp>1906-03-15 11:00</timestamp><redcapFormName>cbc</redcapFormName><eventName/><formDateField/><formCompletedFieldName/><timestamp/><redcapFormName/><eventName/><formDateField/><formCompletedFieldName/></subject> <subject> <STUDY_ID>22</STUDY_ID> <Collection_Date>05/20/20</Collection_Date> <Collection_Time>13:50</Collection_Time> <Component_Name>HEMOGLOBIN</Component_Name> <loinc_code>1534435</loinc_code> <Reference_Unit>g/dL</Reference_Unit> <Result_Value>11.3</Result_Value> <timestamp>1903-04-16 13:50</timestamp><redcapFormName>cbc</redcapFormName><eventName/><formDateField/><formCompletedFieldName/><timestamp/><redcapFormName/><eventName/><formDateField/><formCompletedFieldName/></subject> <subject> <STUDY_ID>22</STUDY_ID> <Collection_Date>10/12/18</Collection_Date> <Collection_Time>12:38</Collection_Time> <Component_Name>BILIRUBIN DIRECT</Component_Name> <loinc_code>1558221</loinc_code> <Reference_Unit>mg/dL</Reference_Unit> <Result_Value>0.8</Result_Value> <timestamp>1908-07-01 12:38</timestamp><redcapFormName>chemistry</redcapFormName><eventName/><formDateField/><formCompletedFieldName/><timestamp/><redcapFormName/><eventName/><formDateField/><formCompletedFieldName/></subject> <subject> <STUDY_ID>22</STUDY_ID> <Collection_Date>10/12/18</Collection_Date> <Collection_Time>16:01</Collection_Time> <Component_Name>BILIRUBIN DIRECT</Component_Name> <loinc_code>1558221</loinc_code> <Reference_Unit>mg/dL</Reference_Unit> <Result_Value>0.9</Result_Value> <timestamp>1908-07-01 16:01</timestamp><redcapFormName>chemistry</redcapFormName><eventName/><formDateField/><formCompletedFieldName/><timestamp/><redcapFormName/><eventName/><formDateField/><formCompletedFieldName/></subject> <subject> <STUDY_ID>22</STUDY_ID> <Collection_Date>05/20/20</Collection_Date> <Collection_Time>13:50</Collection_Time> <Component_Name>HEMATOCRIT</Component_Name> <loinc_code>1534436</loinc_code> <Reference_Unit>%</Reference_Unit> <Result_Value>34.5</Result_Value> <timestamp>1903-04-16 13:50</timestamp><redcapFormName>undefined</redcapFormName><eventName/><formDateField/><formCompletedFieldName/><timestamp/><redcapFormName/><eventName/><formDateField/><formCompletedFieldName/></subject> </study>""" self.data = etree.ElementTree(etree.fromstring(self.sortedData)) self.form_events = """<?xml version='1.0' encoding='US-ASCII'?> <redcapProject> <name>My Test Project</name> <form> <name>cbc</name> <formDateField>cbc_lbdtc</formDateField> <formCompletedFieldName>cbc_complete</formCompletedFieldName> <event> <name>1_arm_1</name> </event> <event> <name>2_arm_1</name> </event> <event> <name>3_arm_1</name> </event> </form> <form> <name>chemistry</name> <formDateField>chemistry_lbdtc</formDateField> <formCompletedFieldName>chemistry_complete</formCompletedFieldName> <event> <name>1_arm_1</name> </event> <event> <name>2_arm_1</name> </event> <event> <name>3_arm_1</name> </event> </form> </redcapProject> """ self.form_events_tree = etree.ElementTree(etree.fromstring(self.form_events)) self.output = """<study> <subject> <STUDY_ID>11</STUDY_ID> <Collection_Date>07/29/17</Collection_Date> <Collection_Time>11:00</Collection_Time> <Component_Name>WHITE BLOOD CELL COUNT</Component_Name> <loinc_code>1577876</loinc_code> <Reference_Unit>g/dL</Reference_Unit> <Result_Value>8.7</Result_Value> <timestamp>1906-03-15 11:00</timestamp><redcapFormName>cbc</redcapFormName><eventName>1_arm_1</eventName><formDateField/><formCompletedFieldName/><timestamp/><redcapFormName/><eventName/><formDateField/><formCompletedFieldName/></subject> <subject> <STUDY_ID>11</STUDY_ID> <Collection_Date>07/29/17</Collection_Date> <Collection_Time>11:00</Collection_Time> <Component_Name>HEMOGLOBIN</Component_Name> <loinc_code>1534435</loinc_code> <Reference_Unit>g/dL</Reference_Unit> <Result_Value>11.3</Result_Value> <timestamp>1906-03-15 11:00</timestamp><redcapFormName>cbc</redcapFormName><eventName>1_arm_1</eventName><formDateField/><formCompletedFieldName/><timestamp/><redcapFormName/><eventName/><formDateField/><formCompletedFieldName/></subject> <subject> <STUDY_ID>11</STUDY_ID> <Collection_Date>05/20/20</Collection_Date> <Collection_Time>12:00</Collection_Time> <Component_Name>WHITE BLOOD CELL COUNT</Component_Name> <loinc_code>1577876</loinc_code> <Reference_Unit>g/dL</Reference_Unit> <Result_Value>8.7</Result_Value> <timestamp>1903-04-16 12:00</timestamp><redcapFormName>cbc</redcapFormName><eventName>2_arm_1</eventName><formDateField/><formCompletedFieldName/><timestamp/><redcapFormName/><eventName/><formDateField/><formCompletedFieldName/></subject> <subject> <STUDY_ID>11</STUDY_ID> <Collection_Date>05/20/20</Collection_Date> <Collection_Time>12:00</Collection_Time> <Component_Name>HEMOGLOBIN</Component_Name> <loinc_code>1534435</loinc_code> <Reference_Unit>g/dL</Reference_Unit> <Result_Value>11.3</Result_Value> <timestamp>1903-04-16 12:00</timestamp><redcapFormName>cbc</redcapFormName><eventName>2_arm_1</eventName><formDateField/><formCompletedFieldName/><timestamp/><redcapFormName/><eventName/><formDateField/><formCompletedFieldName/></subject> <subject> <STUDY_ID>11</STUDY_ID> <Collection_Date>10/12/18</Collection_Date> <Collection_Time>12:38</Collection_Time> <Component_Name>BILIRUBIN DIRECT</Component_Name> <loinc_code>1558221</loinc_code> <Reference_Unit>mg/dL</Reference_Unit> <Result_Value>0.8</Result_Value> <timestamp>1908-07-01 12:38</timestamp><redcapFormName>chemistry</redcapFormName><eventName>1_arm_1</eventName><formDateField/><formCompletedFieldName/><timestamp/><redcapFormName/><eventName/><formDateField/><formCompletedFieldName/></subject> <subject> <STUDY_ID>11</STUDY_ID> <Collection_Date>10/12/18</Collection_Date> <Collection_Time>16:01</Collection_Time> <Component_Name>BILIRUBIN DIRECT</Component_Name> <loinc_code>1558221</loinc_code> <Reference_Unit>mg/dL</Reference_Unit> <Result_Value>0.9</Result_Value> <timestamp>1908-07-01 16:01</timestamp><redcapFormName>chemistry</redcapFormName><eventName>2_arm_1</eventName><formDateField/><formCompletedFieldName/><timestamp/><redcapFormName/><eventName/><formDateField/><formCompletedFieldName/></subject> <subject> <STUDY_ID>11</STUDY_ID> <Collection_Date>05/20/20</Collection_Date> <Collection_Time>13:50</Collection_Time> <Component_Name>HEMATOCRIT</Component_Name> <loinc_code>1534436</loinc_code> <Reference_Unit>%</Reference_Unit> <Result_Value>34.5</Result_Value> <timestamp>1903-04-16 13:50</timestamp><redcapFormName>undefined</redcapFormName><eventName>undefined</eventName><formDateField/><formCompletedFieldName/><timestamp/><redcapFormName/><eventName/><formDateField/><formCompletedFieldName/></subject> <subject> <STUDY_ID>22</STUDY_ID> <Collection_Date>07/29/17</Collection_Date> <Collection_Time>11:00</Collection_Time> <Component_Name>WHITE BLOOD CELL COUNT</Component_Name> <loinc_code>1577876</loinc_code> <Reference_Unit>g/dL</Reference_Unit> <Result_Value>8.7</Result_Value> <timestamp>1906-03-15 11:00</timestamp><redcapFormName>cbc</redcapFormName><eventName>1_arm_1</eventName><formDateField/><formCompletedFieldName/><timestamp/><redcapFormName/><eventName/><formDateField/><formCompletedFieldName/></subject> <subject> <STUDY_ID>22</STUDY_ID> <Collection_Date>05/20/20</Collection_Date> <Collection_Time>13:50</Collection_Time> <Component_Name>HEMOGLOBIN</Component_Name> <loinc_code>1534435</loinc_code> <Reference_Unit>g/dL</Reference_Unit> <Result_Value>11.3</Result_Value> <timestamp>1903-04-16 13:50</timestamp><redcapFormName>cbc</redcapFormName><eventName>2_arm_1</eventName><formDateField/><formCompletedFieldName/><timestamp/><redcapFormName/><eventName/><formDateField/><formCompletedFieldName/></subject> <subject> <STUDY_ID>22</STUDY_ID> <Collection_Date>10/12/18</Collection_Date> <Collection_Time>12:38</Collection_Time> <Component_Name>BILIRUBIN DIRECT</Component_Name> <loinc_code>1558221</loinc_code> <Reference_Unit>mg/dL</Reference_Unit> <Result_Value>0.8</Result_Value> <timestamp>1908-07-01 12:38</timestamp><redcapFormName>chemistry</redcapFormName><eventName>1_arm_1</eventName><formDateField/><formCompletedFieldName/><timestamp/><redcapFormName/><eventName/><formDateField/><formCompletedFieldName/></subject> <subject> <STUDY_ID>22</STUDY_ID> <Collection_Date>10/12/18</Collection_Date> <Collection_Time>16:01</Collection_Time> <Component_Name>BILIRUBIN DIRECT</Component_Name> <loinc_code>1558221</loinc_code> <Reference_Unit>mg/dL</Reference_Unit> <Result_Value>0.9</Result_Value> <timestamp>1908-07-01 16:01</timestamp><redcapFormName>chemistry</redcapFormName><eventName>2_arm_1</eventName><formDateField/><formCompletedFieldName/><timestamp/><redcapFormName/><eventName/><formDateField/><formCompletedFieldName/></subject> <subject> <STUDY_ID>22</STUDY_ID> <Collection_Date>05/20/20</Collection_Date> <Collection_Time>13:50</Collection_Time> <Component_Name>HEMATOCRIT</Component_Name> <loinc_code>1534436</loinc_code> <Reference_Unit>%</Reference_Unit> <Result_Value>34.5</Result_Value> <timestamp>1903-04-16 13:50</timestamp><redcapFormName>undefined</redcapFormName><eventName>undefined</eventName><formDateField/><formCompletedFieldName/><timestamp/><redcapFormName/><eventName/><formDateField/><formCompletedFieldName/></subject> </study>""" self.expect = etree.tostring(etree.fromstring(self.output)) def test_update_event_name(self): redi.configure_logging(DEFAULT_DATA_DIRECTORY) redi.update_event_name(self.data, self.form_events_tree, 'undefined') result = etree.tostring(self.data) self.assertEqual(self.expect, result) def tearDown(self): return() if __name__ == "__main__": unittest.main()
53.314879
250
0.716446
f9c59590c3febb4fec99628bf4a99fa996524c9c
1,490
py
Python
allauth/socialaccount/providers/stackexchange/tests.py
Stikerz/Film-Guide
5c0a7a6f8c530e72bef42fcbac6a52665834c4e0
[ "BSD-3-Clause" ]
null
null
null
allauth/socialaccount/providers/stackexchange/tests.py
Stikerz/Film-Guide
5c0a7a6f8c530e72bef42fcbac6a52665834c4e0
[ "BSD-3-Clause" ]
null
null
null
allauth/socialaccount/providers/stackexchange/tests.py
Stikerz/Film-Guide
5c0a7a6f8c530e72bef42fcbac6a52665834c4e0
[ "BSD-3-Clause" ]
1
2022-02-01T17:19:28.000Z
2022-02-01T17:19:28.000Z
from allauth.socialaccount.tests import OAuth2TestsMixin from allauth.tests import MockedResponse, TestCase from .provider import StackExchangeProvider class StackExchangeTests(OAuth2TestsMixin, TestCase): provider_id = StackExchangeProvider.id def get_mocked_response(self): return MockedResponse(200, """ { "has_more": false, "items": [ { "is_employee": false, "last_access_date": 1356200390, "display_name": "pennersr", "account_id": 291652, "badge_counts": { "bronze": 2, "silver": 2, "gold": 0 }, "last_modified_date": 1356199552, "profile_image": "http://www.gravatar.com/avatar/053d648486d567d3143d6bad8df8cfeb?d=identicon&r=PG", "user_type": "registered", "creation_date": 1296223711, "reputation_change_quarter": 148, "reputation_change_year": 378, "reputation": 504, "link": "http://stackoverflow.com/users/593944/pennersr", "reputation_change_week": 0, "user_id": 593944, "reputation_change_month": 10, "reputation_change_day": 0 } ], "quota_max": 10000, "quota_remaining": 9999 }""") # noqa
35.47619
117
0.518121
b2079628e10327e8281e31f83133d20fe29879ae
203
py
Python
XSS/lib/EstableSession.py
Vishalcc1/XSS
0c61c680b1c00c1ded7e803b8c3966d16e6b7f1f
[ "MIT" ]
null
null
null
XSS/lib/EstableSession.py
Vishalcc1/XSS
0c61c680b1c00c1ded7e803b8c3966d16e6b7f1f
[ "MIT" ]
null
null
null
XSS/lib/EstableSession.py
Vishalcc1/XSS
0c61c680b1c00c1ded7e803b8c3966d16e6b7f1f
[ "MIT" ]
null
null
null
import requests import json def estableSession(args): req=requests.Session() req.proxies=args.proxy req.headers = args.header req.cookies.update(json.loads(args.cookie)) return req
18.454545
47
0.719212
8c926e7bd8aee2adc037a5687cc150fb7b28d525
6,072
py
Python
python_modules/libraries/dagster-gcp/dagster_gcp/bigquery/solids.py
dbatten5/dagster
d76e50295054ffe5a72f9b292ef57febae499528
[ "Apache-2.0" ]
1
2021-07-03T09:05:58.000Z
2021-07-03T09:05:58.000Z
python_modules/libraries/dagster-gcp/dagster_gcp/bigquery/solids.py
dbatten5/dagster
d76e50295054ffe5a72f9b292ef57febae499528
[ "Apache-2.0" ]
1
2021-06-21T18:30:02.000Z
2021-06-25T21:18:39.000Z
python_modules/libraries/dagster-gcp/dagster_gcp/bigquery/solids.py
dbatten5/dagster
d76e50295054ffe5a72f9b292ef57febae499528
[ "Apache-2.0" ]
1
2021-11-30T21:40:46.000Z
2021-11-30T21:40:46.000Z
import hashlib from dagster import InputDefinition, List, Nothing, OutputDefinition, check, solid from dagster_pandas import DataFrame from google.cloud.bigquery.job import LoadJobConfig, QueryJobConfig from google.cloud.bigquery.table import EncryptionConfiguration, TimePartitioning from .configs import ( define_bigquery_create_dataset_config, define_bigquery_delete_dataset_config, define_bigquery_load_config, define_bigquery_query_config, ) from .types import BigQueryLoadSource _START = "start" def _preprocess_config(cfg): destination_encryption_configuration = cfg.get("destination_encryption_configuration") time_partitioning = cfg.get("time_partitioning") if destination_encryption_configuration is not None: cfg["destination_encryption_configuration"] = EncryptionConfiguration( kms_key_name=destination_encryption_configuration ) if time_partitioning is not None: cfg["time_partitioning"] = TimePartitioning(**time_partitioning) return cfg def bq_solid_for_queries(sql_queries): """ Executes BigQuery SQL queries. Expects a BQ client to be provisioned in resources as context.resources.bigquery. """ sql_queries = check.list_param(sql_queries, "sql queries", of_type=str) m = hashlib.sha1() for query in sql_queries: m.update(query.encode("utf-8")) name = "bq_solid_{hash}".format(hash=m.hexdigest()[:10]) @solid( name=name, input_defs=[InputDefinition(_START, Nothing)], output_defs=[OutputDefinition(List[DataFrame])], config_schema=define_bigquery_query_config(), required_resource_keys={"bigquery"}, tags={"kind": "sql", "sql": "\n".join(sql_queries)}, ) def _solid(context): # pylint: disable=unused-argument query_job_config = _preprocess_config(context.solid_config.get("query_job_config", {})) # Retrieve results as pandas DataFrames results = [] for sql_query in sql_queries: # We need to construct a new QueryJobConfig for each query. # See: https://bit.ly/2VjD6sl cfg = QueryJobConfig(**query_job_config) if query_job_config else None context.log.info( "executing query %s with config: %s" % (sql_query, cfg.to_api_repr() if cfg else "(no config provided)") ) results.append( context.resources.bigquery.query(sql_query, job_config=cfg).to_dataframe() ) return results return _solid BIGQUERY_LOAD_CONFIG = define_bigquery_load_config() @solid( input_defs=[InputDefinition("paths", List[str])], output_defs=[OutputDefinition(Nothing)], config_schema=BIGQUERY_LOAD_CONFIG, required_resource_keys={"bigquery"}, ) def import_gcs_paths_to_bq(context, paths): return _execute_load_in_source(context, paths, BigQueryLoadSource.GCS) @solid( input_defs=[InputDefinition("df", DataFrame)], output_defs=[OutputDefinition(Nothing)], config_schema=BIGQUERY_LOAD_CONFIG, required_resource_keys={"bigquery"}, ) def import_df_to_bq(context, df): return _execute_load_in_source(context, df, BigQueryLoadSource.DataFrame) @solid( input_defs=[InputDefinition("path", str)], output_defs=[OutputDefinition(Nothing)], config_schema=BIGQUERY_LOAD_CONFIG, required_resource_keys={"bigquery"}, ) def import_file_to_bq(context, path): return _execute_load_in_source(context, path, BigQueryLoadSource.File) def _execute_load_in_source(context, source, source_name): destination = context.solid_config.get("destination") load_job_config = _preprocess_config(context.solid_config.get("load_job_config", {})) cfg = LoadJobConfig(**load_job_config) if load_job_config else None context.log.info( "executing BQ load with config: %s for source %s" % (cfg.to_api_repr() if cfg else "(no config provided)", source) ) if source_name == BigQueryLoadSource.DataFrame: context.resources.bigquery.load_table_from_dataframe( source, destination, job_config=cfg ).result() # Load from file. See: https://cloud.google.com/bigquery/docs/loading-data-local elif source_name == BigQueryLoadSource.File: with open(source, "rb") as file_obj: context.resources.bigquery.load_table_from_file( file_obj, destination, job_config=cfg ).result() # Load from GCS. See: https://cloud.google.com/bigquery/docs/loading-data-cloud-storage elif source_name == BigQueryLoadSource.GCS: context.resources.bigquery.load_table_from_uri(source, destination, job_config=cfg).result() @solid( input_defs=[InputDefinition(_START, Nothing)], config_schema=define_bigquery_create_dataset_config(), required_resource_keys={"bigquery"}, ) def bq_create_dataset(context): """BigQuery Create Dataset. This solid encapsulates creating a BigQuery dataset. Expects a BQ client to be provisioned in resources as context.resources.bigquery. """ (dataset, exists_ok) = [context.solid_config.get(k) for k in ("dataset", "exists_ok")] context.log.info("executing BQ create_dataset for dataset %s" % (dataset)) context.resources.bigquery.create_dataset(dataset, exists_ok) @solid( input_defs=[InputDefinition(_START, Nothing)], config_schema=define_bigquery_delete_dataset_config(), required_resource_keys={"bigquery"}, ) def bq_delete_dataset(context): """BigQuery Delete Dataset. This solid encapsulates deleting a BigQuery dataset. Expects a BQ client to be provisioned in resources as context.resources.bigquery. """ (dataset, delete_contents, not_found_ok) = [ context.solid_config.get(k) for k in ("dataset", "delete_contents", "not_found_ok") ] context.log.info("executing BQ delete_dataset for dataset %s" % dataset) context.resources.bigquery.delete_dataset( dataset, delete_contents=delete_contents, not_found_ok=not_found_ok )
34.305085
100
0.717556
8037ab5d876346414b5e6e46b3c19e6a65d60a7f
2,794
py
Python
tests/ping.py
joaoantoniopereira/Boardfarm
fa00a2628c5924ca13e05c6ba4990627038b9f1f
[ "BSD-3-Clause-Clear" ]
74
2015-08-25T22:50:38.000Z
2022-01-04T16:32:00.000Z
tests/ping.py
joaoantoniopereira/Boardfarm
fa00a2628c5924ca13e05c6ba4990627038b9f1f
[ "BSD-3-Clause-Clear" ]
72
2015-10-12T17:42:47.000Z
2019-01-19T14:11:18.000Z
tests/ping.py
joaoantoniopereira/Boardfarm
fa00a2628c5924ca13e05c6ba4990627038b9f1f
[ "BSD-3-Clause-Clear" ]
50
2015-08-25T22:45:44.000Z
2022-01-05T09:47:04.000Z
# Copyright (c) 2015 # # All rights reserved. # # This file is distributed under the Clear BSD license. # The full text can be found in LICENSE in the root directory. import rootfs_boot import lib from devices import board, wan, lan, wlan, prompt class RouterPingWanDev(rootfs_boot.RootFSBootTest): '''Router can ping device through WAN interface.''' def runTest(self): if not wan: msg = 'No WAN Device defined, skipping ping WAN test.' lib.common.test_msg(msg) self.skipTest(msg) board.sendline('\nping -c5 192.168.0.1') board.expect('5 packets received', timeout=10) board.expect(prompt) def recover(self): board.sendcontrol('c') class RouterPingInternet(rootfs_boot.RootFSBootTest): '''Router can ping internet address by IP.''' def runTest(self): board.sendline('\nping -c2 8.8.8.8') board.expect('2 packets received', timeout=10) board.expect(prompt) class RouterPingInternetName(rootfs_boot.RootFSBootTest): '''Router can ping internet address by name.''' def runTest(self): board.sendline('\nping -c2 www.google.com') board.expect('2 packets received', timeout=10) board.expect(prompt) class LanDevPingRouter(rootfs_boot.RootFSBootTest): '''Device on LAN can ping router.''' def runTest(self): if not lan: msg = 'No LAN Device defined, skipping ping test from LAN.' lib.common.test_msg(msg) self.skipTest(msg) lan.sendline('\nping -i 0.2 -c 5 192.168.1.1') lan.expect('PING ') lan.expect('5 received', timeout=15) lan.expect(prompt) class LanDevPingWanDev(rootfs_boot.RootFSBootTest): '''Device on LAN can ping through router.''' def runTest(self): if not lan: msg = 'No LAN Device defined, skipping ping test from LAN.' lib.common.test_msg(msg) self.skipTest(msg) if not wan: msg = 'No WAN Device defined, skipping ping WAN test.' lib.common.test_msg(msg) self.skipTest(msg) lan.sendline('\nping -i 0.2 -c 5 192.168.0.1') lan.expect('PING ') lan.expect('5 received', timeout=15) lan.expect(prompt) def recover(self): lan.sendcontrol('c') class LanDevPingInternet(rootfs_boot.RootFSBootTest): '''Device on LAN can ping through router to internet.''' def runTest(self): if not lan: msg = 'No LAN Device defined, skipping ping test from LAN.' lib.common.test_msg(msg) self.skipTest(msg) lan.sendline('\nping -c2 8.8.8.8') lan.expect('2 received', timeout=10) lan.expect(prompt) def recover(self): lan.sendcontrol('c')
34.493827
71
0.625626
b16f82b2a06030af06945d2e2540905e65929836
10,500
py
Python
neutron/cmd/netns_cleanup.py
ilay09/neutron
b7f9803c88b17a6ebd40fd44d15d4336bea7b394
[ "Apache-2.0" ]
null
null
null
neutron/cmd/netns_cleanup.py
ilay09/neutron
b7f9803c88b17a6ebd40fd44d15d4336bea7b394
[ "Apache-2.0" ]
null
null
null
neutron/cmd/netns_cleanup.py
ilay09/neutron
b7f9803c88b17a6ebd40fd44d15d4336bea7b394
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2012 OpenStack Foundation. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import itertools import re import signal import time from neutron_lib import constants from oslo_config import cfg from oslo_log import log as logging from oslo_utils import importutils from neutron._i18n import _LE, _LW from neutron.agent.common import ovs_lib from neutron.agent.l3 import dvr_fip_ns from neutron.agent.l3 import dvr_snat_ns from neutron.agent.l3 import namespaces from neutron.agent.linux import dhcp from neutron.agent.linux import external_process from neutron.agent.linux import interface from neutron.agent.linux import ip_lib from neutron.agent.linux import utils from neutron.common import config from neutron.conf.agent import cmd from neutron.conf.agent import common as agent_config from neutron.conf.agent import dhcp as dhcp_config LOG = logging.getLogger(__name__) LB_NS_PREFIX = 'qlbaas-' NS_PREFIXES = { 'dhcp': [dhcp.NS_PREFIX], 'l3': [namespaces.NS_PREFIX, dvr_snat_ns.SNAT_NS_PREFIX, dvr_fip_ns.FIP_NS_PREFIX], 'lbaas': [LB_NS_PREFIX], } SIGTERM_WAITTIME = 10 NETSTAT_PIDS_REGEX = re.compile(r'.* (?P<pid>\d{2,6})/.*') class PidsInNamespaceException(Exception): pass class FakeDhcpPlugin(object): """Fake RPC plugin to bypass any RPC calls.""" def __getattribute__(self, name): def fake_method(*args): pass return fake_method def setup_conf(): """Setup the cfg for the clean up utility. Use separate setup_conf for the utility because there are many options from the main config that do not apply during clean-up. """ conf = cfg.CONF cmd.register_cmd_opts(cmd.netns_opts, conf) agent_config.register_interface_driver_opts_helper(conf) dhcp_config.register_agent_dhcp_opts(conf) conf.register_opts(interface.OPTS) return conf def _get_dhcp_process_monitor(config): return external_process.ProcessMonitor(config=config, resource_type='dhcp') def kill_dhcp(conf, namespace): """Disable DHCP for a network if DHCP is still active.""" network_id = namespace.replace(dhcp.NS_PREFIX, '') dhcp_driver = importutils.import_object( conf.dhcp_driver, conf=conf, process_monitor=_get_dhcp_process_monitor(conf), network=dhcp.NetModel({'id': network_id}), plugin=FakeDhcpPlugin()) if dhcp_driver.active: dhcp_driver.disable() def eligible_for_deletion(conf, namespace, force=False): """Determine whether a namespace is eligible for deletion. Eligibility is determined by having only the lo device or if force is passed as a parameter. """ if conf.agent_type: prefixes = NS_PREFIXES.get(conf.agent_type) else: prefixes = itertools.chain(*NS_PREFIXES.values()) ns_mangling_pattern = '(%s%s)' % ('|'.join(prefixes), constants.UUID_PATTERN) # filter out namespaces without UUID as the name if not re.match(ns_mangling_pattern, namespace): return False ip = ip_lib.IPWrapper(namespace=namespace) return force or ip.namespace_is_empty() def unplug_device(conf, device): orig_log_fail_as_error = device.get_log_fail_as_error() device.set_log_fail_as_error(False) try: device.link.delete() except RuntimeError: device.set_log_fail_as_error(orig_log_fail_as_error) # Maybe the device is OVS port, so try to delete ovs = ovs_lib.BaseOVS() bridge_name = ovs.get_bridge_for_iface(device.name) if bridge_name: bridge = ovs_lib.OVSBridge(bridge_name) bridge.delete_port(device.name) else: LOG.debug('Unable to find bridge for device: %s', device.name) finally: device.set_log_fail_as_error(orig_log_fail_as_error) def find_listen_pids_namespace(namespace): """Retrieve a list of pids of listening processes within the given netns. It executes netstat -nlp and returns a set of unique pairs """ ip = ip_lib.IPWrapper(namespace=namespace) pids = set() cmd = ['netstat', '-nlp'] output = ip.netns.execute(cmd, run_as_root=True) for line in output.splitlines(): m = NETSTAT_PIDS_REGEX.match(line) if m: pids.add(m.group('pid')) return pids def wait_until_no_listen_pids_namespace(namespace, timeout=SIGTERM_WAITTIME): """Poll listening processes within the given namespace. If after timeout seconds, there are remaining processes in the namespace, then a PidsInNamespaceException will be thrown. """ # NOTE(dalvarez): This function can block forever if # find_listen_pids_in_namespace never returns which is really unlikely. We # can't use wait_until_true because we might get interrupted by eventlet # Timeout during our I/O with rootwrap daemon and that will lead to errors # in subsequent calls to utils.execute grabbing always the output of the # previous command start = end = time.time() while end - start < timeout: if not find_listen_pids_namespace(namespace): return time.sleep(1) end = time.time() raise PidsInNamespaceException def _kill_listen_processes(namespace, force=False): """Identify all listening processes within the given namespace. Then, for each one, find its top parent with same cmdline (in case this process forked) and issue a SIGTERM to all of them. If force is True, then a SIGKILL will be issued to all parents and all their children. Also, this function returns the number of listening processes. """ pids = find_listen_pids_namespace(namespace) pids_to_kill = {utils.find_fork_top_parent(pid) for pid in pids} kill_signal = signal.SIGTERM if force: kill_signal = signal.SIGKILL children = [utils.find_child_pids(pid, True) for pid in pids_to_kill] pids_to_kill.update(itertools.chain.from_iterable(children)) for pid in pids_to_kill: # Throw a warning since this particular cleanup may need a specific # implementation in the right module. Ideally, netns_cleanup wouldn't # kill any processes as the responsible module should've killed them # before cleaning up the namespace LOG.warning(_LW("Killing (%(signal)d) [%(pid)s] %(cmdline)s"), {'signal': kill_signal, 'pid': pid, 'cmdline': ' '.join(utils.get_cmdline_from_pid(pid))[:80] }) try: utils.kill_process(pid, kill_signal, run_as_root=True) except Exception as ex: LOG.error(_LE('An error occurred while killing ' '[%(pid)s]: %(msg)s'), {'pid': pid, 'msg': ex}) return len(pids) def kill_listen_processes(namespace): """Kill all processes listening within the given namespace. First it tries to kill them using SIGTERM, waits until they die gracefully and then kills remaining processes (if any) with SIGKILL """ if _kill_listen_processes(namespace, force=False): try: wait_until_no_listen_pids_namespace(namespace) except PidsInNamespaceException: _kill_listen_processes(namespace, force=True) # Allow some time for remaining processes to die wait_until_no_listen_pids_namespace(namespace) def destroy_namespace(conf, namespace, force=False): """Destroy a given namespace. If force is True, then dhcp (if it exists) will be disabled and all devices will be forcibly removed. """ try: ip = ip_lib.IPWrapper(namespace=namespace) if force: kill_dhcp(conf, namespace) # NOTE: The dhcp driver will remove the namespace if is it empty, # so a second check is required here. if ip.netns.exists(namespace): try: kill_listen_processes(namespace) except PidsInNamespaceException: # This is unlikely since, at this point, we have SIGKILLed # all remaining processes but if there are still some, log # the error and continue with the cleanup LOG.error(_LE('Not all processes were killed in %s'), namespace) for device in ip.get_devices(): unplug_device(conf, device) ip.garbage_collect_namespace() except Exception: LOG.exception(_LE('Error unable to destroy namespace: %s'), namespace) def cleanup_network_namespaces(conf): # Identify namespaces that are candidates for deletion. candidates = [ns for ns in ip_lib.IPWrapper.get_namespaces() if eligible_for_deletion(conf, ns, conf.force)] if candidates: time.sleep(2) for namespace in candidates: destroy_namespace(conf, namespace, conf.force) def main(): """Main method for cleaning up network namespaces. This method will make two passes checking for namespaces to delete. The process will identify candidates, sleep, and call garbage collect. The garbage collection will re-verify that the namespace meets the criteria for deletion (ie it is empty). The period of sleep and the 2nd pass allow time for the namespace state to settle, so that the check prior deletion will re-confirm the namespace is empty. The utility is designed to clean-up after the forced or unexpected termination of Neutron agents. The --force flag should only be used as part of the cleanup of a devstack installation as it will blindly purge namespaces and their devices. This option also kills any lingering DHCP instances. """ conf = setup_conf() conf() config.setup_logging() cleanup_network_namespaces(conf)
35.836177
79
0.685238
70316535e1170ed5b9e53a00ad10b47ced870587
4,749
py
Python
opsgenie_swagger/models/list_team_routing_rules_response.py
Logicworks/opsgenie-python-sdk
244c4c40ddcc25e70df5ba4425ab8d7c8da59c18
[ "Apache-2.0" ]
null
null
null
opsgenie_swagger/models/list_team_routing_rules_response.py
Logicworks/opsgenie-python-sdk
244c4c40ddcc25e70df5ba4425ab8d7c8da59c18
[ "Apache-2.0" ]
null
null
null
opsgenie_swagger/models/list_team_routing_rules_response.py
Logicworks/opsgenie-python-sdk
244c4c40ddcc25e70df5ba4425ab8d7c8da59c18
[ "Apache-2.0" ]
1
2020-11-07T11:27:13.000Z
2020-11-07T11:27:13.000Z
# coding: utf-8 """ OpsGenie REST API OpsGenie OpenAPI Specification # noqa: E501 OpenAPI spec version: 2.0.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ import pprint import re # noqa: F401 import six from opsgenie_swagger.models.base_response import BaseResponse # noqa: F401,E501 from opsgenie_swagger.models.team_routing_rule import TeamRoutingRule # noqa: F401,E501 class ListTeamRoutingRulesResponse(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'request_id': 'str', 'took': 'float', 'data': 'list[TeamRoutingRule]' } attribute_map = { 'request_id': 'requestId', 'took': 'took', 'data': 'data' } def __init__(self, request_id=None, took=0.0, data=None): # noqa: E501 """ListTeamRoutingRulesResponse - a model defined in Swagger""" # noqa: E501 self._request_id = None self._took = None self._data = None self.discriminator = None self.request_id = request_id self.took = took if data is not None: self.data = data @property def request_id(self): """Gets the request_id of this ListTeamRoutingRulesResponse. # noqa: E501 :return: The request_id of this ListTeamRoutingRulesResponse. # noqa: E501 :rtype: str """ return self._request_id @request_id.setter def request_id(self, request_id): """Sets the request_id of this ListTeamRoutingRulesResponse. :param request_id: The request_id of this ListTeamRoutingRulesResponse. # noqa: E501 :type: str """ if request_id is None: raise ValueError("Invalid value for `request_id`, must not be `None`") # noqa: E501 self._request_id = request_id @property def took(self): """Gets the took of this ListTeamRoutingRulesResponse. # noqa: E501 :return: The took of this ListTeamRoutingRulesResponse. # noqa: E501 :rtype: float """ return self._took @took.setter def took(self, took): """Sets the took of this ListTeamRoutingRulesResponse. :param took: The took of this ListTeamRoutingRulesResponse. # noqa: E501 :type: float """ if took is None: raise ValueError("Invalid value for `took`, must not be `None`") # noqa: E501 self._took = took @property def data(self): """Gets the data of this ListTeamRoutingRulesResponse. # noqa: E501 :return: The data of this ListTeamRoutingRulesResponse. # noqa: E501 :rtype: list[TeamRoutingRule] """ return self._data @data.setter def data(self, data): """Sets the data of this ListTeamRoutingRulesResponse. :param data: The data of this ListTeamRoutingRulesResponse. # noqa: E501 :type: list[TeamRoutingRule] """ self._data = data def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, ListTeamRoutingRulesResponse): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
27.935294
96
0.587703
c8124e7b34a02f9990e22ab9aa26bb00c963f7f6
1,918
py
Python
library/examples.py
summerswallow/open-rocketry-tools
981c3f0cd16aac142e8bc9e57fc86151ce864a7c
[ "MIT" ]
null
null
null
library/examples.py
summerswallow/open-rocketry-tools
981c3f0cd16aac142e8bc9e57fc86151ce864a7c
[ "MIT" ]
null
null
null
library/examples.py
summerswallow/open-rocketry-tools
981c3f0cd16aac142e8bc9e57fc86151ce864a7c
[ "MIT" ]
null
null
null
from nosecone.standard_nosecones import * from misc import utils if __name__ == '__main__': from bodytubes.semroc import bt20 from bodytubes.semroc import bt5 array = utils.array(4, MM2IN, [ InvertedTangentOgiveNoseCone(0.75, bodytube=bt5, thickness=1 / 16.0, base_height=0.25, blunt_radius=0.125, mid_diameter=.3), EllipticalNoseCone(0.75, bodytube=bt5, thickness=1 / 16.0, base_height=0.25, blunt_radius=0.125, mid_diameter=.3), ConicalNoseCone(0.75, bodytube=bt5, thickness=1 / 16.0, base_height=0.25, blunt_radius=0.125, mid_diameter=.3), BiconicNoseCone(0.75, bodytube=bt5, thickness=1 / 16.0, base_height=0.25, blunt_radius=0.125, mid_diameter=.3), ParabolicNoseCone(0.75, bodytube=bt5, thickness=1 / 16.0, base_height=0.25, blunt_radius=0.125, mid_diameter=.3), HaackSeriesNoseCone(0.75, bodytube=bt5, thickness=1 / 16.0, base_height=0.25, blunt_radius=0.125, mid_diameter=.3), PowerSeriesNoseCone(0.75, bodytube=bt5, thickness=1 / 16.0, base_height=0.25, blunt_radius=0.125, mid_diameter=.3), BluntedConicalNoseCone(0.75, bodytube=bt5, thickness=1 / 16.0, base_height=0.25, blunt_radius=0.125, mid_diameter=.3), TangentOgiveNoseCone(0.75, bodytube=bt5, thickness=1 / 16.0, base_height=0.25, blunt_radius=0.125, mid_diameter=.3), BluntedTangentOgiveNoseCone(0.75, bodytube=bt5, thickness=1 / 16.0, base_height=0.25, blunt_radius=0.125, mid_diameter=.3), SecantOgiveNoseCone(0.75, bodytube=bt5, thickness=1 / 16.0, base_height=0.25, blunt_radius=0.125, mid_diameter=.3)]) utils.render_to_file(array, "examples/standard_nosecones.scad")
63.933333
119
0.622523
5161bee6a1215cb338dff9f0faaa1ea982c03401
2,849
py
Python
InvenTree/InvenTree/version.py
TheCrazyMaffin/InvenTree
2686f61a4ac279386a83049745339345f1ac4cf7
[ "MIT" ]
null
null
null
InvenTree/InvenTree/version.py
TheCrazyMaffin/InvenTree
2686f61a4ac279386a83049745339345f1ac4cf7
[ "MIT" ]
null
null
null
InvenTree/InvenTree/version.py
TheCrazyMaffin/InvenTree
2686f61a4ac279386a83049745339345f1ac4cf7
[ "MIT" ]
null
null
null
""" Version information for InvenTree. Provides information on the current InvenTree version """ import subprocess import django import re import common.models INVENTREE_SW_VERSION = "0.2.4 pre" """ Increment thi API version number whenever there is a significant change to the API that any clients need to know about v3 -> 2021-05-22: - The updated StockItem "history tracking" now uses a different interface v4 -> 2021-06-01 - BOM items can now accept "variant stock" to be assigned against them - Many slight API tweaks were needed to get this to work properly! """ INVENTREE_API_VERSION = 4 def inventreeInstanceName(): """ Returns the InstanceName settings for the current database """ return common.models.InvenTreeSetting.get_setting("INVENTREE_INSTANCE", "") def inventreeInstanceTitle(): """ Returns the InstanceTitle for the current database """ if common.models.InvenTreeSetting.get_setting("INVENTREE_INSTANCE_TITLE", False): return common.models.InvenTreeSetting.get_setting("INVENTREE_INSTANCE", "") else: return 'InvenTree' def inventreeVersion(): """ Returns the InvenTree version string """ return INVENTREE_SW_VERSION def inventreeVersionTuple(version=None): """ Return the InvenTree version string as (maj, min, sub) tuple """ if version is None: version = INVENTREE_SW_VERSION match = re.match(r"^.*(\d+)\.(\d+)\.(\d+).*$", str(version)) return [int(g) for g in match.groups()] def isInvenTreeUpToDate(): """ Test if the InvenTree instance is "up to date" with the latest version. A background task periodically queries GitHub for latest version, and stores it to the database as INVENTREE_LATEST_VERSION """ latest = common.models.InvenTreeSetting.get_setting('INVENTREE_LATEST_VERSION', None) # No record for "latest" version - we must assume we are up to date! if not latest: return True # Extract "tuple" version (Python can directly compare version tuples) latest_version = inventreeVersionTuple(latest) inventree_version = inventreeVersionTuple() return inventree_version >= latest_version def inventreeApiVersion(): return INVENTREE_API_VERSION def inventreeDjangoVersion(): """ Return the version of Django library """ return django.get_version() def inventreeCommitHash(): """ Returns the git commit hash for the running codebase """ try: return str(subprocess.check_output('git rev-parse --short HEAD'.split()), 'utf-8').strip() except: return None def inventreeCommitDate(): """ Returns the git commit date for the running codebase """ try: d = str(subprocess.check_output('git show -s --format=%ci'.split()), 'utf-8').strip() return d.split(' ')[0] except: return None
27.394231
118
0.704809
0fbd36b7ac7bbe511e77682cbb05895909da4867
15,005
py
Python
ds4se/infoxplainer/prediction/eval/traceability.py
WM-CSCI-435-F19/data-science-4-software-engineering
3692163df710550d4ee5b399a2a184968a0f18c6
[ "Apache-2.0" ]
5
2020-12-08T00:38:24.000Z
2021-11-16T20:00:59.000Z
ds4se/infoxplainer/prediction/eval/traceability.py
WM-CSCI-435-F19/data-science-4-software-engineering
3692163df710550d4ee5b399a2a184968a0f18c6
[ "Apache-2.0" ]
110
2020-09-26T18:36:35.000Z
2022-03-12T00:54:35.000Z
ds4se/infoxplainer/prediction/eval/traceability.py
WM-CSCI-435-F19/data-science-4-software-engineering
3692163df710550d4ee5b399a2a184968a0f18c6
[ "Apache-2.0" ]
3
2020-12-09T19:23:10.000Z
2021-02-16T12:54:16.000Z
# AUTOGENERATED! DO NOT EDIT! File to edit: nbs/4.6_infoxplainer.prediction.eval.traceability.ipynb (unless otherwise specified). __all__ = ['SupervisedVectorEvaluation', 'ManifoldEntropy'] # Cell from prg import prg # Cell import ds4se as ds from ....mining.ir import VectorizationType from ....mining.ir import SimilarityMetric from ....mining.ir import EntropyMetric from ....mining.ir import DistanceMetric # Cell #Description importation from ....ds.description.eval.traceability import VectorEvaluation # Cell import numpy as np import matplotlib.pyplot as plt import plotly.express as px import plotly.graph_objects as go # Cell import gensim import pandas as pd from itertools import product from random import sample import functools import os from enum import Enum, unique, auto # Cell from sklearn.metrics import precision_recall_curve from sklearn.metrics import plot_precision_recall_curve from sklearn.metrics import auc import math as m import random as r import collections from sklearn.metrics.pairwise import cosine_similarity import seaborn as sns # Cell from scipy.spatial import distance from scipy.stats import pearsonr # Cell from sklearn.metrics import average_precision_score from sklearn.metrics import roc_curve from sklearn.metrics import roc_auc_score from sklearn.metrics import confusion_matrix # Cell import logging logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO) # Cell class SupervisedVectorEvaluation(VectorEvaluation): def __init__(self, params): super().__init__(params) self.sys = params['system'] #Word2vec similarities_w2v = self.sim_list_w2v + ['Linked?'] similarities_w2v = [str(i) for i in similarities_w2v] self.df_filtered_w2v = self.df_w2v.copy() self.df_filtered_w2v = self.df_filtered_w2v[similarities_w2v] self.df_filtered_w2v = self.df_filtered_w2v[~self.df_filtered_w2v.isin([np.nan, np.inf, -np.inf]).any(1)] #Doc2vec similarities_d2v = self.sim_list_d2v + ['Linked?'] similarities_d2v = [str(i) for i in similarities_d2v] self.df_filtered_d2v = self.df_d2v.copy() self.df_filtered_d2v = self.df_filtered_d2v[similarities_d2v] self.df_filtered_d2v = self.df_filtered_d2v[~self.df_filtered_d2v.isin([np.nan, np.inf, -np.inf]).any(1)] def vecTypeVerification(self, vecType= VectorizationType.word2vec): if vecType == VectorizationType.word2vec: self.sim_list = self.sim_list_w2v y_test = self.df_filtered_w2v['Linked?'].values y_score = [self.df_filtered_w2v[ str(sim) ].values for sim in self.sim_list] logging.info('Vectorization: ' + str(vecType) ) elif vecType == VectorizationType.doc2vec: self.sim_list = self.sim_list_d2v y_test = self.df_filtered_d2v['Linked?'].values y_score = [self.df_filtered_d2v[ str(sim) ].values for sim in self.sim_list] logging.info('Vectorization: ' + str(vecType) ) return y_test,y_score def vecTypeVerificationSim(self, vecType= VectorizationType.word2vec,sim=SimilarityMetric.SCM_sim): if vecType == VectorizationType.word2vec: self.sim_list = self.sim_list_w2v y_test = self.df_filtered_w2v['Linked?'].values y_score = self.df_filtered_w2v[ str(sim) ].values logging.info('Vectorization: ' + str(vecType) + " " + str(sim)) elif vecType == VectorizationType.doc2vec: self.sim_list = self.sim_list_d2v y_test = self.df_filtered_d2v['Linked?'].values y_score = self.df_filtered_d2v[ str(sim) ].values logging.info('Vectorization: ' + str(vecType) + " " + str(sim)) return y_test,y_score def Compute_precision_recall_gain(self, vecType = VectorizationType.word2vec, sim=SimilarityMetric.SCM_sim): '''One might choose PRG if there is little interest in identifying false negatives ''' y_test,y_score = self.vecTypeVerificationSim(vecType=vecType, sim=sim) fig = go.Figure(layout_yaxis_range=[-0.05,1.02],layout_xaxis_range=[-0.05,1.02]) prg_curve = prg.create_prg_curve(y_test, y_score) indices = np.arange(np.argmax(prg_curve['in_unit_square']) - 1, len(prg_curve['in_unit_square'])) pg = prg_curve['precision_gain'] rg = prg_curve['recall_gain'] fig.add_trace(go.Scatter(x=rg[indices], y=pg[indices], line = dict(color="cyan", width=2,dash="solid"))) indices = np.logical_or(prg_curve['is_crossing'], prg_curve['in_unit_square']) fig.add_trace(go.Scatter(x=rg[indices], y=pg[indices], line = dict(color="blue", width=2,dash="solid"))) indices = np.logical_and(prg_curve['in_unit_square'], True - prg_curve['is_crossing']) fig.add_trace(go.Scatter(x=rg[indices], y=pg[indices],mode='markers')) valid_points = np.logical_and( ~ np.isnan(rg), ~ np.isnan(pg)) upper_hull = prg.convex_hull(zip(rg[valid_points],pg[valid_points])) rg_hull, pg_hull = zip(*upper_hull) fig.add_trace(go.Scatter(x=rg_hull, y=pg_hull, mode = "lines", line = dict(color="red", width=2,dash="dash"))) auprg = prg.calc_auprg(prg_curve) logging.info('auprg: %.3f' % auprg) logging.info("compute_precision_recall_gain Complete: "+str(sim)) fig.update_layout( title=self.sys + "-[" + str(sim) + "]", height = 600, width = 600, xaxis_title='Recall Gain', xaxis = dict( tickmode = 'linear', tick0 = 0, dtick = 0.25), yaxis_title='Precision Gain', yaxis = dict( tickmode = 'linear', tick0 = 0, dtick = 0.25) ) fig.update_yaxes( scaleanchor = "x", scaleratio = 1, ) return fig def Compute_avg_precision(self, vecType = VectorizationType.word2vec): '''Generated precision-recall curve enhanced''' y_test,y_score = self.vecTypeVerification(vecType=vecType) linestyles = ['solid','dash','dashdot','dotted'] color = 'red' # calculate the no skill line as the proportion of the positive class no_skill = len(y_test[y_test==1]) / len(y_test) fig = go.Figure() fig.add_trace(go.Scatter(x=[0, 1], y=[no_skill, no_skill], name='No Skill [{0:0.2f}]'.format(no_skill), mode = "lines", line = dict(color='red', width=.5, dash='dash'))) for count,sim in enumerate(self.sim_list): precision, recall, _ = precision_recall_curve(y_test, y_score[count]) #compute precision-recall curve average_precision = average_precision_score(y_test, y_score[count]) auc_score = auc(recall, precision) logging.info('Average precision-recall score: {0:0.2f}'.format(average_precision)) logging.info('Precision-Recall AUC: %.2f' % auc_score) fig.add_trace(go.Scatter(x=recall, y=precision, name=str(sim.name)+' [auc:{0:0.2f}]'.format(auc_score), line = dict(color=color, width=1, dash=linestyles[count]))) ##AUC color = 'blue' fig.add_trace(go.Scatter(x=[0, 1], y=[0, 1], name='No Skill', mode = "lines", line = dict(color='blue', width=.5, dash='dot'))) for count,sim in enumerate(self.sim_list): fpr, tpr, _ = roc_curve(y_test, y_score[count]) #compute roc curve roc_auc = roc_auc_score(y_test, y_score[count]) logging.info('ROC AUC %.2f' % roc_auc) fig.add_trace(go.Scatter(x=fpr, y=tpr, name=str(sim.name)+' [auc:{0:0.2f}]'.format(roc_auc), line = dict(color=color, width=1, dash=linestyles[count]))) fig.update_layout( title=self.sys + "-[" + str(vecType) + "]", xaxis_title='recall [fpr]', yaxis_title='tpr') return fig def Compute_avg_precision_same_plot(self, vecType = VectorizationType.word2vec): '''Generated precision-recall curve''' linestyles = ['solid','dash','dashdot','dotted'] fig = go.Figure() color = 'red' y_test,y_score = self.vecTypeVerification(vecType=vecType) # calculate the no skill line as the proportion of the positive class no_skill = len(y_test[y_test==1]) / len(y_test) fig.add_trace(go.Scatter(x=[0, 1], y=[no_skill, no_skill], name='No Skill [{0:0.2f}]'.format(no_skill), mode = "lines", line = dict(color='red', width=.5, dash='dash'))) #reference curve for count,sim in enumerate(self.sim_list): precision, recall, _ = precision_recall_curve(y_test, y_score[count]) #compute precision-recall curve average_precision = average_precision_score(y_test, y_score[count]) auc_score = auc(recall, precision) logging.info('Average precision-recall score: {0:0.2f}'.format(average_precision)) logging.info('Precision-Recall AUC: %.2f' % auc_score) fig.add_trace(go.Scatter(x=recall, y=precision, name=str(sim.name)+' [auc:{0:0.2f}]'.format(auc_score), line = dict(color=color, width=1, dash=linestyles[count]))) #plot model curve fig.update_layout( title=self.sys + "-[" + str(vecType) + "]", xaxis_title='Recall', yaxis_title='Precision') return fig def Compute_roc_curve(self, vecType = VectorizationType.word2vec): linestyles = ['solid','dash','dashdot','dotted'] fig = go.Figure() color = 'blue' y_test,y_score = self.vecTypeVerification(vecType = vecType) fig.add_trace(go.Scatter(x=[0, 1], y=[0, 1], name='No Skill', mode = "lines", line = dict(color='blue', width=.5, dash='dot'))) #reference curve for count,sim in enumerate(self.sim_list): fpr, tpr, _ = roc_curve(y_test, y_score[count]) #compute roc curve roc_auc = roc_auc_score(y_test, y_score[count]) logging.info('ROC AUC %.2f' % roc_auc) fig.add_trace(go.Scatter(x=fpr, y=tpr, name=str(sim.name)+' [auc:{0:0.2f}]'.format(roc_auc), line = dict(color=color, width=1, dash=linestyles[count]))) #plot model curve #plot model curve fig.update_layout( title=self.sys + "-[" + str(vecType) + "]", xaxis_title='False Positive Rate', yaxis_title='True Positive Rate') return fig def CofusionMatrix(self, vecType = VectorizationType.word2vec): ##TODO This implementatin is incomplete and not verify it yet y_test,y_score = self.vecTypeVerification(vecType=vecType) y_score_threshold = [0 if elem<=0.8 else 1 for elem in supevisedEval.y_score] #Hardcoded 0.7 Threshold #TODO a Variation threshold analysis tn, fp, fn, tp = confusion_matrix(supevisedEval.y_test, y_score_threshold).ravel() return tn, fp, fn, tp # Cell class ManifoldEntropy(VectorEvaluation): def __init__(self, params): super().__init__(params) self.sharedEntropy_filtered = self.sharedInfo.copy() self.sharedEntropy_filtered.dropna(inplace=True) self.sys = params['system'] def minimum_shared_entropy(self,dist = SimilarityMetric.WMD_sim, extropy=False): '''Minimum Shared Plot''' ent = EntropyMetric.MSI_I color = 'dark blue' if extropy: ent = EntropyMetric.MSI_X color = 'red' columns = [str(i) for i in [ent, dist ]] corr = self.compute_spearman_corr(self.sharedEntropy_filtered, columns) logging.info('Correlation {%.2f}' % corr) fig = px.scatter(self.sharedEntropy_filtered, x = columns[0], y = columns[1], color_discrete_sequence=[color]) fig.update_layout( title = self.sys +': ['+ dist.name + '-' + ent.name + '] Correlation {%.2f}' % corr ) return fig def manifold_entropy_plot(self, manifold = EntropyMetric.MI, dist = SimilarityMetric.WMD_sim): '''Manifold Entropy''' columns = [str(i) for i in [manifold, dist]] corr = self.compute_spearman_corr(self.manifoldEntropy, columns) logging.info('Correlation {%.2f}' % corr) fig = px.scatter(self.manifoldEntropy, x = columns[0], y = columns[1], color_continuous_scale=["dark blue"]) fig.update_layout( title = self.sys +': ['+ dist.name + '-' + manifold.name + '] Correlation {%.2f}' % corr ) return fig def composable_entropy_plot(self, manifold_x = EntropyMetric.MI, manifold_y = EntropyMetric.Loss, dist = SimilarityMetric.WMD_sim ): columns = [str(i) for i in [manifold_x, manifold_y, dist]] if isinstance(dist, str): title = self.sys +': Information-Semantic Interactions '+ dist else: title = self.sys +': Information-Semantic Interactions '+ dist.name fig = px.scatter(self.manifoldEntropy,x = columns[0], y = columns[1], color = columns[2], color_continuous_scale=px.colors.sequential.Viridis) fig.update_layout( title = title ) return fig def composable_shared_plot(self, manifold_x = EntropyMetric.MSI_I, manifold_y = EntropyMetric.Loss, dist = SimilarityMetric.WMD_sim, drop_na = True ): columns = [str(i) for i in [manifold_x, manifold_y, dist]] if isinstance(dist, str): title = self.sys +': Information-Semantic Interactions '+ dist else: title = self.sys +': Information-Semantic Interactions '+ dist.name df = self.df_w2v num_na = df.isna().sum().sum() if drop_na: df = df.dropna(inplace=False) fig = px.scatter(df,x = columns[0], y = columns[1], color = columns[2], color_continuous_scale=px.colors.sequential.Viridis) fig.update_layout( title = title ) return fig, num_na def compute_spearman_corr(self, filter_metrics_01, columns): df_correlation = filter_metrics_01.copy() correlation = df_correlation[columns].corr(method='spearman') #correlation = df_correlation.corr(method='spearman') return correlation[columns[0]].values[1]
41.109589
129
0.615395
b2fb4dc8d8761a0136c832e5088647d1b22de151
6,906
py
Python
cubert/cubert_tokenizer.py
deepneuralmachine/google-research
d2ce2cf0f5c004f8d78bfeddf6e88e88f4840231
[ "Apache-2.0" ]
1
2021-01-08T03:21:19.000Z
2021-01-08T03:21:19.000Z
cubert/cubert_tokenizer.py
deepneuralmachine/google-research
d2ce2cf0f5c004f8d78bfeddf6e88e88f4840231
[ "Apache-2.0" ]
null
null
null
cubert/cubert_tokenizer.py
deepneuralmachine/google-research
d2ce2cf0f5c004f8d78bfeddf6e88e88f4840231
[ "Apache-2.0" ]
null
null
null
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This module contains utilities for source code tokenization.""" import abc import tokenize from typing import Dict from typing import Iterable from typing import List from typing import Mapping from typing import Sequence from typing import Text from typing import Union import dataclasses from cubert import unified_tokenizer # After all splitting, the longest a token is of the following length. MAX_OUTPUT_TOKEN_LENGTH = 15 class CuBertTokenizer(abc.ABC): """A tokenizer that implements a language-agnostic tokenization. The tokenizer implements a language-agnostic tokenization. This is available as `tokenize_and_abstract()`. """ def __init__(self, max_output_token_length = MAX_OUTPUT_TOKEN_LENGTH, reserved = ()): self.types_to_skip = [] self.reserved = reserved self.mappings: Dict[str, str] self.update_mappings({ # By default, replace \n and \r. This is meant primarily for literals. '\n': unified_tokenizer.quote_special('NLCHAR'), '\r': unified_tokenizer.quote_special('CR'), unified_tokenizer.SENTINEL: unified_tokenizer.quote_special(unified_tokenizer.SENTINEL_ESCAPE), }) self.max_output_token_length = max_output_token_length @abc.abstractmethod def tokenize_and_abstract( self, source_code): """Produces a language-agnostic tokenization of the input code. Args: source_code: Source code stored in a string. Returns: A list of pairs of a token (string) and a token kind in the given source code. It always includes an end of sequence token. That is, an empty input always returns a list of size 1. Raises: ValueError: if `source_code` cannot be tokenized. """ @abc.abstractmethod def untokenize_abstract(self, whole_tokens): """Applies language-specific rules to an abstract untokenized list. Args: whole_tokens: Abstract tokens, reconstituted and unsanitized by `untokenize` before passed to this language-specific logic. Returns: A string representing the untokenized text. """ def update_types_to_skip( self, types_to_skip): """Replaces the set of token types that are ignored. Each tokenizer may provide different semantics with respect to this list, and may ignore it altogether. Args: types_to_skip: List of types (from the constants in the `token` module) or `unified_tokenizer.TokenKind`. Note that some of those constants are actually defined in the `tokenize` module. """ self.types_to_skip = types_to_skip def replace_reserved_keywords(self, reserved): """Replaces the reserved keywords with the supplied list of strings. Each tokenizer may provide different semantics with respect to the list of reserved keywords, or ignore them altogether. Args: reserved: List of strings. """ self.reserved = reserved # Replace the old one entirely. def update_mappings(self, mappings): """Replaces the character mappings with the supplied dictionary. The intent for character mappings is to enable tokenizers that support them to sanitize dangerous characters, such as newline and carriage return, with a nicer symbol. Each tokenizer may provide different semantics with respect to the mappings, or ignore them altogether. Args: mappings: Dictionary of original to sanitized strings. Keys are expected to have length 1. Raises: ValueError: if a key has length different from 1. """ unified_tokenizer.check_mappings(mappings) self.mappings = mappings def get_mappings(self): return self.mappings def condition_full_tokens( self, agnostic ): """Applies reserved keywords and character sanitization.""" filtered: Iterable[unified_tokenizer.AbstractToken] = ( a for a in agnostic if a.kind not in self.types_to_skip) # Now turn all reserved words, regardless of kind, into keywords. with_reserved: Sequence[unified_tokenizer.AbstractToken] = tuple( dataclasses.replace(a, kind=unified_tokenizer.TokenKind.KEYWORD) if a.spelling in self.reserved else a for a in filtered) return with_reserved def subtokenize_full_tokens( self, agnostic ): """Performs heuristic splitting of full tokens.""" subtoken_lists = unified_tokenizer.subtokenize_agnostic_tokens_in_place( agnostic_tokens=agnostic, max_output_token_length=self.max_output_token_length, sanitization_mapping=self.mappings, sentinel=unified_tokenizer.SENTINEL) return subtoken_lists def tokenize(self, source_code): """Tokenizes via `tokenize_and_abstract`.""" try: agnostic = self.tokenize_and_abstract(source_code) except Exception as e: raise ValueError('While trying to do language-specific tokenization for ' 'the string:\n\n\n%r\n\n\n%s\n\n\n' 'we received error %r.' % (source_code, source_code, e)) conditioned = self.condition_full_tokens(agnostic) multi_tokens = self.subtokenize_full_tokens(conditioned) subtokens = unified_tokenizer.flatten_subtoken_lists(multi_tokens) return subtokens def untokenize(self, token_list): """Untokenizes via `untokenize_abstract`.""" # Untokenize agnostic. if (not token_list or token_list[-1] != unified_tokenizer.quote_special( unified_tokenizer.TokenKind.EOS.name)): raise ValueError('Token list %r should end with the EOS token %r.' % (token_list, unified_tokenizer.quote_special( unified_tokenizer.TokenKind.EOS.name))) whole_tokens = unified_tokenizer.reconstitute_full_unsanitary_tokens( token_list, sanitization_mapping=self.mappings, sentinel=unified_tokenizer.SENTINEL) return self.untokenize_abstract(whole_tokens) def token_from_token_type(token_type): """Turns a token type into a reserved token string.""" # We use the tok_name dict from tokenize, not token. The former has # NL and COMMENT and such, whereas the latter doesn't. return unified_tokenizer.quote_special(tokenize.tok_name[token_type])
34.358209
80
0.716623
c52e6bc68c89d4d33801a1b35e68adb1ba9ddfb1
3,051
py
Python
03_pyPRMS_prototype/Update HRUs in Parameter File.py
pnorton-usgs/notebooks
17a38ecd3f3c052b9bd785c2e53e16a9082d1e71
[ "MIT" ]
null
null
null
03_pyPRMS_prototype/Update HRUs in Parameter File.py
pnorton-usgs/notebooks
17a38ecd3f3c052b9bd785c2e53e16a9082d1e71
[ "MIT" ]
null
null
null
03_pyPRMS_prototype/Update HRUs in Parameter File.py
pnorton-usgs/notebooks
17a38ecd3f3c052b9bd785c2e53e16a9082d1e71
[ "MIT" ]
null
null
null
# --- # jupyter: # jupytext: # formats: ipynb,py:percent # text_representation: # extension: .py # format_name: percent # format_version: '1.3' # jupytext_version: 1.13.7 # kernelspec: # display_name: Python [conda env:prms_py3] # language: python # name: conda-env-prms_py3-py # --- # %% language="javascript" # IPython.notebook.kernel.restart() # %% import glob import os import pandas as pd import sys from pyPRMS.ParameterFile import ParameterFile from pyPRMS.ControlFile import ControlFile from pyPRMS.ValidParams import ValidParams # %% workdir = '/Users/pnorton/Projects/National_Hydrology_Model/tmp/nvwsc' # Original parameter file src_param_file = f'{workdir}/Desch.params6' # Altered single-HRU parameter file hru_param_file = f'{workdir}/results/ALL.SCE_HRU141' # %% [markdown] # ### Load original parameter file # %% pfile_orig = ParameterFile(src_param_file) # %% [markdown] # ### Load altered, single-HRU parameter file # %% pfile_hru = ParameterFile(hru_param_file) # %% [markdown] # ### Get set of parameters that were altered # <P>These parameters were overridden within the HRU parameter file (e.g. declared twice)</P> # %% print(pfile_hru.updated_params) # %% [markdown] # ### Check internal consistency of a parameter # <P>Checks if number of values for the parameter matches the dimensions declared for the parameter</P> # %% pfile_orig.parameters['snarea_curve'].check() # %% [markdown] # ### Check all parameters # <P>Checks internal consistency of all parameters plus any additional constraints or dependencies on other parameters. For example, the number of snarea_curve entries is checked against the number of unique hru_deplcrv values.</P> # %% pfile_orig.parameters.check() # %% [markdown] # ### Open each single-HRU parameter file and update modified parameters from the original parameter file # %% filelist = glob.glob(f'{workdir}/results/ALL.SCE_HRU*') print(f'Processing {len(filelist)} HRUs') for cfile in sorted(filelist): chru = int(os.path.basename(cfile).split('HRU')[1]) sys.stdout.write(f'\rUpdating HRU {chru}: {cfile} ') pfile_hru = ParameterFile(cfile) for cparam in pfile_hru.updated_params: # Arrays are 0-based in python if cparam == 'snarea_curve': # Special handling for snarea_curve pfile.parameters[cparam].data.reshape((-1, 11))[chru-1,:] = pfile_hru.parameters[cparam].data else: pfile.parameters[cparam].data[chru-1] = pfile_hru.parameters[cparam].data[0] # %% ### Write the parameters to a new parameter file # %% pfile.write_parameter_file('calibrated.param', header=['Generated by ParameterFile','version XX']) # %% # %% cc = pfile.parameters['hru_deplcrv'].as_dataframe cc.head() # %% if bb.index.size != cc.size: print('More snarea_curve values specified than required by hru_deplcrv entries') # %% bb.rename(columns={k: k+1 for k in bb.columns}, index={k: k+1 for k in bb.index}, inplace=True) # %% bb.head() # %%
25.638655
231
0.69846
73a51b728fb9070348b2861d5ca1bfdadfa179de
4,651
py
Python
pithy/format.py
gwk/glossy
6976ca4fd1efc09d9cd670b1fe37817c05b4b529
[ "CC0-1.0" ]
7
2019-05-04T00:51:38.000Z
2021-12-10T15:36:31.000Z
pithy/format.py
gwk/glossy
6976ca4fd1efc09d9cd670b1fe37817c05b4b529
[ "CC0-1.0" ]
null
null
null
pithy/format.py
gwk/glossy
6976ca4fd1efc09d9cd670b1fe37817c05b4b529
[ "CC0-1.0" ]
1
2016-07-30T22:38:08.000Z
2016-07-30T22:38:08.000Z
# Dedicated to the public domain under CC0: https://creativecommons.org/publicdomain/zero/1.0/. 'Parse Python format strings and generate corresponding regular expressions.' import re from typing import Any, Iterable, Match, Pattern, Tuple from .string import line_col_1 class FormatError(Exception): pass fmt_re = re.compile(r'''(?x) (?P<formatter>\{ (?P<name> [^{}!:]* ) (?: ! (?P<conv> [ars] ) )? (?: : (?P<spec> (?: [^{}] | \{ [^{}]* \} )* ) )? #^ for the spec, we allow a single level of nested formatters. \}) | \{\{ | \}\} | [^{}]+ ''') # Translated from standard docs "6.1.3.1. Format Specification Mini-Language". fmt_spec_re = re.compile(r'''(?x) (?: (?P<fill> . )? (?P<align> [<>=^]) )? (?P<sign> [-+\ ] )? (?P<alt> \# )? (?P<zero> 0 ) ? (?P<width> \d+ | \{ [^{}]* \} )? # note: nested format. (?P<grouping> [_,] )? (?: \. (?P<precision> \d+ | \{ [^{}]* \} ) )? # note: nested format. (?P<type> [bcdeEfFgGnosxX%] )? ''') spec_type_patterns = { 'd': r'\d' } spec_types = { 'd': int } def has_formatter(string: str) -> bool: 'Returns True if `string` contains a format pattern.' for match in gen_format_matches(string): if match.group('formatter'): return True return False def count_formatters(fmt: str) -> int: 'Count the number of formatters in the string.' count = 0 for match in gen_format_matches(fmt): if match.group('formatter'): count += 1 return count def parse_formatters(fmt: str) -> Iterable[Tuple[str, str, str, type]]: for match in gen_format_matches(fmt): formatter = match.group('formatter') if formatter is not None: value_type: type = str name, conv, spec = match.group('name', 'conv', 'spec') assert isinstance(name, str), name if spec: spec_match = fmt_spec_re.fullmatch(spec) if not spec_match: raise _exc(fmt, match.start(), f'invalid format spec: {spec!r}') fill, align, sign, alt, zero, width, grouping, precision, type_ = spec_match.group( 'fill', 'align', 'sign', 'alt', 'zero', 'width', 'grouping', 'precision', 'type') if type_: try: value_type = spec_types[type_] except KeyError as e: raise _exc(fmt, match.start(), f'spec type {type_!r} not implemented') from e yield (name, conv or '', spec or '', value_type) def format_partial(fmt: str, *args: str, **kwargs: Any) -> str: args_it = iter(args) def format_frag(match: Match[str]) -> str: formatter = match.group('formatter') if formatter: name = match.group('name') if name: try: return formatter.format(**kwargs) except KeyError: return formatter else: try: return formatter.format(next(args_it), **kwargs) except (StopIteration, KeyError): return formatter return match.group() return ''.join(format_frag(m) for m in gen_format_matches(fmt)) def format_to_re(fmt: str, allow_empty=False, greedy=False) -> Pattern[str]: 'Translate a format string into a regular expression pattern.' quantifier = ('*' if allow_empty else '+') + ('' if greedy else '?') def pattern_from(match: Match[str]) -> str: def exc(msg: str) -> FormatError: return _exc(fmt, match.start(), msg) if match.group('formatter'): pat = '.' + quantifier # Default pattern. spec = match.group('spec') if spec: spec_match = fmt_spec_re.fullmatch(spec) if not spec_match: raise exc(f'invalid format spec: {spec!r}') fill, align, sign, alt, zero, width, grouping, precision, type_ = spec_match.group( 'fill', 'align', 'sign', 'alt', 'zero', 'width', 'grouping', 'precision', 'type') if type_: try: pat = spec_type_patterns[type_] + '+' except KeyError as e: raise exc(f'spec type {type_!r} not implemented') from e name = match.group('name') if name: return f'(?P<{name}>{pat})' else: return f'({pat})' text = match.group() if text == '{{': return r'\{' if text == '}}': return r'\}' return re.escape(text) return re.compile(''.join(pattern_from(m) for m in gen_format_matches(fmt))) def gen_format_matches(fmt: str) -> Iterable[Match]: 'Generate a sequence of match objects completely covering the format string.' pos = 0 def exc() -> FormatError: return _exc(fmt, pos, f'invalid format character: {fmt[pos]!r}') for match in fmt_re.finditer(fmt): if match.start() != pos: raise exc() pos = match.end() yield match if pos != len(fmt): raise exc() def _exc(fmt: str, pos: int, msg: str) -> FormatError: line, col = line_col_1(fmt, pos) return FormatError(f'<str>:{line}:{col}: {msg}')
31.425676
109
0.616857
34292fdad1a5a46019e3268272ab9124bcc2cc9e
10,295
py
Python
datalad_hirni/tests/test_dicom2spec.py
loj/datalad-hirni
e03c1cbcbeb5e62cdc7c4537d6d5d9b93d5b139e
[ "MIT" ]
null
null
null
datalad_hirni/tests/test_dicom2spec.py
loj/datalad-hirni
e03c1cbcbeb5e62cdc7c4537d6d5d9b93d5b139e
[ "MIT" ]
null
null
null
datalad_hirni/tests/test_dicom2spec.py
loj/datalad-hirni
e03c1cbcbeb5e62cdc7c4537d6d5d9b93d5b139e
[ "MIT" ]
null
null
null
# emacs: -*- mode: python-mode; py-indent-offset: 4; tab-width: 4; indent-tabs-mode: nil -*- # -*- coding: utf-8 -*- # ex: set sts=4 ts=4 sw=4 noet: # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## # # See COPYING file distributed along with the datalad package for the # copyright and license terms. # # ## ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ## """Test dicom2spec command; DICOM metadata based specification creation""" import os.path as op from datalad.api import ( Dataset, install ) from datalad.tests.utils import ( assert_result_count, assert_in, ok_clean_git, with_tempfile, assert_equal ) from datalad.utils import get_tempfile_kwargs from datalad_neuroimaging.tests.utils import ( get_dicom_dataset, ) from datalad.support.json_py import load_stream from datalad_hirni.support.spec_helpers import ( get_specval, has_specval ) # TODO: # # - invalid calls # - pass properties # - test default rules # - custom vs. configured specfile # - test results # - spec file in git? => should stay in git class RawDataset(object): def __init__(self): self._dspath = None def get_raw_dataset(self): # Note: This is lazy to avoid building on import time, since import is part of nose's discovery and executed # before the dependencies. This leads to datalad's ui backend not yet being correctly set, which in turn # let's the cloning hang within progressbar generation. if not self._dspath: import tempfile kwargs = get_tempfile_kwargs() path = tempfile.mkdtemp(**kwargs) f_dicoms = get_dicom_dataset('functional') s_dicoms = get_dicom_dataset('structural') ds = Dataset.create(path, cfg_proc=['hirni']) ds.install(source=f_dicoms, path=op.join('func_acq', 'dicoms')) ds.install(source=s_dicoms, path=op.join('struct_acq', 'dicoms')) # Note: Recursive, since aggregation wasn't performed in the installed dastasets ds.meta_aggregate([op.join('func_acq', 'dicoms'), op.join('struct_acq', 'dicoms')], into='top', recursive=True) # TODO: Figure how to add it to things to be removed after tests ran self._dspath = ds.path return self._dspath test_raw_ds = RawDataset() @with_tempfile def test_default_rules(path): # ## SETUP a raw ds ds = install(source=test_raw_ds.get_raw_dataset(), path=path) # ## END SETUP # create specs for dicomseries w/ default rules: # TODO: spec path should prob. relate to `path` via (derived) acquisition! ds.hirni_dicom2spec(path=op.join("func_acq", "dicoms"), spec=op.join("func_acq", "studyspec.json")) ds.hirni_dicom2spec(path=op.join("struct_acq", "dicoms"), spec=op.join("struct_acq", "studyspec.json")) func_spec = [s for s in load_stream(op.join(path, "func_acq", "studyspec.json"))] for snippet in func_spec: # type assert_in("type", snippet.keys()) assert_in(snippet["type"], ["dicomseries", "dicomseries:all"]) # no comment in default spec assert not has_specval(snippet, 'comment') or not get_specval(snippet, 'comment') # description assert has_specval(snippet, 'description') assert_equal(get_specval(snippet, 'description'), "func_task-oneback_run-1") # subject assert has_specval(snippet, 'subject') assert_equal(get_specval(snippet, 'subject'), '02') # modality assert has_specval(snippet, 'bids-modality') assert_equal(get_specval(snippet, 'bids-modality'), 'bold') # task assert has_specval(snippet, "bids-task") assert_equal(get_specval(snippet, "bids-task"), "oneback") # run assert has_specval(snippet, "bids-run") assert_equal(get_specval(snippet, "bids-run"), "01") # id assert has_specval(snippet, "id") assert_equal(get_specval(snippet, "id"), 401) # should have 1 snippet of type dicomseries + 1 of type dicomseries:all assert_equal(len(func_spec), 2) assert_in("dicomseries", [s['type'] for s in func_spec]) assert_in("dicomseries:all", [s['type'] for s in func_spec]) struct_spec = [s for s in load_stream(op.join(path, "struct_acq", "studyspec.json"))] for snippet in struct_spec: # type assert "type" in snippet.keys() assert snippet["type"] in ["dicomseries", "dicomseries:all"] # no comment in default spec assert not has_specval(snippet, 'comment') or not get_specval(snippet, 'comment') # description assert has_specval(snippet, 'description') assert_equal(get_specval(snippet, 'description'), "anat-T1w") # subject assert has_specval(snippet, 'subject') assert_equal(get_specval(snippet, 'subject'), '02') # modality assert has_specval(snippet, 'bids-modality') assert_equal(get_specval(snippet, 'bids-modality'), 't1w') # run assert has_specval(snippet, "bids-run") assert_equal(get_specval(snippet, "bids-run"), "1") # should have 1 snippet of type dicomseries + 1 of type dicomseries:all assert_equal(len(struct_spec), 2) assert_in("dicomseries", [s['type'] for s in struct_spec]) assert_in("dicomseries:all", [s['type'] for s in struct_spec]) @with_tempfile def test_custom_rules(path): # ## SETUP a raw ds ds = install(source=test_raw_ds.get_raw_dataset(), path=path) # ## END SETUP # 1. simply default rules ds.hirni_dicom2spec(path=op.join("struct_acq", "dicoms"), spec=op.join("struct_acq", "studyspec.json")) struct_spec = [s for s in load_stream(op.join(path, "struct_acq", "studyspec.json"))] for spec_snippet in struct_spec: # no comment in default spec assert not has_specval(spec_snippet, 'comment') or not get_specval(spec_snippet, 'comment') # subject assert has_specval(spec_snippet, 'subject') assert_equal(get_specval(spec_snippet, 'subject'), '02') # modality assert has_specval(spec_snippet, 'bids-modality') assert_equal(get_specval(spec_snippet, 'bids-modality'), 't1w') # should have 1 snippet of type dicomseries + 1 of type dicomseries:all assert_equal(len(struct_spec), 2) assert_in("dicomseries", [s['type'] for s in struct_spec]) assert_in("dicomseries:all", [s['type'] for s in struct_spec]) # set config to use custom rules import datalad_hirni ds.config.add("datalad.hirni.dicom2spec.rules", op.join(op.dirname(datalad_hirni.__file__), 'resources', 'rules', 'test_rules.py'), ) # 2. do again with configured rules (rules 1) import os os.unlink(op.join(path, 'struct_acq', 'studyspec.json')) ds.hirni_dicom2spec(path=op.join("struct_acq", "dicoms"), spec=op.join("struct_acq", "studyspec.json")) struct_spec = [s for s in load_stream(op.join(path, "struct_acq", "studyspec.json"))] # assertions wrt spec for spec_snippet in struct_spec: # now there's a comment in spec assert has_specval(spec_snippet, 'comment') assert_equal(get_specval(spec_snippet, 'comment'), "Rules1: These rules are for unit testing only") # should have 1 snippet of type dicomseries + 1 of type dicomseries:all assert_equal(len(struct_spec), 2) assert_in("dicomseries", [s['type'] for s in struct_spec]) assert_in("dicomseries:all", [s['type'] for s in struct_spec]) # 3. once again with two configured rule sets (rules 1 and 2) ds.config.add("datalad.hirni.dicom2spec.rules", op.join(op.dirname(datalad_hirni.__file__), 'resources', 'rules', 'test_rules2.py'), ) rule_files = ds.config.get("datalad.hirni.dicom2spec.rules") # ensure assumption about order (dicom2spec relies on it): assert_equal(rule_files, (op.join(op.dirname(datalad_hirni.__file__), 'resources', 'rules', 'test_rules.py'), op.join(op.dirname(datalad_hirni.__file__), 'resources', 'rules', 'test_rules2.py') ) ) os.unlink(op.join(path, 'struct_acq', 'studyspec.json')) ds.hirni_dicom2spec(path=op.join("struct_acq", "dicoms"), spec=op.join("struct_acq", "studyspec.json")) struct_spec = [s for s in load_stream(op.join(path, "struct_acq", "studyspec.json"))] # assertions wrt spec for spec_snippet in struct_spec: # Rule2 should have overwritten Rule1's comment: assert has_specval(spec_snippet, 'comment') assert_equal(get_specval(spec_snippet, 'comment'), "Rules2: These rules are for unit testing only") # should have 1 snippet of type dicomseries + 1 of type dicomseries:all assert_equal(len(struct_spec), 2) assert_in("dicomseries", [s['type'] for s in struct_spec]) assert_in("dicomseries:all", [s['type'] for s in struct_spec]) @with_tempfile def test_dicom2spec(path): # ### SETUP ### dicoms = get_dicom_dataset('structural') ds = Dataset.create(path, cfg_proc=['hirni']) ds.install(source=dicoms, path='acq100') # Note: Recursive, since aggregation wasn't performed in the installed dastasets # TODO: Use get_raw_sd from above instead of this setup ds.meta_aggregate('acq100', into='top', recursive=True) # ### END SETUP ### # TODO: should it be specfile or acq/specfile? => At least doc needed, # if not change res = ds.hirni_dicom2spec(path='acq100', spec='spec_structural.json') # check for actual location of spec_structural! # => studyds root! assert_result_count(res, 2) assert_result_count(res, 1, path=op.join(ds.path, 'spec_structural.json')) assert_result_count(res, 1, path=op.join(ds.path, '.gitattributes')) ok_clean_git(ds.path)
37.98893
116
0.631277
6a6360571b2b811a1144843cfad3ed70d96f35ca
1,680
py
Python
setup.py
szabolcsdombi/vmath
7deb6dfdf1bde304cca7016e2be51ad1947b4a78
[ "MIT" ]
null
null
null
setup.py
szabolcsdombi/vmath
7deb6dfdf1bde304cca7016e2be51ad1947b4a78
[ "MIT" ]
null
null
null
setup.py
szabolcsdombi/vmath
7deb6dfdf1bde304cca7016e2be51ad1947b4a78
[ "MIT" ]
null
null
null
import sys from setuptools import Extension, setup extra_compile_args = [] if sys.platform.startswith('linux'): extra_compile_args = ['-fpermissive', '-Wno-write-strings', '-Wno-narrowing'] if sys.platform.startswith('darwin'): extra_compile_args = ['-std=c++11', '-Wno-writable-strings', '-Wno-c++11-narrowing'] ext = Extension( name='vmath', sources=['./vmath.cpp'], define_macros=[('PY_SSIZE_T_CLEAN', None)], extra_compile_args=extra_compile_args, ) with open('README.md') as readme: long_description = readme.read() setup( name='vmath', version='0.3.0', ext_modules=[ext], data_files=[('.', ['vmath.pyi'])], license='MIT', python_requires='>=3.6', platforms=['any'], description='Compact Python OpenGL rendering library', long_description=long_description, long_description_content_type='text/markdown', author='Szabolcs Dombi', author_email='[email protected]', url='https://github.com/szabolcsdombi/vmath/', project_urls={ 'Documentation': 'https://vmath.readthedocs.io/', 'Source': 'https://github.com/szabolcsdombi/vmath/', 'Bug Tracker': 'https://github.com/szabolcsdombi/vmath/issues/', }, classifiers=[ 'Programming Language :: Python :: 3', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Topic :: Games/Entertainment', 'Topic :: Multimedia :: Graphics', 'Topic :: Multimedia :: Graphics :: 3D Rendering', 'Topic :: Scientific/Engineering :: Visualization', ], keywords=[ 'vector', 'matrix', 'quaternion', ], )
29.473684
88
0.633929
f38ed511088b59d32fe3216697b876b715be8004
41,492
py
Python
tensorforce/agents/tensorforce.py
vishalbelsare/tensorforce
085a62bd37e0fdfd05691db29edeb2e1714ffbda
[ "Apache-2.0" ]
1,132
2019-01-03T14:41:04.000Z
2022-03-29T07:44:50.000Z
tensorforce/agents/tensorforce.py
vishalbelsare/tensorforce
085a62bd37e0fdfd05691db29edeb2e1714ffbda
[ "Apache-2.0" ]
353
2019-01-02T19:46:10.000Z
2022-03-30T10:38:45.000Z
tensorforce/agents/tensorforce.py
vishalbelsare/tensorforce
085a62bd37e0fdfd05691db29edeb2e1714ffbda
[ "Apache-2.0" ]
219
2019-01-03T16:55:39.000Z
2022-03-14T00:27:05.000Z
# Copyright 2020 Tensorforce Team. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from collections import OrderedDict import os from random import shuffle import numpy as np from tensorforce import TensorforceError, util from tensorforce.agents import Agent from tensorforce.core import ArrayDict from tensorforce.core.models import TensorforceModel class TensorforceAgent(Agent): """ Tensorforce agent (specification key: `tensorforce`). Highly configurable agent and basis for a broad class of deep reinforcement learning agents, which act according to a policy parametrized by a neural network, leverage a memory module for periodic updates based on batches of experience, and optionally employ a baseline/critic/target policy for improved reward estimation. Args: states (specification): States specification (<span style="color:#C00000"><b>required</b></span>, better implicitly specified via `environment` argument for `Agent.create()`), arbitrarily nested dictionary of state descriptions (usually taken from `Environment.states()`) with the following attributes: <ul> <li><b>type</b> (<i>"bool" | "int" | "float"</i>) &ndash; state data type (<span style="color:#00C000"><b>default</b></span>: "float").</li> <li><b>shape</b> (<i>int | iter[int]</i>) &ndash; state shape (<span style="color:#C00000"><b>required</b></span>).</li> <li><b>num_values</b> (<i>int > 0</i>) &ndash; number of discrete state values (<span style="color:#C00000"><b>required</b></span> for type "int").</li> <li><b>min_value/max_value</b> (<i>float</i>) &ndash; minimum/maximum state value (<span style="color:#00C000"><b>optional</b></span> for type "float").</li> </ul> actions (specification): Actions specification (<span style="color:#C00000"><b>required</b></span>, better implicitly specified via `environment` argument for `Agent.create()`), arbitrarily nested dictionary of action descriptions (usually taken from `Environment.actions()`) with the following attributes: <ul> <li><b>type</b> (<i>"bool" | "int" | "float"</i>) &ndash; action data type (<span style="color:#C00000"><b>required</b></span>).</li> <li><b>shape</b> (<i>int > 0 | iter[int > 0]</i>) &ndash; action shape (<span style="color:#00C000"><b>default</b></span>: scalar).</li> <li><b>num_values</b> (<i>int > 0</i>) &ndash; number of discrete action values (<span style="color:#C00000"><b>required</b></span> for type "int").</li> <li><b>min_value/max_value</b> (<i>float</i>) &ndash; minimum/maximum action value (<span style="color:#00C000"><b>optional</b></span> for type "float").</li> </ul> max_episode_timesteps (int > 0): Upper bound for numer of timesteps per episode (<span style="color:#00C000"><b>default</b></span>: not given, better implicitly specified via `environment` argument for `Agent.create()`). policy (specification): Policy configuration, see [networks](../modules/networks.html) and [policies documentation](../modules/policies.html) (<span style="color:#00C000"><b>default</b></span>: action distributions or value functions parametrized by an automatically configured network). memory (int | specification): Replay memory capacity, or memory configuration, see the [memories documentation](../modules/memories.html) (<span style="color:#00C000"><b>default</b></span>: minimum capacity recent memory). update (int | specification): Model update configuration with the following attributes (<span style="color:#C00000"><b>required</b>, <span style="color:#00C000"><b>default</b></span>: timesteps batch size</span>): <ul> <li><b>unit</b> (<i>"timesteps" | "episodes"</i>) &ndash; unit for update attributes (<span style="color:#C00000"><b>required</b></span>).</li> <li><b>batch_size</b> (<i><a href="../modules/parameters.html">parameter</a>, int > 0</i>) &ndash; size of update batch in number of units (<span style="color:#C00000"><b>required</b></span>).</li> <li><b>frequency</b> (<i>"never" | <a href="../modules/parameters.html">parameter</a>, int > 0 | 0.0 < float <= 1.0</i>) &ndash; frequency of updates, relative to batch_size if float (<span style="color:#00C000"><b>default</b></span>: batch_size).</li> <li><b>start</b> (<i><a href="../modules/parameters.html">parameter</a>, int >= batch_size</i>) &ndash; number of units before first update (<span style="color:#00C000"><b>default</b></span>: none).</li> </ul> optimizer (specification): Optimizer configuration, see the [optimizers documentation](../modules/optimizers.html) (<span style="color:#00C000"><b>default</b></span>: Adam optimizer). objective (specification): Optimization objective configuration, see the [objectives documentation](../modules/objectives.html) (<span style="color:#C00000"><b>required</b></span>). reward_estimation (specification): Reward estimation configuration with the following attributes (<span style="color:#C00000"><b>required</b></span>): <ul> <li><b>horizon</b> (<i>"episode" | <a href="../modules/parameters.html">parameter</a>, int >= 1</i>) &ndash; Horizon of discounted-sum return estimation (<span style="color:#C00000"><b>required</b></span>).</li> <li><b>discount</b> (<i><a href="../modules/parameters.html">parameter</a>, 0.0 <= float <= 1.0</i>) &ndash; Discount factor of future rewards for discounted-sum return estimation (<span style="color:#00C000"><b>default</b></span>: 1.0).</li> <li><b>predict_horizon_values</b> (<i>false | "early" | "late"</i>) &ndash; Whether to include a baseline prediction of the horizon value as part of the return estimation, and if so, whether to compute the horizon value prediction "early" when experiences are stored to memory, or "late" when batches of experience are retrieved for the update (<span style="color:#00C000"><b>default</b></span>: "late" if baseline_policy or baseline_objective are specified, else false).</li> <li><b>estimate_advantage</b> (<i>False | "early" | "late"</i>) &ndash; Whether to use an estimate of the advantage (return minus baseline value prediction) instead of the return as learning signal, and whether to do so late after the baseline update (default) or early before the baseline update (<span style="color:#00C000"><b>default</b></span>: false, unless baseline_policy is specified but baseline_objective/optimizer are not).</li> <li><b>predict_action_values</b> (<i>bool</i>) &ndash; Whether to predict state-action- instead of state-values as horizon values and for advantage estimation (<span style="color:#00C000"><b>default</b></span>: false).</li> <li><b>reward_processing</b> (<i>specification)</i>) &ndash; Reward preprocessing as layer or list of layers, see the [preprocessing documentation](../modules/preprocessing.html) (<span style="color:#00C000"><b>default</b></span>: no reward processing).</li> <li><b>return_processing</b> (<i>specification</i>) &ndash; Return processing as layer or list of layers, see the [preprocessing documentation](../modules/preprocessing.html) (<span style="color:#00C000"><b>default</b></span>: no return processing).</li> <li><b>advantage_processing</b> (<i>specification</i>) &ndash; Advantage processing as layer or list of layers, see the [preprocessing documentation](../modules/preprocessing.html) (<span style="color:#00C000"><b>default</b></span>: no advantage processing).</li> <li><b>predict_terminal_values</b> (<i>bool</i>) &ndash; Whether to predict the value of terminal states, usually not required since max_episode_timesteps terminals are handled separately (<span style="color:#00C000"><b>default</b></span>: false).</li> </ul> baseline (specification): Baseline configuration, policy will be used as baseline if none, see [networks](../modules/networks.html) and potentially [policies documentation](../modules/policies.html) (<span style="color:#00C000"><b>default</b></span>: none). baseline_optimizer (specification | <a href="../modules/parameters.html">parameter</a>, float > 0.0): Baseline optimizer configuration, see the [optimizers documentation](../modules/optimizers.html), main optimizer will be used for baseline if none, a float implies none and specifies a custom weight for the baseline loss (<span style="color:#00C000"><b>default</b></span>: none). baseline_objective (specification): Baseline optimization objective configuration, see the [objectives documentation](../modules/objectives.html), required if baseline optimizer is specified, main objective will be used for baseline if baseline objective and optimizer are not specified (<span style="color:#00C000"><b>default</b></span>: none). l2_regularization (<a href="../modules/parameters.html">parameter</a>, float >= 0.0): L2 regularization loss weight (<span style="color:#00C000"><b>default</b></span>: no L2 regularization). entropy_regularization (<a href="../modules/parameters.html">parameter</a>, float >= 0.0): Entropy regularization loss weight, to discourage the policy distribution from being "too certain" (<span style="color:#00C000"><b>default</b></span>: no entropy regularization). state_preprocessing (dict[specification]): State preprocessing as layer or list of layers, see the [preprocessing documentation](../modules/preprocessing.html), specified per state-type or -name (<span style="color:#00C000"><b>default</b></span>: linear normalization of bounded float states to [-2.0, 2.0]). exploration (<a href="../modules/parameters.html">parameter</a> | dict[<a href="../modules/parameters.html">parameter</a>], float >= 0.0): Exploration, defined as the probability for uniformly random output in case of `bool` and `int` actions, and the standard deviation of Gaussian noise added to every output in case of `float` actions, specified globally or per action-type or -name (<span style="color:#00C000"><b>default</b></span>: no exploration). variable_noise (<a href="../modules/parameters.html">parameter</a>, float >= 0.0): Add Gaussian noise with given standard deviation to all trainable variables, as alternative exploration mechanism (<span style="color:#00C000"><b>default</b></span>: no variable noise). parallel_interactions (int > 0): Maximum number of parallel interactions to support, for instance, to enable multiple parallel episodes, environments or agents within an environment (<span style="color:#00C000"><b>default</b></span>: 1). config (specification): Additional configuration options: <ul> <li><b>name</b> (<i>string</i>) &ndash; Agent name, used e.g. for TensorFlow scopes and saver default filename (<span style="color:#00C000"><b>default</b></span>: "agent"). <li><b>device</b> (<i>string</i>) &ndash; Device name (<span style="color:#00C000"><b>default</b></span>: CPU). Different from (un)supervised deep learning, RL does not always benefit from running on a GPU, depending on environment and agent configuration. In particular for RL-typical environments with low-dimensional state spaces (i.e., no images), one usually gets better performance by running on CPU only. Consequently, Tensorforce is configured to run on CPU by default, which can be changed, for instance, by setting this value to 'GPU' instead. <li><b>seed</b> (<i>int</i>) &ndash; Random seed to set for Python, NumPy (both set globally!) and TensorFlow, environment seed may have to be set separately for fully deterministic execution, generally not recommended since results in a fully deterministic setting are less meaningful/representative (<span style="color:#00C000"><b>default</b></span>: none).</li> <li><b>buffer_observe</b> (<i>false | "episode" | int > 0</i>) &ndash; Number of timesteps within an episode to buffer before calling the internal observe function, to reduce calls to TensorFlow for improved performance (<span style="color:#00C000"><b>default</b></span>: configuration-specific maximum number which can be buffered without affecting performance).</li> <li><b>enable_int_action_masking</b> (<i>bool</i>) &ndash; Whether int action options can be masked via an optional "[ACTION-NAME]_mask" state input (<span style="color:#00C000"><b>default</b></span>: true).</li> <li><b>create_tf_assertions</b> (<i>bool</i>) &ndash; Whether to create internal TensorFlow assertion operations (<span style="color:#00C000"><b>default</b></span>: true).</li> <li><b>eager_mode</b> (<i>bool</i>) &ndash; Whether to run functions eagerly instead of running as a traced graph function, can be helpful for debugging (<span style="color:#00C000"><b>default</b></span>: false).</li> <li><b>tf_log_level</b> (<i>int >= 0</i>) &ndash; TensorFlow log level, additional C++ logging messages can be enabled by setting os.environ["TF_CPP_MIN_LOG_LEVEL"] = "1"/"2" before importing Tensorforce/TensorFlow (<span style="color:#00C000"><b>default</b></span>: 40, only error and critical).</li> </ul> saver (path | specification): TensorFlow checkpoints directory, or checkpoint manager configuration with the following attributes, for periodic implicit saving as alternative to explicit saving via agent.save() (<span style="color:#00C000"><b>default</b></span>: no saver): <ul> <li><b>directory</b> (<i>path</i>) &ndash; checkpoint directory (<span style="color:#C00000"><b>required</b></span>).</li> <li><b>filename</b> (<i>string</i>) &ndash; checkpoint filename (<span style="color:#00C000"><b>default</b></span>: agent name).</li> <li><b>frequency</b> (<i>int > 0</i>) &ndash; how frequently to save a checkpoint (<span style="color:#C00000"><b>required</b></span>).</li> <li><b>unit</b> (<i>"timesteps" | "episodes" | "updates"</i>) &ndash; frequency unit (<span style="color:#00C000"><b>default</b></span>: updates).</li> <li><b>max_checkpoints</b> (<i>int > 0</i>) &ndash; maximum number of checkpoints to keep (<span style="color:#00C000"><b>default</b></span>: 10).</li> <li><b>max_hour_frequency</b> (<i>int > 0</i>) &ndash; ignoring max-checkpoints, definitely keep a checkpoint in given hour frequency (<span style="color:#00C000"><b>default</b></span>: none).</li> </ul> summarizer (path | specification): TensorBoard summaries directory, or summarizer configuration with the following attributes (<span style="color:#00C000"><b>default</b></span>: no summarizer): <ul> <li><b>directory</b> (<i>path</i>) &ndash; summarizer directory (<span style="color:#C00000"><b>required</b></span>).</li> <li><b>filename</b> (<i>path</i>) &ndash; summarizer filename, max_summaries does not apply if name specified (<span style="color:#00C000"><b>default</b></span>: "summary-%Y%m%d-%H%M%S").</li> <li><b>max_summaries</b> (<i>int > 0</i>) &ndash; maximum number of (generically-named) summaries to keep (<span style="color:#00C000"><b>default</b></span>: 7, number of different colors in Tensorboard).</li> <li><b>flush</b> (<i>int > 0</i>) &ndash; how frequently in seconds to flush the summary writer (<span style="color:#00C000"><b>default</b></span>: 10).</li> <li><b>summaries</b> (<i>"all" | iter[string]</i>) &ndash; which summaries to record, "all" implies all numerical summaries, so all summaries except "graph" (<span style="color:#00C000"><b>default</b></span>: "all"):</li> <li>"action-value": value of each action (timestep-based)</li> <li>"distribution": distribution parameters like probabilities or mean and stddev (timestep-based)</li> <li>"entropy": entropy of (per-action) policy distribution(s) (timestep-based)</li> <li>"graph": computation graph</li> <li>"kl-divergence": KL-divergence of previous and updated (per-action) policy distribution(s) (update-based)</li> <li>"loss": policy and baseline loss plus loss components (update-based)</li> <li>"parameters": parameter values (according to parameter unit)</li> <li>"reward": reward per timestep, episode length and reward, plus intermediate reward/return/advantage estimates and processed values (timestep/episode/update-based)</li> <li>"update-norm": global norm of update (update-based)</li> <li>"updates": mean and variance of update tensors per variable (update-based)</li> <li>"variables": mean of trainable variables tensors (update-based)</li> </ul> tracking ("all" | iter[string]): Which tensors to track, available values are a subset of the values of summarizer[summaries] above (<span style="color:#00C000"><b>default</b></span>: no tracking). The current value of tracked tensors can be retrieved via tracked_tensors() at any time, however, note that tensor values change at different timescales (timesteps, episodes, updates). recorder (path | specification): Traces recordings directory, or recorder configuration with the following attributes (see [record-and-pretrain script](https://github.com/tensorforce/tensorforce/blob/master/examples/record_and_pretrain.py) for example application) (<span style="color:#00C000"><b>default</b></span>: no recorder): <ul> <li><b>directory</b> (<i>path</i>) &ndash; recorder directory (<span style="color:#C00000"><b>required</b></span>).</li> <li><b>frequency</b> (<i>int > 0</i>) &ndash; how frequently in episodes to record traces (<span style="color:#00C000"><b>default</b></span>: every episode).</li> <li><b>start</b> (<i>int >= 0</i>) &ndash; how many episodes to skip before starting to record traces (<span style="color:#00C000"><b>default</b></span>: 0).</li> <li><b>max-traces</b> (<i>int > 0</i>) &ndash; maximum number of traces to keep (<span style="color:#00C000"><b>default</b></span>: all).</li> """ def __init__( # Required self, states, actions, update, optimizer, objective, reward_estimation, # Environment max_episode_timesteps=None, # Agent policy='auto', memory=None, # Baseline baseline=None, baseline_optimizer=None, baseline_objective=None, # Regularization l2_regularization=0.0, entropy_regularization=0.0, # Preprocessing state_preprocessing='linear_normalization', # Exploration exploration=0.0, variable_noise=0.0, # Parallel interactions parallel_interactions=1, # Config, saver, summarizer, tracking, recorder config=None, saver=None, summarizer=None, tracking=None, recorder=None, # Deprecated **kwargs ): if 'estimate_actions' in reward_estimation: raise TensorforceError.deprecated( name='Agent', argument='reward_estimation[estimate_actions]', replacement='reward_estimation[predict_action_values]' ) if 'estimate_terminal' in reward_estimation: raise TensorforceError.deprecated( name='Agent', argument='reward_estimation[estimate_terminal]', replacement='reward_estimation[predict_terminal_values]' ) if summarizer is not None and 'labels' in summarizer: raise TensorforceError.deprecated( name='Agent', argument='summarizer[labels]', replacement='summarizer[summaries]' ) if 'baseline_policy' in kwargs: raise TensorforceError.deprecated( name='Agent', argument='baseline_policy', replacement='baseline' ) if 'reward_preprocessing' in kwargs: raise TensorforceError.deprecated( name='Agent', argument='reward_preprocessing', replacement='reward_estimation[reward_processing]' ) if 'name' in kwargs: raise TensorforceError.deprecated( name='Agent', argument='name', replacement='config[name]' ) if 'buffer_observe' in kwargs: raise TensorforceError.deprecated( name='Agent', argument='buffer_observe', replacement='config[buffer_observe]' ) if 'device' in kwargs: raise TensorforceError.deprecated( name='Agent', argument='device', replacement='config[device]' ) if 'seed' in kwargs: raise TensorforceError.deprecated( name='Agent', argument='seed', replacement='config[seed]' ) if len(kwargs) > 0: raise TensorforceError.invalid(name='Agent', argument=', '.join(kwargs)) if not hasattr(self, 'spec'): self.spec = OrderedDict( agent='tensorforce', # Environment states=states, actions=actions, max_episode_timesteps=max_episode_timesteps, # Agent policy=policy, memory=memory, update=update, optimizer=optimizer, objective=objective, reward_estimation=reward_estimation, # Baseline baseline=baseline, baseline_optimizer=baseline_optimizer, baseline_objective=baseline_objective, # Regularization l2_regularization=l2_regularization, entropy_regularization=entropy_regularization, # Preprocessing state_preprocessing=state_preprocessing, # Exploration exploration=exploration, variable_noise=variable_noise, # Parallel interactions parallel_interactions=parallel_interactions, # Config, saver, summarizer, recorder config=config, saver=saver, summarizer=summarizer, tracking=tracking, recorder=recorder ) if memory is None: memory = dict(type='recent') if isinstance(update, int): update = dict(unit='timesteps', batch_size=update) if config is None: config = dict() else: config = dict(config) # TODO: should this change if summarizer is specified? if parallel_interactions > 1: if 'buffer_observe' not in config: if max_episode_timesteps is None: raise TensorforceError.required( name='Agent', argument='max_episode_timesteps', condition='parallel_interactions > 1' ) config['buffer_observe'] = 'episode' # elif config['buffer_observe'] < max_episode_timesteps: # raise TensorforceError.value( # name='Agent', argument='config[buffer_observe]', # hint='< max_episode_timesteps', condition='parallel_interactions > 1' # ) elif update['unit'] == 'timesteps': update_frequency = update.get('frequency', update['batch_size']) if 'buffer_observe' not in config: if isinstance(update_frequency, int): config['buffer_observe'] = update_frequency else: config['buffer_observe'] = 1 elif isinstance(update_frequency, int) and ( config['buffer_observe'] == 'episode' or config['buffer_observe'] > update_frequency ): raise TensorforceError.value( name='Agent', argument='config[buffer_observe]', value=config['buffer_observe'], hint='> update[frequency]', condition='update[unit] = "timesteps"' ) elif update['unit'] == 'episodes': if 'buffer_observe' not in config: config['buffer_observe'] = 'episode' # reward_estimation = dict(reward_estimation) # if reward_estimation['horizon'] == 'episode': # if max_episode_timesteps is None: # raise TensorforceError.required( # name='Agent', argument='max_episode_timesteps', # condition='reward_estimation[horizon] = "episode"' # ) # reward_estimation['horizon'] = max_episode_timesteps super().__init__( states=states, actions=actions, max_episode_timesteps=max_episode_timesteps, parallel_interactions=parallel_interactions, config=config, recorder=recorder ) self.model = TensorforceModel( states=self.states_spec, actions=self.actions_spec, max_episode_timesteps=self.max_episode_timesteps, policy=policy, memory=memory, update=update, optimizer=optimizer, objective=objective, reward_estimation=reward_estimation, baseline=baseline, baseline_optimizer=baseline_optimizer, baseline_objective=baseline_objective, l2_regularization=l2_regularization, entropy_regularization=entropy_regularization, state_preprocessing=state_preprocessing, exploration=exploration, variable_noise=variable_noise, parallel_interactions=self.parallel_interactions, config=self.config, saver=saver, summarizer=summarizer, tracking=tracking ) def experience(self, states, actions, terminal, reward, internals=None): """ Feed experience traces. See the [act-experience-update script](https://github.com/tensorforce/tensorforce/blob/master/examples/act_experience_update_interface.py) for an example application as part of the act-experience-update interface, which is an alternative to the act-observe interaction pattern. Args: states (dict[array[state]]): Dictionary containing arrays of states (<span style="color:#C00000"><b>required</b></span>). actions (dict[array[action]]): Dictionary containing arrays of actions (<span style="color:#C00000"><b>required</b></span>). terminal (array[bool]): Array of terminals (<span style="color:#C00000"><b>required</b></span>). reward (array[float]): Array of rewards (<span style="color:#C00000"><b>required</b></span>). internals (dict[state]): Dictionary containing arrays of internal agent states (<span style="color:#C00000"><b>required</b></span> if agent has internal states). """ if not all(len(buffer) == 0 for buffer in self.terminal_buffer): raise TensorforceError(message="Calling agent.experience is not possible mid-episode.") # Process states input and infer batching structure states, batched, num_instances, is_iter_of_dicts = self._process_states_input( states=states, function_name='Agent.experience' ) if is_iter_of_dicts: # Input structure iter[dict[input]] # Internals if internals is None: internals = ArrayDict(self.initial_internals()) internals = internals.fmap(function=(lambda x: np.repeat(np.expand_dims(x, axis=0), repeats=num_instances, axis=0))) elif not isinstance(internals, (tuple, list)): raise TensorforceError.type( name='Agent.experience', argument='internals', dtype=type(internals), hint='is not tuple/list' ) else: internals = [ArrayDict(internal) for internal in internals] internals = internals[0].fmap( function=(lambda *xs: np.stack(xs, axis=0)), zip_values=internals[1:] ) # Actions if isinstance(actions, np.ndarray): actions = ArrayDict(singleton=actions) elif not isinstance(actions, (tuple, list)): raise TensorforceError.type( name='Agent.experience', argument='actions', dtype=type(actions), hint='is not tuple/list' ) elif not isinstance(actions[0], dict): actions = ArrayDict(singleton=np.asarray(actions)) elif all(list(action) == ['action'] for action in actions): actions = [ArrayDict(singleton=action['action']) for action in actions] actions = actions[0].fmap( function=(lambda *xs: np.stack(xs, axis=0)), zip_values=actions[1:] ) else: actions = [ArrayDict(action) for action in actions] actions = actions[0].fmap( function=(lambda *xs: np.stack(xs, axis=0)), zip_values=actions[1:] ) else: # Input structure dict[iter[input]] # Internals if internals is None: internals = ArrayDict(self.initial_internals()) internals = internals.fmap(function=(lambda x: np.tile(np.expand_dims(x, axis=0), reps=(num_instances,)))) elif not isinstance(internals, dict): raise TensorforceError.type( name='Agent.experience', argument='internals', dtype=type(internals), hint='is not dict' ) else: internals = ArrayDict(internals) # Actions if isinstance(actions, np.ndarray): actions = ArrayDict(singleton=actions) elif not isinstance(actions, dict): raise TensorforceError.type( name='Agent.experience', argument='actions', dtype=type(actions), hint='is not dict' ) elif list(actions) == ['action']: actions = ArrayDict(singleton=actions['action']) else: actions = ArrayDict(actions) # Expand inputs if not batched if not batched: internals = internals.fmap(function=(lambda x: np.expand_dims(x, axis=0))) actions = actions.fmap(function=(lambda x: np.expand_dims(x, axis=0))) terminal = np.asarray([terminal]) reward = np.asarray([reward]) else: terminal = np.asarray(terminal) reward = np.asarray(reward) # Check number of inputs for name, internal in internals.items(): if internal.shape[0] != num_instances: raise TensorforceError.value( name='Agent.experience', argument='len(internals[{}])'.format(name), value=internal.shape[0], hint='!= len(states)' ) for name, action in actions.items(): if action.shape[0] != num_instances: raise TensorforceError.value( name='Agent.experience', argument='len(actions[{}])'.format(name), value=action.shape[0], hint='!= len(states)' ) if terminal.shape[0] != num_instances: raise TensorforceError.value( name='Agent.experience', argument='len(terminal)'.format(name), value=terminal.shape[0], hint='!= len(states)' ) if reward.shape[0] != num_instances: raise TensorforceError.value( name='Agent.experience', argument='len(reward)'.format(name), value=reward.shape[0], hint='!= len(states)' ) def function(name, spec): auxiliary = ArrayDict() if self.config.enable_int_action_masking and spec.type == 'int' and \ spec.num_values is not None: if name is None: name = 'action' # Mask, either part of states or default all true auxiliary['mask'] = states.pop(name + '_mask', np.ones( shape=(num_instances,) + spec.shape + (spec.num_values,), dtype=spec.np_type() )) return auxiliary auxiliaries = self.actions_spec.fmap(function=function, cls=ArrayDict, with_names=True) if self.states_spec.is_singleton() and not states.is_singleton(): states[None] = states.pop('state') # Convert terminal to int if necessary if terminal.dtype is util.np_dtype(dtype='bool'): zeros = np.zeros_like(terminal, dtype=util.np_dtype(dtype='int')) ones = np.ones_like(terminal, dtype=util.np_dtype(dtype='int')) terminal = np.where(terminal, ones, zeros) if terminal[-1] == 0: raise TensorforceError(message="Agent.experience() requires full episodes as input.") # Batch experiences split into episodes and at most size buffer_observe last = 0 for index in range(1, len(terminal) + 1): if terminal[index - 1] == 0: continue function = (lambda x: x[last: index]) states_batch = states.fmap(function=function) internals_batch = internals.fmap(function=function) auxiliaries_batch = auxiliaries.fmap(function=function) actions_batch = actions.fmap(function=function) terminal_batch = function(terminal) reward_batch = function(reward) last = index # Inputs to tensors states_batch = self.states_spec.to_tensor( value=states_batch, batched=True, name='Agent.experience states' ) internals_batch = self.internals_spec.to_tensor( value=internals_batch, batched=True, recover_empty=True, name='Agent.experience internals' ) auxiliaries_batch = self.auxiliaries_spec.to_tensor( value=auxiliaries_batch, batched=True, name='Agent.experience auxiliaries' ) actions_batch = self.actions_spec.to_tensor( value=actions_batch, batched=True, name='Agent.experience actions' ) terminal_batch = self.terminal_spec.to_tensor( value=terminal_batch, batched=True, name='Agent.experience terminal' ) reward_batch = self.reward_spec.to_tensor( value=reward_batch, batched=True, name='Agent.experience reward' ) # Model.experience() timesteps, episodes = self.model.experience( states=states_batch, internals=internals_batch, auxiliaries=auxiliaries_batch, actions=actions_batch, terminal=terminal_batch, reward=reward_batch ) self.timesteps = timesteps.numpy().item() self.episodes = episodes.numpy().item() if self.model.saver is not None: self.model.save() def update(self, query=None, **kwargs): """ Perform an update. See the [act-experience-update script](https://github.com/tensorforce/tensorforce/blob/master/examples/act_experience_update_interface.py) for an example application as part of the act-experience-update interface, which is an alternative to the act-observe interaction pattern. """ updates = self.model.update() self.updates = updates.numpy().item() if self.model.saver is not None: self.model.save() def pretrain(self, directory, num_iterations, num_traces=1, num_updates=1, extension='.npz'): """ Simple pretraining approach as a combination of `experience()` and `update`, akin to behavioral cloning, using experience traces obtained e.g. via recording agent interactions ([see documentation](https://tensorforce.readthedocs.io/en/latest/basics/features.html#record-pretrain)). For the given number of iterations, load the given number of trace files (which each contain recorder[frequency] episodes), feed the experience to the agent's internal memory, and subsequently trigger the given number of updates (which will use the experience in the internal memory, fed in this or potentially previous iterations). See the [record-and-pretrain script](https://github.com/tensorforce/tensorforce/blob/master/examples/record_and_pretrain.py) for an example application. Args: directory (path): Directory with experience traces, e.g. obtained via recorder; episode length has to be consistent with agent configuration (<span style="color:#C00000"><b>required</b></span>). num_iterations (int > 0): Number of iterations consisting of loading new traces and performing multiple updates (<span style="color:#C00000"><b>required</b></span>). num_traces (int > 0): Number of traces to load per iteration; has to at least satisfy the update batch size (<span style="color:#00C000"><b>default</b></span>: 1). num_updates (int > 0): Number of updates per iteration (<span style="color:#00C000"><b>default</b></span>: 1). extension (str): Traces file extension to filter the given directory for (<span style="color:#00C000"><b>default</b></span>: ".npz"). """ if not os.path.isdir(directory): raise TensorforceError.value( name='agent.pretrain', argument='directory', value=directory ) files = sorted( os.path.join(directory, f) for f in os.listdir(directory) if os.path.isfile(os.path.join(directory, f)) and os.path.splitext(f)[1] == extension ) indices = list(range(len(files))) for _ in range(num_iterations): shuffle(indices) if num_traces is None: selection = indices else: selection = indices[:num_traces] batch = None for index in selection: trace = ArrayDict(np.load(files[index])) if batch is None: batch = trace else: batch = batch.fmap( function=(lambda x, y: np.concatenate([x, y], axis=0)), zip_values=(trace,) ) for name, value in batch.pop('auxiliaries', dict()).items(): assert name.endswith('/mask') batch['states'][name[:-5] + '_mask'] = value self.experience(**batch.to_kwargs()) for _ in range(num_updates): self.update() # TODO: self.obliviate()
56.146143
146
0.603659
d2960bb91ab2d1be05009ffa1650de8c0dd97a56
591
py
Python
ENV/bin/createfontdatachunk.py
jupitercl/meatme-oscar-dev
40583cbb3c6762640a403956e41bffac0bb2ad48
[ "BSD-3-Clause" ]
null
null
null
ENV/bin/createfontdatachunk.py
jupitercl/meatme-oscar-dev
40583cbb3c6762640a403956e41bffac0bb2ad48
[ "BSD-3-Clause" ]
null
null
null
ENV/bin/createfontdatachunk.py
jupitercl/meatme-oscar-dev
40583cbb3c6762640a403956e41bffac0bb2ad48
[ "BSD-3-Clause" ]
null
null
null
#!/home/ubuntu/workspace/meatme-oscar/ENV/bin/python from __future__ import print_function import base64 import os import sys if __name__ == "__main__": # create font data chunk for embedding font = "Tests/images/courB08" print(" f._load_pilfont_data(") print(" # %s" % os.path.basename(font)) print(" BytesIO(base64.decodestring(b'''") base64.encode(open(font + ".pil", "rb"), sys.stdout) print("''')), Image.open(BytesIO(base64.decodestring(b'''") base64.encode(open(font + ".pbm", "rb"), sys.stdout) print("'''))))") # End of file
31.105263
63
0.637902
457fb74f1245bc4877b66445585b4d3b536d6395
388
py
Python
LeetCode/NumberOfGoodPairs.py
SelvorWhim/competitive
b9daaf21920d6f7669dc0c525e903949f4e33b62
[ "Unlicense" ]
null
null
null
LeetCode/NumberOfGoodPairs.py
SelvorWhim/competitive
b9daaf21920d6f7669dc0c525e903949f4e33b62
[ "Unlicense" ]
null
null
null
LeetCode/NumberOfGoodPairs.py
SelvorWhim/competitive
b9daaf21920d6f7669dc0c525e903949f4e33b62
[ "Unlicense" ]
null
null
null
# don't need to show the pairs, so the order doesn't matter # just need to find how many times each number appears and count the pairs from collections import Counter class Solution: def numIdenticalPairs(self, nums: List[int]) -> int: counts = Counter(nums) return sum(count * (count - 1) // 2 for count in counts.values()) # n*(n-1)/2 = number of pairs in n items
38.8
114
0.688144
34edd7696ad72e3b7d649f5b255116229335dac7
118
py
Python
duckspush/templates/datasources.py
novapost/duckspush
baa9d609a650040c12a721a83d9f45369af90694
[ "BSD-3-Clause" ]
null
null
null
duckspush/templates/datasources.py
novapost/duckspush
baa9d609a650040c12a721a83d9f45369af90694
[ "BSD-3-Clause" ]
null
null
null
duckspush/templates/datasources.py
novapost/duckspush
baa9d609a650040c12a721a83d9f45369af90694
[ "BSD-3-Clause" ]
null
null
null
#import random ## Collector example function # def collector_test(): # return dict(value=random.randint(1,1000))
19.666667
47
0.728814
77efb314c48149c1e0216c8e444dc767dba7adf8
2,206
py
Python
tests/conftest.py
riddhi150390/splink
eae96a757877cf197608be21b437356732faee6e
[ "MIT" ]
176
2020-03-16T15:19:39.000Z
2022-03-30T06:38:29.000Z
tests/conftest.py
riddhi150390/splink
eae96a757877cf197608be21b437356732faee6e
[ "MIT" ]
194
2020-03-01T21:32:26.000Z
2022-03-30T14:58:38.000Z
tests/conftest.py
riddhi150390/splink
eae96a757877cf197608be21b437356732faee6e
[ "MIT" ]
25
2020-03-07T00:09:22.000Z
2022-03-11T16:28:06.000Z
import pytest import logging logger = logging.getLogger(__name__) @pytest.fixture(scope="module") def spark(): try: from pyspark import SparkContext, SparkConf from pyspark.sql import SparkSession from pyspark.sql import types conf = SparkConf() conf.set("spark.jars.ivy", "/home/jovyan/.ivy2/") conf.set("spark.driver.extraClassPath", "jars/scala-udf-similarity-0.0.7.jar") conf.set("spark.jars", "jars/scala-udf-similarity-0.0.7.jar") conf.set("spark.driver.memory", "4g") conf.set("spark.sql.shuffle.partitions", "12") sc = SparkContext.getOrCreate(conf=conf) spark = SparkSession(sc) udfs = [ ("jaro_winkler_sim", "JaroWinklerSimilarity", types.DoubleType()), ("jaccard_sim", "JaccardSimilarity", types.DoubleType()), ("cosine_distance", "CosineDistance", types.DoubleType()), ("Dmetaphone", "DoubleMetaphone", types.StringType()), ("QgramTokeniser", "QgramTokeniser", types.StringType()), ("Q3gramTokeniser", "Q3gramTokeniser", types.StringType()), ("Q4gramTokeniser", "Q4gramTokeniser", types.StringType()), ("Q5gramTokeniser", "Q5gramTokeniser", types.StringType()), ("DmetaphoneAlt", "DoubleMetaphoneAlt", types.StringType()), ] for a, b, c in udfs: spark.udf.registerJavaFunction(a, "uk.gov.moj.dash.linkage." + b, c) rt = types.ArrayType( types.StructType( [ types.StructField("_1", types.StringType()), types.StructField("_2", types.StringType()), ] ) ) spark.udf.registerJavaFunction( name="DualArrayExplode", javaClassName="uk.gov.moj.dash.linkage.DualArrayExplode", returnType=rt, ) SPARK_EXISTS = True except: SPARK_EXISTS = False if SPARK_EXISTS: print("Spark exists, running spark tests") yield spark else: spark = None logger.error("Spark not available") print("Spark not available") yield spark
31.070423
86
0.584769
5aa67b18726aa3b5bd632607cec1f8dafea0e8d8
507
py
Python
cache_publications.py
igormcoelho/igormcoelho.github.io
2fe1e3d54f9ffec04fa6cd2f90c7860400a8ecf8
[ "MIT" ]
2
2020-07-12T01:21:20.000Z
2021-06-19T04:05:59.000Z
cache_publications.py
igormcoelho/igormcoelho.github.io
2fe1e3d54f9ffec04fa6cd2f90c7860400a8ecf8
[ "MIT" ]
3
2021-09-28T04:45:57.000Z
2022-02-26T09:16:56.000Z
cache_publications.py
igormcoelho/igormcoelho.github.io
2fe1e3d54f9ffec04fa6cd2f90c7860400a8ecf8
[ "MIT" ]
null
null
null
from bs4 import BeautifulSoup papers = BeautifulSoup(open("_site/generate_selected_papers.html").read()) pub_html = papers.body.article.find(id="pub_selected_papers").prettify() f = open('_includes/selected_papers_cache.html', 'w') f.write(pub_html) f.close() from bs4 import BeautifulSoup papers = BeautifulSoup(open("_site/generate_all_papers.html").read()) pub_html = papers.body.article.find(id="pub_all_papers").prettify() f = open('_includes/all_papers_cache.html', 'w') f.write(pub_html) f.close()
33.8
74
0.775148
b3b2c7cd86734b447130a542cb1d091ebbe0b51a
383
py
Python
code/backend/src/database/models/__init__.py
tobiasclaas/semantic-data-lake
16fc25a74918c9ac4d95f14bf3c15af053cee53e
[ "MIT" ]
1
2022-02-23T14:32:38.000Z
2022-02-23T14:32:38.000Z
code/backend/src/database/models/__init__.py
tobiasclaas/semantic-data-lake
16fc25a74918c9ac4d95f14bf3c15af053cee53e
[ "MIT" ]
null
null
null
code/backend/src/database/models/__init__.py
tobiasclaas/semantic-data-lake
16fc25a74918c9ac4d95f14bf3c15af053cee53e
[ "MIT" ]
null
null
null
from .storage import ( BaseStorage, MongodbStorage, PostgresqlStorage, CsvStorage, JsonStorage, XmlStorage ) from .user import User from .workspace import Workspace from .ontology import Ontology from .dataset import Dataset from .metadata import Metadata from .datamart import DatamartStatus, Datamart, DatamartState from .annotation import Annotation from .job import Job
27.357143
63
0.81201
7b69ab522eb623e8117709c6ffb1efd8776ba8af
813
py
Python
netsuite/api/predicates.py
fernando-almeida/python-netsuite
da123b23d1af91767c9d10c2a1f60efabd855668
[ "BSD-3-Clause" ]
7
2018-02-09T19:22:56.000Z
2021-01-24T04:05:02.000Z
netsuite/api/predicates.py
fernando-almeida/python-netsuite
da123b23d1af91767c9d10c2a1f60efabd855668
[ "BSD-3-Clause" ]
null
null
null
netsuite/api/predicates.py
fernando-almeida/python-netsuite
da123b23d1af91767c9d10c2a1f60efabd855668
[ "BSD-3-Clause" ]
6
2020-07-28T12:43:10.000Z
2021-06-10T00:17:36.000Z
"""Predicates.""" class RecordTypeSelectorPredicate(object): """Check if a given record type should be selected.""" def __init__(self, record_types=None) """Constructor. Args: record_types: Types of records """ if not (isinstance(record_types, list)): raise Exception("Record types must be a list") self.record_types = record_types or [] def __call__(self, record_type): """Check if a given record type should be batched. Args: record_type: Type of record to check for batching Returns: True if the record type should be selected or False otherwise """ if not self.record_types: return False return record_type in self.record_types
26.225806
77
0.602706
c755540ef9420e4b6811c3cf3842a0bd8a907215
3,800
py
Python
hsfs/numerov.py
aa-morgan/helium-stark-FS
7617c0761398dc60b69bb01c533cfa405c2a3d82
[ "BSD-3-Clause" ]
null
null
null
hsfs/numerov.py
aa-morgan/helium-stark-FS
7617c0761398dc60b69bb01c533cfa405c2a3d82
[ "BSD-3-Clause" ]
null
null
null
hsfs/numerov.py
aa-morgan/helium-stark-FS
7617c0761398dc60b69bb01c533cfa405c2a3d82
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Tue Sep 26 13:08:34 2017 @author: Adam """ from math import ceil, log, exp import numpy as np from numba import jit @jit def wf(n, l, nmax, step=0.005, rmin=0.65): """ Use the Numerov method to find the wavefunction for state n*, l, where n* = n - delta. nmax ensures that wavefunctions from different values of n can be aligned. """ W1 = -0.5 * n**-2.0 W2 = (l + 0.5)**2.0 rmax = 2 * nmax * (nmax + 15) r_in = n**2.0 - n * (n**2.0 - l*(l + 1.0))**0.5 step_sq = step**2.0 # ensure wf arrays will align using nmax if n == nmax: i = 0 r_sub2 = rmax else: i = int(ceil(log(rmax / (2 * n * (n + 15))) / step)) r_sub2 = rmax * exp(-i*step) i += 1 # initialise r_sub1 = rmax * exp(-i*step) rvals = [r_sub2, r_sub1] g_sub2 = 2.0 * r_sub2**2.0 * (-1.0 / r_sub2 - W1) + W2 g_sub1 = 2.0 * r_sub1**2.0 * (-1.0 / r_sub1 - W1) + W2 y_sub2 = 1e-10 y_sub1 = y_sub2 * (1.0 + step * g_sub2**0.5) yvals = [y_sub2, y_sub1] # Numerov method i += 1 r = r_sub1 while r >= rmin: ## next step r = rmax * exp(-i*step) g = 2.0 * r**2.0 * (-1.0 / r - W1) + W2 y = (y_sub2 * (g_sub2 - (12.0 / step_sq)) + y_sub1 * \ (10.0 * g_sub1 + (24.0 / step_sq))) / ((12.0 / step_sq) - g) ## check for divergence if r < r_in: dy = abs((y - y_sub1) / y_sub1) dr = (r**(-l-1) - r_sub1**(-l-1)) / r_sub1**(-l-1) if dy > dr: break ## store vals rvals.append(r) yvals.append(y) ## next iteration r_sub1 = r g_sub2 = g_sub1 g_sub1 = g y_sub2 = y_sub1 y_sub1 = y i += 1 rvals = np.array(rvals) yvals = np.array(yvals) # normalisation yvals = yvals * (np.sum((yvals**2.0) * (rvals**2.0)))**-0.5 return rvals, yvals @jit def find_first(arr, val): """ Index of the first occurence of val in arr. """ i = 0 while i < len(arr): if val == arr[i]: return i i += 1 raise Exception('val not found in arr') @jit def find_last(arr, val): """ Index of the last occurence of val in arr. """ i = len(arr) - 1 while i > 0: if val == arr[i]: return i i -= 1 raise Exception('val not found in arr') @jit def wf_align(r1, y1, r2, y2): """ Align two lists pairs (r, y) on r, assuming r array values overlap except at head and tail, and that arrays are reverse sorted. """ if r1[0] != r2[0]: # trim front end if r1[0] > r2[0]: idx = find_first(r1, r2[0]) r1 = r1[idx:] y1 = y1[idx:] else: idx = find_first(r2, r1[0]) r2 = r2[idx:] y2 = y2[idx:] if r1[-1] != r2[-1]: # trim back end if r1[-1] < r2[-1]: idx = find_last(r1, r2[-1]) r1 = r1[:idx + 1] y1 = y1[:idx + 1] else: idx = find_last(r2, r1[-1]) r2 = r2[:idx + 1] y2 = y2[:idx + 1] if r1[0] == r2[0] and r1[-1] == r2[-1] and len(r1) == len(r2): return r1, y1, r2, y2 else: raise Exception("Failed to align wavefunctions.") @jit def wf_overlap(r1, y1, r2, y2, p=1.0): """ Find the overlap between two radial wavefunctions (r, y). """ r1, y1, r2, y2 = wf_align(r1, y1, r2, y2) return np.sum(y1 * y2 * r1**(2.0 + p)) @jit(cache=True) def radial_overlap(n1, l1, n2, l2, p=1.0): """ Radial overlap for state n1, l1 and n2 l2. """ nmax = max(n1, n2) r1, y1 = wf(n1, l1, nmax) r2, y2 = wf(n2, l2, nmax) return wf_overlap(r1, y1, r2, y2, p)
26.760563
82
0.485263
6a01980f27ee8bec8c897fe399fd4ada64d6ff03
668
py
Python
Config.py
izzortsi/crypto-trading-ai-bot-basic
38cb5bda778447d55b7854b5d2035e3da0f629b2
[ "MIT" ]
195
2021-01-08T12:46:28.000Z
2022-03-27T19:29:08.000Z
Config.py
izzortsi/crypto-trading-ai-bot-basic
38cb5bda778447d55b7854b5d2035e3da0f629b2
[ "MIT" ]
8
2021-02-04T05:19:40.000Z
2021-10-10T20:32:55.000Z
Config.py
izzortsi/crypto-trading-ai-bot-basic
38cb5bda778447d55b7854b5d2035e3da0f629b2
[ "MIT" ]
93
2021-01-08T12:46:30.000Z
2022-03-13T20:59:12.000Z
DATASET_DIR = "datasets/" COIN_PAIR = "BTC-USD" GRANULARITY = 60 # Data every 1 minute TRAINING_MONTHS = ["2018_06","2018_07","2018_08","2018_09","2018_10","2018_11","2018_12","2019_01", "2019_02","2019_03","2019_04","2019_05","2019_06","2019_07","2019_08","2019_09", "2019_10","2019_11","2019_12","2020_01","2020_02","2020_03","2020_04","2020_05", "2020_06","2020_07","2020_08","2020_09"] TESTING_MONTHS = ["2020_10"] # Model and Auto Trader CHANGE_RATE_THRESHOLD = 0.005 TRAINING_WINDOW = 360 # Window to use for training in minutes LABELING_WINDOW = 360 # How far ahead to look for labeling / prediction
41.75
99
0.663174
23e886badebb57d1b989b9e55b0eb786efc54585
4,497
py
Python
utils.py
xavysp/pidinet_xsp
fbf23bdf2dde0f6204c61261eee32a05cd3b499d
[ "MIT" ]
null
null
null
utils.py
xavysp/pidinet_xsp
fbf23bdf2dde0f6204c61261eee32a05cd3b499d
[ "MIT" ]
null
null
null
utils.py
xavysp/pidinet_xsp
fbf23bdf2dde0f6204c61261eee32a05cd3b499d
[ "MIT" ]
null
null
null
""" Utility functions for training Author: Zhuo Su, Wenzhe Liu Date: Aug 22, 2020 """ from __future__ import absolute_import from __future__ import unicode_literals from __future__ import print_function from __future__ import division import os import shutil import math import time import random from PIL import Image import numpy as np from skimage import io from skimage.transform import resize import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.data import Dataset ###################################### # measurement functions # ###################################### def get_model_parm_nums(model): total = sum([param.numel() for param in model.parameters()]) total = float(total) / 1e6 return total ###################################### # basic functions # ###################################### def load_checkpoint(args, running_file=None): model_dir = os.path.join(args.savedir, 'save_models') latest_filename = os.path.join(model_dir, 'latest.txt') model_filename = '' if args.evaluate is not None: model_filename = args.evaluate else: if os.path.exists(latest_filename): with open(latest_filename, 'r') as fin: model_filename = fin.readlines()[0].strip() loadinfo = "=> loading checkpoint from '{}'".format(model_filename) print(loadinfo) state = None if os.path.exists(model_filename): state = torch.load(model_filename, map_location='cpu') loadinfo2 = "=> loaded checkpoint '{}' successfully".format(model_filename) else: loadinfo2 = "no checkpoint loaded" print(loadinfo2) running_file.write('%s\n%s\n' % (loadinfo, loadinfo2)) running_file.flush() return state def save_checkpoint(state, epoch, root, saveID, keep_freq=10, train_data='NONE'): filename = 'checkpoint_%03d.pth.tar' % epoch model_dir = os.path.join(root, 'save_models') model_filename = os.path.join(model_dir, filename) latest_filename = os.path.join(model_dir, 'latest.txt') if not os.path.exists(model_dir): os.makedirs(model_dir) # write new checkpoint torch.save(state, model_filename) with open(latest_filename, 'w') as fout: fout.write(model_filename) print("=> saved checkpoint '{}'".format(model_filename)) # remove old model if saveID is not None and (saveID + 1) % keep_freq != 0: filename = 'checkpoint_%03d.pth.tar' % saveID model_filename = os.path.join(model_dir, filename) if os.path.exists(model_filename): os.remove(model_filename) print('=> removed checkpoint %s' % model_filename) print('##########Time##########', time.strftime('%Y-%m-%d %H:%M:%S')) return epoch class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val #self.sum += val * n self.sum += val self.count += n self.avg = self.sum / self.count def adjust_learning_rate(optimizer, epoch, args): method = args.lr_type if method == 'cosine': T_total = float(args.epochs) T_cur = float(epoch) lr = 0.5 * args.lr * (1 + math.cos(math.pi * T_cur / T_total)) elif method == 'multistep': lr = args.lr for epoch_step in args.lr_steps: if epoch >= epoch_step: lr = lr * 0.1 for param_group in optimizer.param_groups: param_group['lr'] = lr str_lr = '%.6f' % lr return str_lr ###################################### # edge specific functions # ###################################### def cross_entropy_loss_RCF(prediction, labelf, beta): label = labelf.long() mask = labelf.clone() num_positive = torch.sum(label==1).float() num_negative = torch.sum(label==0).float() mask[label == 1] = 1.0 * num_negative / (num_positive + num_negative) mask[label == 0] = beta * num_positive / (num_positive + num_negative) mask[label == 2] = 0 cost = F.binary_cross_entropy( prediction, labelf, weight=mask, reduction='sum') return cost ###################################### # debug functions # ###################################### # no function currently
28.10625
83
0.594174
62a5c755fccbd76f16e2ae824000cf05bd5c75fe
1,857
py
Python
jelm/tests/test_io.py
endremborza/jelm
6916bbd4ceb909ad3350c56d3a149bdb97671489
[ "MIT" ]
null
null
null
jelm/tests/test_io.py
endremborza/jelm
6916bbd4ceb909ad3350c56d3a149bdb97671489
[ "MIT" ]
null
null
null
jelm/tests/test_io.py
endremborza/jelm
6916bbd4ceb909ad3350c56d3a149bdb97671489
[ "MIT" ]
null
null
null
import json import os import pytest from jelm.core.jelm_class import Jelm from jelm.core.io.input import reads_json, read_json from jelm.tests.network_case_set_class import NetwokCaseTemplate def test_json_reads(): test_dic = {"metadata": {"author": "me"}, "objects": []} dump = json.dumps(test_dic) el = reads_json(dump) assert isinstance(el, Jelm) def test_json_reads_dumps_w_cases(jelm_pair_case: NetwokCaseTemplate): def io_fun(_el: Jelm): _dump = _el.json_dumps() return reads_json(_dump) jelm_pair_case.evaluate_fun(non_altering_function=io_fun) def test_json_read(tmp_path): d = tmp_path / "sub" d.mkdir() p = d / "fing.jelm" test_dic = {"metadata": {"author": "me"}, "objects": []} dump = json.dumps(test_dic) p.write_text(dump) fp = os.fspath(p) el = read_json(fp) assert isinstance(el, Jelm) def test_json_dump(tmp_path): d = tmp_path / "sub2" d.mkdir() p = d / "fing1.jelm" p2 = d / "fing2.jelm" test_dic = {"metadata": {"author": "me"}, "objects": [{"type": "node", "id": "n1"}]} el = Jelm(**test_dic) assert isinstance(el.dict(), dict) assert el.dict() == test_dic assert isinstance(el.json_dumps(), str) fp = os.fspath(p) fp2 = os.fspath(p2) el.json_dump(fp) el.json_dump(open(fp2, "w")) el2 = read_json(fp) el3 = read_json(fp2) assert el.dict() == el2.dict() assert el.dict() == el3.dict() with pytest.raises(TypeError): el.json_dump(10) def test_json_read_dump_w_cases(tmp_path, jelm_pair_case: NetwokCaseTemplate): d = tmp_path / "sub3" d.mkdir() p = d / "fing3.jelm" fp = os.fspath(p) def io_fun(_el: Jelm): _el.json_dump(fp) return read_json(fp) jelm_pair_case.evaluate_fun(non_altering_function=io_fun)
19.755319
88
0.637588
8f51d7b60fbb6245bc75f1362989e315d9828b4d
341
py
Python
src/lesson_developer_tools/traceback_format_exception.py
jasonwee/asus-rt-n14uhp-mrtg
4fa96c3406e32ea6631ce447db6d19d70b2cd061
[ "Apache-2.0" ]
3
2018-08-14T09:33:52.000Z
2022-03-21T12:31:58.000Z
src/lesson_developer_tools/traceback_format_exception.py
jasonwee/asus-rt-n14uhp-mrtg
4fa96c3406e32ea6631ce447db6d19d70b2cd061
[ "Apache-2.0" ]
null
null
null
src/lesson_developer_tools/traceback_format_exception.py
jasonwee/asus-rt-n14uhp-mrtg
4fa96c3406e32ea6631ce447db6d19d70b2cd061
[ "Apache-2.0" ]
null
null
null
import traceback import sys from pprint import pprint from traceback_example import produce_exception try: produce_exception() except Exception as err: print('format_exception():') exc_type, exc_value, exc_tb = sys.exc_info() pprint( traceback.format_exception(exc_type, exc_value, exc_tb), width=65, )
21.3125
64
0.721408
2327c73aa4f89a42a26301da272b83b597188b73
27
py
Python
monitor/monitor_engine/tests.py
josamuna/codepo-backend
3666527aebcc3bd22b45c359d1bc68abc85a9a47
[ "MIT" ]
7
2020-12-28T23:03:11.000Z
2020-12-30T09:29:47.000Z
monitor/monitor_engine/tests.py
josamuna/codepo-backend
3666527aebcc3bd22b45c359d1bc68abc85a9a47
[ "MIT" ]
23
2020-02-09T12:24:00.000Z
2021-06-04T22:52:45.000Z
monitor/monitor_engine/tests.py
josamuna/codepo-backend
3666527aebcc3bd22b45c359d1bc68abc85a9a47
[ "MIT" ]
2
2020-12-28T23:15:28.000Z
2020-12-29T07:56:37.000Z
# Create your tests here.
13.5
26
0.703704
3b234210e8bd2bb5ae4f029569f7a8149654512c
940
py
Python
front-end-service/audio_consumer.py
Rukundo725/speech-to-text-data-collection
61c3d4858febc81980c854b5112bb629191e45af
[ "MIT", "Unlicense" ]
3
2021-12-03T09:06:31.000Z
2022-03-31T06:13:47.000Z
front-end-service/audio_consumer.py
Rukundo725/speech-to-text-data-collection
61c3d4858febc81980c854b5112bb629191e45af
[ "MIT", "Unlicense" ]
16
2021-09-06T20:19:25.000Z
2021-09-09T20:29:42.000Z
front-end-service/audio_consumer.py
Rukundo725/speech-to-text-data-collection
61c3d4858febc81980c854b5112bb629191e45af
[ "MIT", "Unlicense" ]
4
2021-09-06T19:46:45.000Z
2021-09-08T19:05:31.000Z
from kafka import KafkaConsumer, KafkaProducer import os import json import uuid from concurrent.futures import ThreadPoolExecutor from scipy.io.wavfile import read, write import pydub import io import boto3 s3 = boto3.resource('s3') if __name__ == "__main__": TOPIC_NAME = "audio" consumer = KafkaConsumer(TOPIC_NAME, client_id='d_id', bootstrap_servers=["b-1.demo-cluster-1.9q7lp7.c1.kafka.eu-west-1.amazonaws.com:9092", "b-2.demo-cluster-1.9q7lp7.c1.kafka.eu-west-1.amazonaws.com:9092"], auto_offset_reset='earliest', enable_auto_commit=True) for event in consumer: event_data = event.value print(event_data) bytes_wav = bytes() byte_io = io.BytesIO(event_data) print ("done") audio = pydub.AudioSegment.from_raw(byte_io, sample_width=2, frame_rate=22050, channels=1).export("newfile", format='wav') s3.meta.client.upload_file("newfile","chang-stt-bucket","newfile.wav")
32.413793
142
0.730851
b913385f26700b04dd5f9a4018aa9a7732898bac
1,082
py
Python
libdata/chexpert_index/split_trainset.py
google-research/understanding-transfer-learning
0e4df444f342784514d91028d0de332103343a94
[ "Apache-2.0" ]
35
2020-11-10T18:50:20.000Z
2022-01-06T05:37:56.000Z
libdata/chexpert_index/split_trainset.py
MLC-CV/transfer-learning-understanding
0e4df444f342784514d91028d0de332103343a94
[ "Apache-2.0" ]
null
null
null
libdata/chexpert_index/split_trainset.py
MLC-CV/transfer-learning-understanding
0e4df444f342784514d91028d0de332103343a94
[ "Apache-2.0" ]
10
2020-11-17T01:22:07.000Z
2022-03-10T21:48:35.000Z
#!/usr/bin/python # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np with open('train.csv', 'r') as in_f: lines = in_f.readlines() header = lines[0] lines = lines[1:] rng = np.random.RandomState(seed=1234) lines = rng.permutation(lines) def export(fn, start_idx, stop_idx): with open(fn, 'w') as out_f: out_f.write(header) for line in lines[start_idx:stop_idx]: out_f.write(line) # 50k trainingset export('train.0-50k.csv', 0, 50000) # 50k for testset export('train.50k-100k.csv', 50000, 100000)
28.473684
74
0.715342
83d9b052365e6fa8d2da387d7762b65219856260
236
py
Python
project/apps/hiking/views.py
skoczen/skoczen
07d22029e7c9e21bc3322e26072471d01c059cc4
[ "BSD-2-Clause" ]
null
null
null
project/apps/hiking/views.py
skoczen/skoczen
07d22029e7c9e21bc3322e26072471d01c059cc4
[ "BSD-2-Clause" ]
null
null
null
project/apps/hiking/views.py
skoczen/skoczen
07d22029e7c9e21bc3322e26072471d01c059cc4
[ "BSD-2-Clause" ]
null
null
null
from annoying.decorators import render_to from hiking.models import Hike @render_to("hiking/home.html") def home(request): hike = Hike.objects.order_by("-date") if hike.count() > 0: hike = hike[0] return locals()
19.666667
41
0.677966
8d14dcb75889fff2ebe1fbe06c22d283584c81e7
2,581
py
Python
saleor/core/templatetags/status.py
ProgrammingJoe/saleor
f89dbafe0b31c226e267b7a516a09dd5168e1911
[ "BSD-3-Clause" ]
2
2018-12-24T01:00:13.000Z
2019-01-21T15:09:16.000Z
saleor/core/templatetags/status.py
ProgrammingJoe/saleor
f89dbafe0b31c226e267b7a516a09dd5168e1911
[ "BSD-3-Clause" ]
64
2019-02-11T17:02:05.000Z
2021-06-25T15:16:57.000Z
saleor/core/templatetags/status.py
ProgrammingJoe/saleor
f89dbafe0b31c226e267b7a516a09dd5168e1911
[ "BSD-3-Clause" ]
2
2019-01-08T02:32:42.000Z
2021-07-05T14:05:55.000Z
from django.template import Library from payments import PaymentStatus from ...order import OrderStatus from ...product import ProductAvailabilityStatus, VariantAvailabilityStatus from ...product.utils.availability import ( get_product_availability_status, get_variant_availability_status) register = Library() ERRORS = {PaymentStatus.ERROR, PaymentStatus.REJECTED} SUCCESSES = {PaymentStatus.CONFIRMED, PaymentStatus.REFUNDED} LABEL_DANGER = 'danger' LABEL_SUCCESS = 'success' LABEL_DEFAULT = 'default' @register.inclusion_tag('status_label.html') def render_status(status, status_display=None): if status in ERRORS: label_cls = LABEL_DANGER elif status in SUCCESSES: label_cls = LABEL_SUCCESS else: label_cls = LABEL_DEFAULT return {'label_cls': label_cls, 'status': status_display or status} @register.inclusion_tag('status_label.html') def render_order_status(status, status_display=None): if status == OrderStatus.FULFILLED: label_cls = LABEL_SUCCESS else: label_cls = LABEL_DEFAULT return {'label_cls': label_cls, 'status': status_display or status} @register.inclusion_tag('status_label.html') def render_availability_status(product): status = get_product_availability_status(product) display = ProductAvailabilityStatus.get_display(status) if status == ProductAvailabilityStatus.READY_FOR_PURCHASE: label_cls = LABEL_SUCCESS else: label_cls = LABEL_DANGER return {'status': display, 'label_cls': label_cls} @register.inclusion_tag('status_label.html') def render_variant_availability_status(variant): status = get_variant_availability_status(variant) display = VariantAvailabilityStatus.get_display(status) if status == VariantAvailabilityStatus.AVAILABLE: label_cls = LABEL_SUCCESS else: label_cls = LABEL_DANGER return {'status': display, 'label_cls': label_cls} @register.inclusion_tag('dashboard/includes/_page_availability.html') def render_page_availability(page): ctx = {'is_published': page.is_published, 'page': page} if page.is_published: label_cls = LABEL_SUCCESS ctx.update({'label_cls': label_cls}) return ctx @register.inclusion_tag('dashboard/includes/_collection_availability.html') def render_collection_availability(collection): if collection.is_published: label_cls = LABEL_SUCCESS else: label_cls = LABEL_DANGER return {'is_published': collection.is_published, 'collection': collection, 'label_cls': label_cls}
31.864198
75
0.748547
c68dafee2ba404b5fd38870662c409e1910966b3
16,912
py
Python
molpal/models/nnmodels.py
jenna-fromer/molpal
a6320610d0c9ecd708f4a709110f272867eaa6cf
[ "MIT" ]
null
null
null
molpal/models/nnmodels.py
jenna-fromer/molpal
a6320610d0c9ecd708f4a709110f272867eaa6cf
[ "MIT" ]
null
null
null
molpal/models/nnmodels.py
jenna-fromer/molpal
a6320610d0c9ecd708f4a709110f272867eaa6cf
[ "MIT" ]
null
null
null
"""This module contains Model implementations that utilize an NN model as their underlying model""" from functools import partial import json from pathlib import Path from typing import Callable, Iterable, List, NoReturn, Optional, Sequence, Tuple, TypeVar import numpy as np from numpy import ndarray from tqdm import tqdm import tensorflow as tf import tensorflow_addons as tfa from tensorflow import keras from molpal.featurizer import Featurizer, feature_matrix from molpal.models.base import Model T = TypeVar("T") T_feat = TypeVar("T_feat") Dataset = tf.data.Dataset def mve_loss(y_true, y_pred): mu = y_pred[:, 0] var = tf.math.softplus(y_pred[:, 1]) return tf.reduce_mean( tf.math.log(2 * 3.141592) / 2 + tf.math.log(var) / 2 + tf.math.square(mu - y_true) / (2 * var) ) class NN: """A feed-forward neural network model Attributes ---------- model : keras.Sequential the underlying model on which to train and perform inference with optimizer : keras.optimizers.Adam the model optimizer loss : Callable the loss function to use input_size : int the dimension of the model input output_size : int the dimension of the model output batch_size : int the size to batch training into uncertainty : Optional[str] the uncertainty method this model is using (if at all) uncertainty : bool Whether the model directly predicts its own uncertainty mean : float the mean of the unnormalized data std : float the standard deviation of the unnormalized data Parameters ---------- input_size : int num_tasks : int batch_size : int, default=4096 layer_sizes : Optional[Sequence[int]], default=None the sizes of the hidden layers in the network. If None, default to two hidden layers with 100 neurons each. dropout : Optional[float], default=None if specified, add a dropout hidden layer with the specified dropout rate after each hidden layer activation : Optional[str], default='relu' the name of the activation function to use uncertainty : Optional[str], default=None """ def __init__( self, input_size: int, num_tasks: int, batch_size: int = 4096, layer_sizes: Optional[Sequence[int]] = None, dropout: Optional[float] = None, activation: Optional[str] = "relu", uncertainty: Optional[str] = None, model_seed: Optional[int] = None, ): self.input_size = input_size self.batch_size = batch_size self.uncertainty = uncertainty layer_sizes = layer_sizes or [100, 100] self.model, self.optimizer, self.loss = self.build( input_size, num_tasks, layer_sizes, dropout, self.uncertainty, activation ) self.mean = 0 self.std = 0 tf.random.set_seed(model_seed) def build(self, input_size, num_tasks, layer_sizes, dropout, uncertainty, activation): """Build the model, optimizer, and loss function""" dropout_at_predict = uncertainty == "dropout" output_size = 2 * num_tasks if self.uncertainty else num_tasks inputs = keras.layers.Input(shape=(input_size,)) hidden = inputs for layer_size in layer_sizes: hidden = keras.layers.Dense( units=layer_size, activation=activation, kernel_regularizer=keras.regularizers.l2(0.01), )(hidden) if dropout: hidden = keras.layers.Dropout(dropout)(hidden, training=dropout_at_predict) outputs = keras.layers.Dense(output_size, activation="linear")(hidden) model = keras.Model(inputs, outputs) if uncertainty not in {"mve"}: optimizer = keras.optimizers.Adam(lr=0.01) loss = keras.losses.mse elif uncertainty == "mve": optimizer = keras.optimizers.Adam(lr=0.05) loss = mve_loss else: raise ValueError(f'Unrecognized uncertainty method: "{uncertainty}"') return model, optimizer, loss def train( self, xs: Iterable[T], ys: Iterable[float], featurizer: Callable[[T], ndarray] ) -> bool: """Train the model on xs and ys with the given featurizer Parameters ---------- xs : Sequence[T] an sequence of inputs in their identifier representations ys : Sequence[float] a parallel sequence of target values for these inputs featurize : Callable[[T], ndarray] a function that transforms an identifier into its uncompressed feature representation Returns ------- True """ self.model.compile(optimizer=self.optimizer, loss=self.loss) X = np.array(feature_matrix(xs, featurizer)) Y = self._normalize(ys) self.model.fit( X, Y, batch_size=self.batch_size, validation_split=0.2, epochs=50, validation_freq=2, verbose=0, callbacks=[ keras.callbacks.EarlyStopping( monitor="val_loss", patience=5, restore_best_weights=True, verbose=0 ), tfa.callbacks.TQDMProgressBar(leave_epoch_progress=False), ], ) return True def predict(self, xs: Sequence[ndarray]) -> ndarray: X = np.stack(xs, axis=0) Y_pred = self.model.predict(X) if self.uncertainty == "mve": Y_pred[:, 0::2] = Y_pred[:, 0::2] * self.std + self.mean Y_pred[:, 1::2] = Y_pred[:, 1::2] * self.std ** 2 else: Y_pred = Y_pred * self.std + self.mean return Y_pred def save(self, path) -> str: path = Path(path) path.mkdir(parents=True, exist_ok=True) model_path = f"{path}/model" self.model.save(model_path, include_optimizer=True) state_path = f"{path}/state.json" state = {"std": self.std, "mean": self.mean, "model_path": model_path} json.dump(state, open(state_path, "w"), indent=4) return state_path def load(self, path): state = json.load(open(path, "r")) model_path = state["model_path"] self.std = state["std"] self.mean = state["mean"] if self.uncertainty == "mve": custom_objects = {"mve_loss": mve_loss} else: custom_objects = {} self.model = keras.models.load_model(model_path, custom_objects=custom_objects) def _normalize(self, ys: Sequence[float]) -> ndarray: Y = np.stack(list(ys)) self.mean = np.nanmean(Y, axis=0) self.std = np.nanstd(Y, axis=0) return (Y - self.mean) / self.std class NNModel(Model): """A simple feed-forward neural network model Attributes ---------- model : NN the underlying neural net on which to train and perform inference Parameters ---------- input_size : int the size of the input dimension of the NN test_batch_size : Optional[int] (Defulat = 4096) the size into which inputs should be batched during training and inference dropout : Optional[float] (Default = 0.0) the dropout probability during training See also -------- NNDropoutModel NNEnsembleModel NNTwoOutputModel """ def __init__( self, input_size: int, test_batch_size: Optional[int] = 4096, dropout: Optional[float] = 0.0, model_seed: Optional[int] = None, **kwargs, ): test_batch_size = test_batch_size or 4096 self.build_model = partial( NN, input_size=input_size, num_tasks=1, batch_size=test_batch_size, dropout=dropout, model_seed=model_seed, ) self.model = self.build_model() super().__init__(test_batch_size, **kwargs) @property def provides(self): return {"means"} @property def type_(self): return "nn" def train( self, xs: Iterable[T], ys: Sequence[Optional[float]], *, featurizer: Featurizer, retrain: bool = False, ) -> bool: if retrain: self.model = self.build_model() return self.model.train(xs, ys, featurizer) def get_means(self, xs: List) -> ndarray: return self.model.predict(xs)[:, 0] def get_means_and_vars(self, xs: List) -> NoReturn: raise TypeError("NNModel can't predict variances!") def save(self, path) -> str: return self.model.save(path) def load(self, path): self.model.load(path) class NNEnsembleModel(Model): """A feed-forward neural network ensemble model for estimating mean and variance. Attributes ---------- models : List[NN] the underlying neural nets on which to train and perform inference Parameters ---------- input_size : int the size of the input dimension of the NN test_batch_size : Optional[int] (Defulat = 4096) the size into which inputs should be batched during training and inference dropout : Optional[float] (Default = 0.0) the dropout probability during training ensemble_size : int (Default = 5) the number of separate models to train bootstrap_ensemble : bool NOTE: UNUSED """ def __init__( self, input_size: int, test_batch_size: Optional[int] = 4096, dropout: Optional[float] = 0.0, ensemble_size: int = 5, bootstrap_ensemble: Optional[bool] = False, model_seed: Optional[int] = None, **kwargs, ): test_batch_size = test_batch_size or 4096 self.build_model = partial( NN, input_size=input_size, num_tasks=1, batch_size=test_batch_size, dropout=dropout, model_seed=model_seed, ) self.ensemble_size = ensemble_size self.models = [self.build_model() for _ in range(self.ensemble_size)] self.bootstrap_ensemble = bootstrap_ensemble # TODO: Actually use this super().__init__(test_batch_size=test_batch_size, **kwargs) @property def type_(self): return "nn" @property def provides(self): return {"means", "vars"} def train( self, xs: Iterable[T], ys: Sequence[Optional[float]], *, featurizer: Featurizer, retrain: bool = False, ): if retrain: self.models = [self.build_model() for _ in range(self.ensemble_size)] return all([model.train(xs, ys, featurizer) for model in self.models]) def get_means(self, xs: Sequence) -> np.ndarray: preds = np.zeros((len(xs), len(self.models))) for j, model in tqdm( enumerate(self.models), leave=False, desc="ensemble prediction", unit="model" ): preds[:, j] = model.predict(xs)[:, 0] return np.mean(preds, axis=1) def get_means_and_vars(self, xs: Sequence) -> Tuple[np.ndarray, np.ndarray]: preds = np.zeros((len(xs), len(self.models))) for j, model in tqdm( enumerate(self.models), leave=False, desc="ensemble prediction", unit="model" ): preds[:, j] = model.predict(xs)[:, 0] return np.mean(preds, axis=1), np.var(preds, axis=1) def save(self, path) -> str: for i, model in enumerate(self.models): model.save(path, f"model_{i}") return path def load(self, path): for model, model_path in zip(self.models, path.iterdir()): model.load(model_path) class NNTwoOutputModel(Model): """Feed forward neural network with two outputs so it learns to predict its own uncertainty at the same time Attributes ---------- model : NN the underlying neural net on which to train and perform inference Parameters ---------- input_size : int the size of the input dimension of the NN test_batch_size : Optional[int] (Defulat = 4096) the size into which inputs should be batched during training and inference dropout : Optional[float] (Default = 0.0) the dropout probability during training """ def __init__( self, input_size: int, test_batch_size: Optional[int] = 4096, dropout: Optional[float] = 0.0, model_seed: Optional[int] = None, **kwargs, ): test_batch_size = test_batch_size or 4096 self.build_model = partial( NN, input_size=input_size, num_tasks=1, batch_size=test_batch_size, dropout=dropout, uncertainty="mve", model_seed=model_seed, ) self.model = self.build_model() super().__init__(test_batch_size=test_batch_size, **kwargs) @property def type_(self): return "nn" @property def provides(self): return {"means", "vars"} def train( self, xs: Iterable[T], ys: Sequence[Optional[float]], *, featurizer: Featurizer, retrain: bool = False, ) -> bool: if retrain: self.model = self.build_model() return self.model.train(xs, ys, featurizer) def get_means(self, xs: Sequence) -> np.ndarray: preds = self.model.predict(xs) return preds[:, 0] def get_means_and_vars(self, xs: Sequence) -> Tuple[ndarray, ndarray]: preds = self.model.predict(xs) return preds[:, 0], self._safe_softplus(preds[:, 1]) def save(self, path) -> str: return self.model.save(path) def load(self, path): self.model.load(path) @classmethod def _safe_softplus(cls, xs): in_range = xs < 100 return np.log(1 + np.exp(xs * in_range)) * in_range + xs * (1 - in_range) class NNDropoutModel(Model): """Feed forward neural network that uses MC dropout for UQ Attributes ---------- model : NN the underlying neural net on which to train and perform inference dropout_size : int the number of forward passes to perform to through the model at inference time Parameters ---------- input_size : int the size of the input dimension of the NN test_batch_size : Optional[int] (Defulat = 4096) the size into which inputs should be batched during training and inference dropout : Optional[float] (Default = 0.0) the dropout probability during training dropout_size : int (Default = 10) the number of passes to make through the network during inference """ def __init__( self, input_size: int, test_batch_size: Optional[int] = 4096, dropout: Optional[float] = 0.2, dropout_size: int = 10, model_seed: Optional[int] = None, **kwargs, ): test_batch_size = test_batch_size or 4096 self.build_model = partial( NN, input_size=input_size, num_tasks=1, batch_size=test_batch_size, dropout=dropout, uncertainty="dropout", model_seed=model_seed, ) self.model = self.build_model() self.dropout_size = dropout_size super().__init__(test_batch_size=test_batch_size, **kwargs) @property def type_(self): return "nn" @property def provides(self): return {"means", "vars", "stochastic"} def train( self, xs: Iterable[T], ys: Sequence[Optional[float]], *, featurizer: Featurizer, retrain: bool = False, ) -> bool: if retrain: self.model = self.build_model() return self.model.train(xs, ys, featurizer) def get_means(self, xs: Sequence) -> ndarray: predss = self._get_predss(xs) return np.mean(predss, axis=1) def get_means_and_vars(self, xs: Sequence) -> Tuple[ndarray, ndarray]: predss = self._get_predss(xs) return np.mean(predss, axis=1), np.var(predss, axis=1) def _get_predss(self, xs: Sequence) -> ndarray: """Get the predictions for each dropout pass""" predss = np.zeros((len(xs), self.dropout_size)) for j in tqdm( range(self.dropout_size), leave=False, desc="bootstrap prediction", unit="pass" ): predss[:, j] = self.model.predict(xs)[:, 0] return predss def save(self, path) -> str: return self.model.save(path) def load(self, path): self.model.load(path)
29.058419
91
0.5965
f65ceb4e61c02d69cccbd2427328a854ad1544b7
359
py
Python
BotUtils.py
cancinconntg/altermebot
1e49d592e2977087719d59c50d7b6083bfe3522b
[ "Apache-2.0" ]
null
null
null
BotUtils.py
cancinconntg/altermebot
1e49d592e2977087719d59c50d7b6083bfe3522b
[ "Apache-2.0" ]
null
null
null
BotUtils.py
cancinconntg/altermebot
1e49d592e2977087719d59c50d7b6083bfe3522b
[ "Apache-2.0" ]
1
2021-07-21T19:58:37.000Z
2021-07-21T19:58:37.000Z
import re ALIAS_MAX_LENGTH = 32 ALIAS_MIN_LENGTH = 2 ALIASES_MAX_COUNT = 10 ALIASING_ENABLED = 1 ALIASING_DISABLED = 0 HEALTH_SYSTEM_MESSAGING = 0 HEALTH_SYSTEM_MESSAGING_OK = 1 def escape_markdown(text): """Helper function to escape telegram markup symbols.""" escape_chars = '\*_`\[' return re.sub(r'([%s])' % escape_chars, r'\\\1', text)
18.894737
60
0.715877
3f47439f089d388a8d8baa08f3bb8831434aacf7
1,620
py
Python
autonormalize/examples/script.py
j-grover/autonormalize
764a652fadf1a7ec544c3447120d11aa29a11435
[ "BSD-3-Clause" ]
68
2019-08-14T22:01:23.000Z
2021-03-10T21:33:36.000Z
autonormalize/examples/script.py
j-grover/autonormalize
764a652fadf1a7ec544c3447120d11aa29a11435
[ "BSD-3-Clause" ]
26
2019-08-15T15:49:19.000Z
2021-03-08T15:27:22.000Z
autonormalize/examples/script.py
j-grover/autonormalize
764a652fadf1a7ec544c3447120d11aa29a11435
[ "BSD-3-Clause" ]
9
2019-10-18T00:49:23.000Z
2021-04-14T05:42:50.000Z
import os import time import pandas as pd import dfd import user_interaction path = os.getcwd() df = pd.read_csv(os.path.join(path, 'example_3')) df_3 = pd.read_csv(os.path.join(path, 'example_4')) df_acc = pd.read_csv(os.path.join(path, 'accredation.csv')) df_acc = df_acc.drop(columns=df_acc.columns[10:]) dic_2 = { "id": [100, 101, 102, 103, 104, 105, 106, 107, 109], "age": [1, 2, 3, 4, 5, 6, 7, 5, 6], "height": [4, 5, 6, 7, 8, 9, 10, 8, 9], "less_than_5": [1, 1, 1, 1, 0, 0, 0, 0, 0] } dic_1 = { "id": [100, 101, 102, 103, 104, 105, 106, 107, 109], "age": [1, 2, 3, 4, 5, 6, 7, 5, 6], "height": [4, 5, 6, 7, 8, 9, 10, 8, 9] } df_1 = pd.DataFrame(dic_1) df_2 = pd.DataFrame(dic_2) def print_example(str_interp, df, dim=None): print("\n\n") print("dependencies for: \n" + str_interp) if dim is not None: print(str(dim[0]) + " rows and " + str(dim[1]) + " columns\n") print("\n") start_time = time.time() dep = dfd.dfd(df) end_time = time.time() print(dep.serialize()) print("\nexecution time: " + str(end_time - start_time)) print("\n\n") print_example(str(dic_1), df_1) print_example(str(dic_2), df_2) print_example("A = index, B = random, C = random, D = random, " + "E = c != 1, F = b < 10, G = c + d", df, (100000, 7)) # print_example("see gen file", df_3, (400000, 12)) # print_example("see gen file", df_4, (400000, 14)) print(df_acc) deps = user_interaction.find_dependencies(df_acc) new_dfs = user_interaction.normalization(df_acc, deps) print(deps) for df in new_dfs: print(df)
22.816901
73
0.592593
4d7674ee23517cd008b6ad1efde19930e34f462e
551
py
Python
news/migrations/0004_auto_20191001_1620.py
alex-muliande/tribune
86316dd4b20a76320b4b20b86266f89aac02a326
[ "MIT" ]
1
2019-10-18T13:45:42.000Z
2019-10-18T13:45:42.000Z
news/migrations/0004_auto_20191001_1620.py
alex-muliande/tribune
86316dd4b20a76320b4b20b86266f89aac02a326
[ "MIT" ]
5
2020-02-12T03:14:22.000Z
2021-09-08T01:19:18.000Z
news/migrations/0004_auto_20191001_1620.py
alex-muliande/tribune
86316dd4b20a76320b4b20b86266f89aac02a326
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2019-10-01 13:20 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('news', '0003_article'), ] operations = [ migrations.RemoveField( model_name='article', name='editor', ), migrations.RemoveField( model_name='article', name='tags', ), migrations.DeleteModel( name='Article', ), ]
20.407407
46
0.553539
55fe41af298a24f05bd1b18085d0fd4b972d243f
5,074
py
Python
exasol_integration_test_docker_environment/lib/docker/images/create/docker_image_create_task.py
exasol/integration-test-docker-environment
35850f67cd4cde010f03dd556d1a0f74b3291eb8
[ "MIT" ]
4
2020-06-25T20:47:31.000Z
2021-09-10T15:22:51.000Z
exasol_integration_test_docker_environment/lib/docker/images/create/docker_image_create_task.py
exasol/integration-test-docker-environment
35850f67cd4cde010f03dd556d1a0f74b3291eb8
[ "MIT" ]
113
2020-06-02T08:51:08.000Z
2022-03-31T08:47:41.000Z
exasol_integration_test_docker_environment/lib/docker/images/create/docker_image_create_task.py
exasol/integration-test-docker-environment
35850f67cd4cde010f03dd556d1a0f74b3291eb8
[ "MIT" ]
2
2020-05-19T10:57:47.000Z
2020-06-22T13:32:20.000Z
import copy import importlib import luigi from exasol_integration_test_docker_environment.lib.base.docker_base_task import DockerBaseTask from exasol_integration_test_docker_environment.lib.base.json_pickle_parameter import JsonPickleParameter from exasol_integration_test_docker_environment.lib.docker.images.create.docker_image_build_task import \ DockerBuildImageTask from exasol_integration_test_docker_environment.lib.docker.images.create.docker_image_load_task import \ DockerLoadImageTask from exasol_integration_test_docker_environment.lib.docker.images.create.docker_image_pull_task import \ DockerPullImageTask from exasol_integration_test_docker_environment.lib.docker.images.image_info import ImageInfo, ImageState from exasol_integration_test_docker_environment.lib.docker.images.required_task_info import RequiredTaskInfoDict, \ RequiredTaskInfo class DockerCreateImageTask(DockerBaseTask): image_name = luigi.Parameter() # ParameterVisibility needs to be hidden instead of private, because otherwise a MissingParameter gets thrown image_info = JsonPickleParameter(ImageInfo, visibility=luigi.parameter.ParameterVisibility.HIDDEN, significant=True) # type: ImageInfo def run_task(self): new_image_info = yield from self.build(self.image_info) self.return_object(new_image_info) def build(self, image_info: ImageInfo): if image_info.image_state == ImageState.NEEDS_TO_BE_BUILD.name: task = self.create_child_task(DockerBuildImageTask, image_name=self.image_name, image_info=image_info) yield from self.run_dependencies(task) image_info.image_state = ImageState.WAS_BUILD.name # TODO clone and change return image_info elif image_info.image_state == ImageState.CAN_BE_LOADED.name: task = self.create_child_task(DockerLoadImageTask, image_name=self.image_name, image_info=image_info) yield from self.run_dependencies(task) image_info.image_state = ImageState.WAS_LOADED.name return image_info elif image_info.image_state == ImageState.REMOTE_AVAILABLE.name: task = self.create_child_task(DockerPullImageTask, image_name=self.image_name, image_info=image_info) yield from self.run_dependencies(task) image_info.image_state = ImageState.WAS_PULLED.name return image_info elif image_info.image_state == ImageState.TARGET_LOCALLY_AVAILABLE.name: image_info.image_state = ImageState.USED_LOCAL.name return image_info elif image_info.image_state == ImageState.SOURCE_LOCALLY_AVAILABLE.name: image_info.image_state = ImageState.WAS_TAGED.name self.rename_source_image_to_target_image(image_info) return image_info else: raise Exception("Task %s: Image state %s not supported for image %s", self.task_id, image_info.image_state, image_info.get_target_complete_name()) def rename_source_image_to_target_image(self, image_info): with self._get_docker_client() as docker_client: docker_client.images.get(image_info.get_source_complete_name()).tag( repository=image_info.target_repository_name, tag=image_info.get_target_complete_tag() ) class DockerCreateImageTaskWithDeps(DockerCreateImageTask): # ParameterVisibility needs to be hidden instead of private, because otherwise a MissingParameter gets thrown required_task_infos = JsonPickleParameter(RequiredTaskInfoDict, visibility=luigi.parameter.ParameterVisibility.HIDDEN, significant=True) # type: RequiredTaskInfoDict def register_required(self): self.required_tasks = {key: self.create_required_task(required_task_info) for key, required_task_info in self.required_task_infos.infos.items()} self.futures = self.register_dependencies(self.required_tasks) def create_required_task(self, required_task_info: RequiredTaskInfo) -> DockerCreateImageTask: module = importlib.import_module(required_task_info.module_name) class_ = getattr(module, required_task_info.class_name) instance = self.create_child_task(class_, **required_task_info.params) return instance def run_task(self): image_infos = self.get_values_from_futures(self.futures) image_info = copy.copy(self.image_info) image_info.depends_on_images = image_infos new_image_info = yield from self.build(image_info) self.return_object(new_image_info)
53.410526
115
0.692156
d69fad201e1996a93a0c07ab89caabf4c7815228
7,056
py
Python
train.py
l-willis/dc_tts
086877481157bf876ab1f8ec7b4384fd607c2bb6
[ "Apache-2.0" ]
1,167
2018-01-28T00:52:42.000Z
2022-03-24T11:59:34.000Z
train.py
l-willis/dc_tts
086877481157bf876ab1f8ec7b4384fd607c2bb6
[ "Apache-2.0" ]
94
2018-01-28T00:53:43.000Z
2022-03-27T06:34:16.000Z
train.py
l-willis/dc_tts
086877481157bf876ab1f8ec7b4384fd607c2bb6
[ "Apache-2.0" ]
387
2018-01-28T07:09:47.000Z
2022-02-21T17:23:08.000Z
# -*- coding: utf-8 -*- # /usr/bin/python2 ''' By kyubyong park. [email protected]. https://www.github.com/kyubyong/dc_tts ''' from __future__ import print_function from tqdm import tqdm from data_load import get_batch, load_vocab from hyperparams import Hyperparams as hp from modules import * from networks import TextEnc, AudioEnc, AudioDec, Attention, SSRN import tensorflow as tf from utils import * import sys class Graph: def __init__(self, num=1, mode="train"): ''' Args: num: Either 1 or 2. 1 for Text2Mel 2 for SSRN. mode: Either "train" or "synthesize". ''' # Load vocabulary self.char2idx, self.idx2char = load_vocab() # Set flag training = True if mode=="train" else False # Graph # Data Feeding ## L: Text. (B, N), int32 ## mels: Reduced melspectrogram. (B, T/r, n_mels) float32 ## mags: Magnitude. (B, T, n_fft//2+1) float32 if mode=="train": self.L, self.mels, self.mags, self.fnames, self.num_batch = get_batch() self.prev_max_attentions = tf.ones(shape=(hp.B,), dtype=tf.int32) self.gts = tf.convert_to_tensor(guided_attention()) else: # Synthesize self.L = tf.placeholder(tf.int32, shape=(None, None)) self.mels = tf.placeholder(tf.float32, shape=(None, None, hp.n_mels)) self.prev_max_attentions = tf.placeholder(tf.int32, shape=(None,)) if num==1 or (not training): with tf.variable_scope("Text2Mel"): # Get S or decoder inputs. (B, T//r, n_mels) self.S = tf.concat((tf.zeros_like(self.mels[:, :1, :]), self.mels[:, :-1, :]), 1) # Networks with tf.variable_scope("TextEnc"): self.K, self.V = TextEnc(self.L, training=training) # (N, Tx, e) with tf.variable_scope("AudioEnc"): self.Q = AudioEnc(self.S, training=training) with tf.variable_scope("Attention"): # R: (B, T/r, 2d) # alignments: (B, N, T/r) # max_attentions: (B,) self.R, self.alignments, self.max_attentions = Attention(self.Q, self.K, self.V, mononotic_attention=(not training), prev_max_attentions=self.prev_max_attentions) with tf.variable_scope("AudioDec"): self.Y_logits, self.Y = AudioDec(self.R, training=training) # (B, T/r, n_mels) else: # num==2 & training. Note that during training, # the ground truth melspectrogram values are fed. with tf.variable_scope("SSRN"): self.Z_logits, self.Z = SSRN(self.mels, training=training) if not training: # During inference, the predicted melspectrogram values are fed. with tf.variable_scope("SSRN"): self.Z_logits, self.Z = SSRN(self.Y, training=training) with tf.variable_scope("gs"): self.global_step = tf.Variable(0, name='global_step', trainable=False) if training: if num==1: # Text2Mel # mel L1 loss self.loss_mels = tf.reduce_mean(tf.abs(self.Y - self.mels)) # mel binary divergence loss self.loss_bd1 = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=self.Y_logits, labels=self.mels)) # guided_attention loss self.A = tf.pad(self.alignments, [(0, 0), (0, hp.max_N), (0, hp.max_T)], mode="CONSTANT", constant_values=-1.)[:, :hp.max_N, :hp.max_T] self.attention_masks = tf.to_float(tf.not_equal(self.A, -1)) self.loss_att = tf.reduce_sum(tf.abs(self.A * self.gts) * self.attention_masks) self.mask_sum = tf.reduce_sum(self.attention_masks) self.loss_att /= self.mask_sum # total loss self.loss = self.loss_mels + self.loss_bd1 + self.loss_att tf.summary.scalar('train/loss_mels', self.loss_mels) tf.summary.scalar('train/loss_bd1', self.loss_bd1) tf.summary.scalar('train/loss_att', self.loss_att) tf.summary.image('train/mel_gt', tf.expand_dims(tf.transpose(self.mels[:1], [0, 2, 1]), -1)) tf.summary.image('train/mel_hat', tf.expand_dims(tf.transpose(self.Y[:1], [0, 2, 1]), -1)) else: # SSRN # mag L1 loss self.loss_mags = tf.reduce_mean(tf.abs(self.Z - self.mags)) # mag binary divergence loss self.loss_bd2 = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=self.Z_logits, labels=self.mags)) # total loss self.loss = self.loss_mags + self.loss_bd2 tf.summary.scalar('train/loss_mags', self.loss_mags) tf.summary.scalar('train/loss_bd2', self.loss_bd2) tf.summary.image('train/mag_gt', tf.expand_dims(tf.transpose(self.mags[:1], [0, 2, 1]), -1)) tf.summary.image('train/mag_hat', tf.expand_dims(tf.transpose(self.Z[:1], [0, 2, 1]), -1)) # Training Scheme self.lr = learning_rate_decay(hp.lr, self.global_step) self.optimizer = tf.train.AdamOptimizer(learning_rate=self.lr) tf.summary.scalar("lr", self.lr) ## gradient clipping self.gvs = self.optimizer.compute_gradients(self.loss) self.clipped = [] for grad, var in self.gvs: grad = tf.clip_by_value(grad, -1., 1.) self.clipped.append((grad, var)) self.train_op = self.optimizer.apply_gradients(self.clipped, global_step=self.global_step) # Summary self.merged = tf.summary.merge_all() if __name__ == '__main__': # argument: 1 or 2. 1 for Text2mel, 2 for SSRN. num = int(sys.argv[1]) g = Graph(num=num); print("Training Graph loaded") logdir = hp.logdir + "-" + str(num) sv = tf.train.Supervisor(logdir=logdir, save_model_secs=0, global_step=g.global_step) with sv.managed_session() as sess: while 1: for _ in tqdm(range(g.num_batch), total=g.num_batch, ncols=70, leave=False, unit='b'): gs, _ = sess.run([g.global_step, g.train_op]) # Write checkpoint files at every 1k steps if gs % 1000 == 0: sv.saver.save(sess, logdir + '/model_gs_{}'.format(str(gs // 1000).zfill(3) + "k")) if num==1: # plot alignment alignments = sess.run(g.alignments) plot_alignment(alignments[0], str(gs // 1000).zfill(3) + "k", logdir) # break if gs > hp.num_iterations: break print("Done")
43.288344
151
0.558957
de252525d4255b589ecc3a4a59ea424990fa18a4
2,283
py
Python
service/googlecloudstorage.py
sesam-community/xml-translator
b77f18ca8b85012df21843543e386945f0824265
[ "Apache-2.0" ]
null
null
null
service/googlecloudstorage.py
sesam-community/xml-translator
b77f18ca8b85012df21843543e386945f0824265
[ "Apache-2.0" ]
2
2019-12-26T17:05:03.000Z
2020-01-06T19:13:43.000Z
service/googlecloudstorage.py
sesam-community/xml-translator
b77f18ca8b85012df21843543e386945f0824265
[ "Apache-2.0" ]
1
2019-11-12T09:29:11.000Z
2019-11-12T09:29:11.000Z
from google.cloud import storage import logging from flask import abort # class for reading files from a Google cloud storage class GoogleCloudStorage: """ initiate class, the class is taking the path to the file storing the credentials for the Google cloud storage, the credentials itself, and the name of the bucket where the xml files resides as parameters """ def __init__(self, credentialspath, credentials, bucketname): # write the content of the credentials to the path specified by credentialspath if credentials: with open(credentialspath, "wb") as out_file: out_file.write(credentials.encode()) self.bucket = bucketname pass # method for retrieving a list of the files in the Google cloud storage bucket def getlistofxmlfiles(self, path): def generate(): # get all the blobs (files) in the bucket blobs = bucket.list_blobs() # loop through the blogs and only return those in the root folder of the bucket for blob in blobs: if blob.name.startswith(path) and not blob.name.endswith("/"): # subfolder object yield blob.name try: # initiate Google cloud storage client storage_client = storage.Client() # get the bucket from the Google cloud storage bucket = storage_client.get_bucket(self.bucket) # return all the files in the bucket return generate() except Exception as e: logging.error(str(e)) abort(type(e).__name__, str(e)) # method for downloading the content of a file in the Google cloud storage bucket def download(self, filename): # initiate Google cloud storage client storage_client = storage.Client() # get the bucket from the Google cloud storage bucket = storage_client.get_bucket(self.bucket) try: # set chunk size chunk_size = 262144 * 4 * 10 # get the blob from the bucket blob = bucket.blob(filename) return blob.download_as_string() except Exception as e: logging.error(str(e)) abort(type(e).__name__, str(e))
37.42623
115
0.631187
e8b5fdb0b1b58a4479f483c85f1113b570315da4
2,458
py
Python
src/puremvc/patterns/mediator.py
scVENUS/puremvc-python-standard-framework
942bec84220fbc601e8064104199881271ad54c9
[ "BSD-3-Clause" ]
12
2015-01-26T03:48:00.000Z
2021-12-13T06:08:28.000Z
src/puremvc/patterns/mediator.py
scVENUS/puremvc-python-standard-framework
942bec84220fbc601e8064104199881271ad54c9
[ "BSD-3-Clause" ]
4
2016-01-25T15:48:35.000Z
2018-02-19T17:02:20.000Z
src/puremvc/patterns/mediator.py
scVENUS/puremvc-python-standard-framework
942bec84220fbc601e8064104199881271ad54c9
[ "BSD-3-Clause" ]
12
2015-09-02T03:49:52.000Z
2021-01-24T15:23:59.000Z
""" PureMVC Python Port by Toby de Havilland <[email protected]> PureMVC - Copyright(c) 2006-08 Futurescale, Inc., Some rights reserved. Your reuse is governed by the Creative Commons Attribution 3.0 License """ import puremvc.interfaces import puremvc.patterns.observer import puremvc.patterns.facade class Mediator(puremvc.patterns.observer.Notifier, puremvc.interfaces.IMediator, puremvc.interfaces.INotifier): """ A base C{IMediator} implementation. @see: L{View<org.puremvc.as3.core.view.View>} """ NAME = "Mediator" def __init__(self, mediatorName=None, viewComponent=None): """ Mediator Constructor Typically, a C{Mediator} will be written to serve one specific control or group controls and so, will not have a need to be dynamically named. """ self.facade = puremvc.patterns.facade.Facade.getInstance() mediatorName = mediatorName or self.NAME if mediatorName is None: raise ValueError("Mediator name cannot be None") self.mediatorName = mediatorName self.setViewComponent(viewComponent) def getMediatorName(self): """ Get the name of the C{Mediator}. @return: the Mediator name """ return self.mediatorName def setViewComponent(self,viewComponent): """ Set the C{IMediator}'s view component. @param viewComponent: the view component """ self.viewComponent = viewComponent def getViewComponent(self): """ Get the C{Mediator}'s view component. @return: the view component """ return self.viewComponent def listNotificationInterests(self): """ List the C{INotification} names this C{Mediator} is interested in being notified of. @return: List the list of C{INotification} names """ return [] def handleNotification(self,notification): """ Handle C{INotification}s. Typically this will be handled in a if/else statement, with one 'comparison' entry per C{INotification} the C{Mediator} is interested in. """ pass def onRegister(self): """ Called by the View when the Mediator is registered """ pass def onRemove(self): """ Called by the View when the Mediator is removed """ pass
27.931818
111
0.633035
f5acc46b66e681a60e2ff23dd03f15da3b24a902
4,912
py
Python
telestream_cloud_qc_sdk/telestream_cloud_qc/models/header_byte_count_test.py
pandastream/telestream-cloud-python-sdk
ce0ad503299661a0f622661359367173c06889fc
[ "MIT" ]
null
null
null
telestream_cloud_qc_sdk/telestream_cloud_qc/models/header_byte_count_test.py
pandastream/telestream-cloud-python-sdk
ce0ad503299661a0f622661359367173c06889fc
[ "MIT" ]
2
2016-07-06T14:13:31.000Z
2018-03-07T12:54:58.000Z
telestream_cloud_qc_sdk/telestream_cloud_qc/models/header_byte_count_test.py
Telestream/telestream-cloud-python-sdk
ce0ad503299661a0f622661359367173c06889fc
[ "MIT" ]
null
null
null
# coding: utf-8 """ Qc API Qc API # noqa: E501 The version of the OpenAPI document: 3.0.0 Contact: [email protected] Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from telestream_cloud_qc.configuration import Configuration class HeaderByteCountTest(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'header_bytes': 'int', 'reject_on_error': 'bool', 'checked': 'bool' } attribute_map = { 'header_bytes': 'header_bytes', 'reject_on_error': 'reject_on_error', 'checked': 'checked' } def __init__(self, header_bytes=None, reject_on_error=None, checked=None, local_vars_configuration=None): # noqa: E501 """HeaderByteCountTest - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._header_bytes = None self._reject_on_error = None self._checked = None self.discriminator = None if header_bytes is not None: self.header_bytes = header_bytes if reject_on_error is not None: self.reject_on_error = reject_on_error if checked is not None: self.checked = checked @property def header_bytes(self): """Gets the header_bytes of this HeaderByteCountTest. # noqa: E501 :return: The header_bytes of this HeaderByteCountTest. # noqa: E501 :rtype: int """ return self._header_bytes @header_bytes.setter def header_bytes(self, header_bytes): """Sets the header_bytes of this HeaderByteCountTest. :param header_bytes: The header_bytes of this HeaderByteCountTest. # noqa: E501 :type: int """ self._header_bytes = header_bytes @property def reject_on_error(self): """Gets the reject_on_error of this HeaderByteCountTest. # noqa: E501 :return: The reject_on_error of this HeaderByteCountTest. # noqa: E501 :rtype: bool """ return self._reject_on_error @reject_on_error.setter def reject_on_error(self, reject_on_error): """Sets the reject_on_error of this HeaderByteCountTest. :param reject_on_error: The reject_on_error of this HeaderByteCountTest. # noqa: E501 :type: bool """ self._reject_on_error = reject_on_error @property def checked(self): """Gets the checked of this HeaderByteCountTest. # noqa: E501 :return: The checked of this HeaderByteCountTest. # noqa: E501 :rtype: bool """ return self._checked @checked.setter def checked(self, checked): """Sets the checked of this HeaderByteCountTest. :param checked: The checked of this HeaderByteCountTest. # noqa: E501 :type: bool """ self._checked = checked def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, HeaderByteCountTest): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, HeaderByteCountTest): return True return self.to_dict() != other.to_dict()
28.229885
123
0.599959
1d859ab31d8318df08dc7e7977cee8558ecd90a2
437
py
Python
2020/skel/main.py
MWers/advent-of-code
15cc983d81e0154fd3926739c77b33dc1da911a4
[ "MIT" ]
null
null
null
2020/skel/main.py
MWers/advent-of-code
15cc983d81e0154fd3926739c77b33dc1da911a4
[ "MIT" ]
null
null
null
2020/skel/main.py
MWers/advent-of-code
15cc983d81e0154fd3926739c77b33dc1da911a4
[ "MIT" ]
null
null
null
import argparse from typing import List parser = argparse.ArgumentParser(description='Run an Advent of Code program') parser.add_argument( 'input_file', type=str, help='the file containing input data' ) parser.add_argument( '--debug', action='store_true', help='print debug messages' ) args = parser.parse_args() input_data: List = [] with open(args.input_file) as f: input_data = [line for line in f.read().splitlines()]
25.705882
77
0.732265
a2a5779fc48816f5c96f4082c4484d18b5807dc6
1,305
py
Python
Algorithms/1092/spfa.py
M-Quadra/LeetCode-problems
0cc100aa1e50b02df289f04fe2e0b97239eb9895
[ "MIT" ]
null
null
null
Algorithms/1092/spfa.py
M-Quadra/LeetCode-problems
0cc100aa1e50b02df289f04fe2e0b97239eb9895
[ "MIT" ]
null
null
null
Algorithms/1092/spfa.py
M-Quadra/LeetCode-problems
0cc100aa1e50b02df289f04fe2e0b97239eb9895
[ "MIT" ]
null
null
null
from typing import List from queue import Queue,PriorityQueue class Solution: def shortestCommonSupersequence(self, str1: str, str2: str) -> str: opt = str1 + str2 lenDic = {(0, 0): 0} q = Queue() q.put(("", 0, 0)) while not q.empty(): now, i1, i2 = q.get() if i1 >= len(str1) or i2 >= len(str2): nOpt = now + str1[i1:] + str2[i2:] if len(nOpt) < len(opt): opt = nOpt lenDic[(len(str1), len(str2))] = len(opt) continue if str1[i1] == str2[i2]: nNow = now + str1[i1] oLen = lenDic.get((i1+1, i2+1), len(opt)) if len(nNow) < oLen: lenDic[(i1+1, i2+1)] = len(nNow) q.put((nNow, i1+1, i2+1)) nNow = now + str1[i1] oLen = lenDic.get((i1+1, i2), len(opt)) if len(nNow) < oLen: lenDic[(i1+1, i2)] = len(nNow) q.put((nNow, i1+1, i2)) nNow = now + str2[i2] oLen = lenDic.get((i1, i2+1), len(opt)) if len(nNow) < oLen: lenDic[(i1, i2+1)] = len(nNow) q.put((nNow, i1, i2+1)) return opt
32.625
71
0.413793
401254f5d4ef3eb9a58793100c573fbdc8ac8e4e
19,289
py
Python
train.py
liv0vil/Computer-Vision-FixMatch
7614cde1b4be1d5461e3354faacad33a01f1a9b2
[ "MIT" ]
503
2020-01-30T02:48:16.000Z
2022-03-30T13:32:46.000Z
train.py
liv0vil/Computer-Vision-FixMatch
7614cde1b4be1d5461e3354faacad33a01f1a9b2
[ "MIT" ]
48
2020-02-28T09:38:19.000Z
2022-02-09T11:07:05.000Z
train.py
liv0vil/Computer-Vision-FixMatch
7614cde1b4be1d5461e3354faacad33a01f1a9b2
[ "MIT" ]
130
2020-01-31T08:49:14.000Z
2022-03-29T07:58:10.000Z
import argparse import logging import math import os import random import shutil import time from collections import OrderedDict import numpy as np import torch import torch.nn.functional as F import torch.optim as optim from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader, RandomSampler, SequentialSampler from torch.utils.data.distributed import DistributedSampler from torch.utils.tensorboard import SummaryWriter from tqdm import tqdm from dataset.cifar import DATASET_GETTERS from utils import AverageMeter, accuracy logger = logging.getLogger(__name__) best_acc = 0 def save_checkpoint(state, is_best, checkpoint, filename='checkpoint.pth.tar'): filepath = os.path.join(checkpoint, filename) torch.save(state, filepath) if is_best: shutil.copyfile(filepath, os.path.join(checkpoint, 'model_best.pth.tar')) def set_seed(args): random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed) def get_cosine_schedule_with_warmup(optimizer, num_warmup_steps, num_training_steps, num_cycles=7./16., last_epoch=-1): def _lr_lambda(current_step): if current_step < num_warmup_steps: return float(current_step) / float(max(1, num_warmup_steps)) no_progress = float(current_step - num_warmup_steps) / \ float(max(1, num_training_steps - num_warmup_steps)) return max(0., math.cos(math.pi * num_cycles * no_progress)) return LambdaLR(optimizer, _lr_lambda, last_epoch) def interleave(x, size): s = list(x.shape) return x.reshape([-1, size] + s[1:]).transpose(0, 1).reshape([-1] + s[1:]) def de_interleave(x, size): s = list(x.shape) return x.reshape([size, -1] + s[1:]).transpose(0, 1).reshape([-1] + s[1:]) def main(): parser = argparse.ArgumentParser(description='PyTorch FixMatch Training') parser.add_argument('--gpu-id', default='0', type=int, help='id(s) for CUDA_VISIBLE_DEVICES') parser.add_argument('--num-workers', type=int, default=4, help='number of workers') parser.add_argument('--dataset', default='cifar10', type=str, choices=['cifar10', 'cifar100'], help='dataset name') parser.add_argument('--num-labeled', type=int, default=4000, help='number of labeled data') parser.add_argument("--expand-labels", action="store_true", help="expand labels to fit eval steps") parser.add_argument('--arch', default='wideresnet', type=str, choices=['wideresnet', 'resnext'], help='dataset name') parser.add_argument('--total-steps', default=2**20, type=int, help='number of total steps to run') parser.add_argument('--eval-step', default=1024, type=int, help='number of eval steps to run') parser.add_argument('--start-epoch', default=0, type=int, help='manual epoch number (useful on restarts)') parser.add_argument('--batch-size', default=64, type=int, help='train batchsize') parser.add_argument('--lr', '--learning-rate', default=0.03, type=float, help='initial learning rate') parser.add_argument('--warmup', default=0, type=float, help='warmup epochs (unlabeled data based)') parser.add_argument('--wdecay', default=5e-4, type=float, help='weight decay') parser.add_argument('--nesterov', action='store_true', default=True, help='use nesterov momentum') parser.add_argument('--use-ema', action='store_true', default=True, help='use EMA model') parser.add_argument('--ema-decay', default=0.999, type=float, help='EMA decay rate') parser.add_argument('--mu', default=7, type=int, help='coefficient of unlabeled batch size') parser.add_argument('--lambda-u', default=1, type=float, help='coefficient of unlabeled loss') parser.add_argument('--T', default=1, type=float, help='pseudo label temperature') parser.add_argument('--threshold', default=0.95, type=float, help='pseudo label threshold') parser.add_argument('--out', default='result', help='directory to output the result') parser.add_argument('--resume', default='', type=str, help='path to latest checkpoint (default: none)') parser.add_argument('--seed', default=None, type=int, help="random seed") parser.add_argument("--amp", action="store_true", help="use 16-bit (mixed) precision through NVIDIA apex AMP") parser.add_argument("--opt_level", type=str, default="O1", help="apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html") parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument('--no-progress', action='store_true', help="don't use progress bar") args = parser.parse_args() global best_acc def create_model(args): if args.arch == 'wideresnet': import models.wideresnet as models model = models.build_wideresnet(depth=args.model_depth, widen_factor=args.model_width, dropout=0, num_classes=args.num_classes) elif args.arch == 'resnext': import models.resnext as models model = models.build_resnext(cardinality=args.model_cardinality, depth=args.model_depth, width=args.model_width, num_classes=args.num_classes) logger.info("Total params: {:.2f}M".format( sum(p.numel() for p in model.parameters())/1e6)) return model if args.local_rank == -1: device = torch.device('cuda', args.gpu_id) args.world_size = 1 args.n_gpu = torch.cuda.device_count() else: torch.cuda.set_device(args.local_rank) device = torch.device('cuda', args.local_rank) torch.distributed.init_process_group(backend='nccl') args.world_size = torch.distributed.get_world_size() args.n_gpu = 1 args.device = device logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN) logger.warning( f"Process rank: {args.local_rank}, " f"device: {args.device}, " f"n_gpu: {args.n_gpu}, " f"distributed training: {bool(args.local_rank != -1)}, " f"16-bits training: {args.amp}",) logger.info(dict(args._get_kwargs())) if args.seed is not None: set_seed(args) if args.local_rank in [-1, 0]: os.makedirs(args.out, exist_ok=True) args.writer = SummaryWriter(args.out) if args.dataset == 'cifar10': args.num_classes = 10 if args.arch == 'wideresnet': args.model_depth = 28 args.model_width = 2 elif args.arch == 'resnext': args.model_cardinality = 4 args.model_depth = 28 args.model_width = 4 elif args.dataset == 'cifar100': args.num_classes = 100 if args.arch == 'wideresnet': args.model_depth = 28 args.model_width = 8 elif args.arch == 'resnext': args.model_cardinality = 8 args.model_depth = 29 args.model_width = 64 if args.local_rank not in [-1, 0]: torch.distributed.barrier() labeled_dataset, unlabeled_dataset, test_dataset = DATASET_GETTERS[args.dataset]( args, './data') if args.local_rank == 0: torch.distributed.barrier() train_sampler = RandomSampler if args.local_rank == -1 else DistributedSampler labeled_trainloader = DataLoader( labeled_dataset, sampler=train_sampler(labeled_dataset), batch_size=args.batch_size, num_workers=args.num_workers, drop_last=True) unlabeled_trainloader = DataLoader( unlabeled_dataset, sampler=train_sampler(unlabeled_dataset), batch_size=args.batch_size*args.mu, num_workers=args.num_workers, drop_last=True) test_loader = DataLoader( test_dataset, sampler=SequentialSampler(test_dataset), batch_size=args.batch_size, num_workers=args.num_workers) if args.local_rank not in [-1, 0]: torch.distributed.barrier() model = create_model(args) if args.local_rank == 0: torch.distributed.barrier() model.to(args.device) no_decay = ['bias', 'bn'] grouped_parameters = [ {'params': [p for n, p in model.named_parameters() if not any( nd in n for nd in no_decay)], 'weight_decay': args.wdecay}, {'params': [p for n, p in model.named_parameters() if any( nd in n for nd in no_decay)], 'weight_decay': 0.0} ] optimizer = optim.SGD(grouped_parameters, lr=args.lr, momentum=0.9, nesterov=args.nesterov) args.epochs = math.ceil(args.total_steps / args.eval_step) scheduler = get_cosine_schedule_with_warmup( optimizer, args.warmup, args.total_steps) if args.use_ema: from models.ema import ModelEMA ema_model = ModelEMA(args, model, args.ema_decay) args.start_epoch = 0 if args.resume: logger.info("==> Resuming from checkpoint..") assert os.path.isfile( args.resume), "Error: no checkpoint directory found!" args.out = os.path.dirname(args.resume) checkpoint = torch.load(args.resume) best_acc = checkpoint['best_acc'] args.start_epoch = checkpoint['epoch'] model.load_state_dict(checkpoint['state_dict']) if args.use_ema: ema_model.ema.load_state_dict(checkpoint['ema_state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) scheduler.load_state_dict(checkpoint['scheduler']) if args.amp: from apex import amp model, optimizer = amp.initialize( model, optimizer, opt_level=args.opt_level) if args.local_rank != -1: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True) logger.info("***** Running training *****") logger.info(f" Task = {args.dataset}@{args.num_labeled}") logger.info(f" Num Epochs = {args.epochs}") logger.info(f" Batch size per GPU = {args.batch_size}") logger.info( f" Total train batch size = {args.batch_size*args.world_size}") logger.info(f" Total optimization steps = {args.total_steps}") model.zero_grad() train(args, labeled_trainloader, unlabeled_trainloader, test_loader, model, optimizer, ema_model, scheduler) def train(args, labeled_trainloader, unlabeled_trainloader, test_loader, model, optimizer, ema_model, scheduler): if args.amp: from apex import amp global best_acc test_accs = [] end = time.time() if args.world_size > 1: labeled_epoch = 0 unlabeled_epoch = 0 labeled_trainloader.sampler.set_epoch(labeled_epoch) unlabeled_trainloader.sampler.set_epoch(unlabeled_epoch) labeled_iter = iter(labeled_trainloader) unlabeled_iter = iter(unlabeled_trainloader) model.train() for epoch in range(args.start_epoch, args.epochs): batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() losses_x = AverageMeter() losses_u = AverageMeter() mask_probs = AverageMeter() if not args.no_progress: p_bar = tqdm(range(args.eval_step), disable=args.local_rank not in [-1, 0]) for batch_idx in range(args.eval_step): try: inputs_x, targets_x = labeled_iter.next() except: if args.world_size > 1: labeled_epoch += 1 labeled_trainloader.sampler.set_epoch(labeled_epoch) labeled_iter = iter(labeled_trainloader) inputs_x, targets_x = labeled_iter.next() try: (inputs_u_w, inputs_u_s), _ = unlabeled_iter.next() except: if args.world_size > 1: unlabeled_epoch += 1 unlabeled_trainloader.sampler.set_epoch(unlabeled_epoch) unlabeled_iter = iter(unlabeled_trainloader) (inputs_u_w, inputs_u_s), _ = unlabeled_iter.next() data_time.update(time.time() - end) batch_size = inputs_x.shape[0] inputs = interleave( torch.cat((inputs_x, inputs_u_w, inputs_u_s)), 2*args.mu+1).to(args.device) targets_x = targets_x.to(args.device) logits = model(inputs) logits = de_interleave(logits, 2*args.mu+1) logits_x = logits[:batch_size] logits_u_w, logits_u_s = logits[batch_size:].chunk(2) del logits Lx = F.cross_entropy(logits_x, targets_x, reduction='mean') pseudo_label = torch.softmax(logits_u_w.detach()/args.T, dim=-1) max_probs, targets_u = torch.max(pseudo_label, dim=-1) mask = max_probs.ge(args.threshold).float() Lu = (F.cross_entropy(logits_u_s, targets_u, reduction='none') * mask).mean() loss = Lx + args.lambda_u * Lu if args.amp: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() losses.update(loss.item()) losses_x.update(Lx.item()) losses_u.update(Lu.item()) optimizer.step() scheduler.step() if args.use_ema: ema_model.update(model) model.zero_grad() batch_time.update(time.time() - end) end = time.time() mask_probs.update(mask.mean().item()) if not args.no_progress: p_bar.set_description("Train Epoch: {epoch}/{epochs:4}. Iter: {batch:4}/{iter:4}. LR: {lr:.4f}. Data: {data:.3f}s. Batch: {bt:.3f}s. Loss: {loss:.4f}. Loss_x: {loss_x:.4f}. Loss_u: {loss_u:.4f}. Mask: {mask:.2f}. ".format( epoch=epoch + 1, epochs=args.epochs, batch=batch_idx + 1, iter=args.eval_step, lr=scheduler.get_last_lr()[0], data=data_time.avg, bt=batch_time.avg, loss=losses.avg, loss_x=losses_x.avg, loss_u=losses_u.avg, mask=mask_probs.avg)) p_bar.update() if not args.no_progress: p_bar.close() if args.use_ema: test_model = ema_model.ema else: test_model = model if args.local_rank in [-1, 0]: test_loss, test_acc = test(args, test_loader, test_model, epoch) args.writer.add_scalar('train/1.train_loss', losses.avg, epoch) args.writer.add_scalar('train/2.train_loss_x', losses_x.avg, epoch) args.writer.add_scalar('train/3.train_loss_u', losses_u.avg, epoch) args.writer.add_scalar('train/4.mask', mask_probs.avg, epoch) args.writer.add_scalar('test/1.test_acc', test_acc, epoch) args.writer.add_scalar('test/2.test_loss', test_loss, epoch) is_best = test_acc > best_acc best_acc = max(test_acc, best_acc) model_to_save = model.module if hasattr(model, "module") else model if args.use_ema: ema_to_save = ema_model.ema.module if hasattr( ema_model.ema, "module") else ema_model.ema save_checkpoint({ 'epoch': epoch + 1, 'state_dict': model_to_save.state_dict(), 'ema_state_dict': ema_to_save.state_dict() if args.use_ema else None, 'acc': test_acc, 'best_acc': best_acc, 'optimizer': optimizer.state_dict(), 'scheduler': scheduler.state_dict(), }, is_best, args.out) test_accs.append(test_acc) logger.info('Best top-1 acc: {:.2f}'.format(best_acc)) logger.info('Mean top-1 acc: {:.2f}\n'.format( np.mean(test_accs[-20:]))) if args.local_rank in [-1, 0]: args.writer.close() def test(args, test_loader, model, epoch): batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() end = time.time() if not args.no_progress: test_loader = tqdm(test_loader, disable=args.local_rank not in [-1, 0]) with torch.no_grad(): for batch_idx, (inputs, targets) in enumerate(test_loader): data_time.update(time.time() - end) model.eval() inputs = inputs.to(args.device) targets = targets.to(args.device) outputs = model(inputs) loss = F.cross_entropy(outputs, targets) prec1, prec5 = accuracy(outputs, targets, topk=(1, 5)) losses.update(loss.item(), inputs.shape[0]) top1.update(prec1.item(), inputs.shape[0]) top5.update(prec5.item(), inputs.shape[0]) batch_time.update(time.time() - end) end = time.time() if not args.no_progress: test_loader.set_description("Test Iter: {batch:4}/{iter:4}. Data: {data:.3f}s. Batch: {bt:.3f}s. Loss: {loss:.4f}. top1: {top1:.2f}. top5: {top5:.2f}. ".format( batch=batch_idx + 1, iter=len(test_loader), data=data_time.avg, bt=batch_time.avg, loss=losses.avg, top1=top1.avg, top5=top5.avg, )) if not args.no_progress: test_loader.close() logger.info("top-1 acc: {:.2f}".format(top1.avg)) logger.info("top-5 acc: {:.2f}".format(top5.avg)) return losses.avg, top1.avg if __name__ == '__main__': main()
39.046559
238
0.581938
7a1314852587354c517d97d413c6b60b2a6101e2
37,260
py
Python
ARTDeco/main.py
davebx/ARTDeco
1b08583a2e23015f6bc444919b2e10d5fb1bcf19
[ "MIT" ]
1
2022-02-02T04:03:45.000Z
2022-02-02T04:03:45.000Z
ARTDeco/main.py
davebx/ARTDeco
1b08583a2e23015f6bc444919b2e10d5fb1bcf19
[ "MIT" ]
8
2019-04-29T18:33:38.000Z
2022-03-16T12:17:52.000Z
ARTDeco/main.py
davebx/ARTDeco
1b08583a2e23015f6bc444919b2e10d5fb1bcf19
[ "MIT" ]
4
2019-04-26T21:44:51.000Z
2022-03-10T15:32:20.000Z
''' Main script for running ARTDeco. Contains code to run each of the modes. ''' from .misc import ARTDecoDir,infer_experiments_group,output_inferred_format,summarize_bam_files,get_regions_exp from .preprocess import parse_gtf,create_stranded_downstream_df,create_stranded_read_in_df,\ create_unstranded_downstream_df,create_unstranded_read_in_df,make_multi_tag_dirs from .readthrough import get_multi_gene_exp,get_max_isoform,get_gene_v_intergenic,deconvolute_exp,assign_genes,\ summarize_readthrough_stats,summarize_read_in_assignments from .diff_exp_read_in import read_in_diff_exp,assign_read_in_genes,summarize_diff_exp_read_in_assignments from .get_dogs import get_dog_screening,generate_screening_bed,get_multi_interval_coverage,generate_full_screening_bed,\ get_multi_dog_beds,merge_dogs,get_dog_exp,summarize_all_dogs import argparse import os import sys import pandas as pd def main(): #Make command line interface. parser = argparse.ArgumentParser(prog='ARTDeco', description='Main script for Automatic ReadThrough DEteCtiOn-ARTDeco') parser.add_argument('-mode', help='Mode in which to run ARTDeco. Options are preprocess, readthrough, diff_exp_read_in, \ get_dogs, and diff_exp_dogs.',action='store') parser.add_argument('-home-dir',help='Directory in which to run ARTDeco (default is current directory)', action='store',default='.') parser.add_argument('-bam-files-dir', help='Directory in which the BAM files are located (default is current directory)', action='store',default='.') parser.add_argument('-layout', help='Indicates whether the files are paired-end or single-end. Options are PE or SE.', action='store') parser.add_argument('-stranded', help='Indicates whether the files are stranded or unstranded. Options are True or False.', action='store') parser.add_argument('-orientation', help='Indicates whether the files are forward- or reverse-stranded. Options are Forward or '+ 'Reverse. Required for stranded data',action='store') parser.add_argument('-single', help='Indicates whether you want to create tag directories with a single file (useful for new'+\ 'assemblies with lots of scaffolds).',default=False,action='store_true') parser.add_argument('-gtf-file',help='GTF file',action='store') parser.add_argument('-cpu',help='Maximum CPUs to use',action='store',type=int,default=1) parser.add_argument('-chrom-sizes-file',help='Chromosome sizes file') parser.add_argument('-read-in-dist',help='Read-in distance. Default is 1 kb.',type=int,default=1000) parser.add_argument('-readthrough-dist',help='Readthrough distance. Default is 10 kb.',type=int,default=10000) parser.add_argument('-intergenic-min-len',help='Minimum length for intergenic regions. Default is 100 bp.',type=int, default=100) parser.add_argument('-intergenic-max-len',help='Maximum length for intergenic regions. Default is 15 kb.',type=int, default=15000) parser.add_argument('-read-in-threshold', help='Threshold for considering read-in gene. Default is -1.',type=float, default=-1) parser.add_argument('-read-in-fpkm',help='Minimum FPKM value for considering a gene. Default is 0.25 FPKM.', type=float,default=0.25) parser.add_argument('-summary-genes', help='Number of genes for summarizing readthrough levels. Default is 1000.', type=int,default=1000) parser.add_argument('-overwrite',help='Indicate whether to overwrite existing files',default=False, action='store_true') parser.add_argument('-meta-file',help='Meta file',action='store',type=str) parser.add_argument('-comparisons-file',help='Comparisons file',type=str) parser.add_argument('-log2FC', help='Minimum log2 fold change for considering a gene upregulated. Default is 2.', type=float,default=2) parser.add_argument('-pval', help='Maximum p-value for considering a gene upregulated. Default is 0.05.',type=float, default=0.05) parser.add_argument('-min-dog-len',help='Minimum DoG length. Default is 4 kb.',type=int,default=4000) parser.add_argument('-dog-window',help='DoG window size. Default is 500 bp.',type=int,default=500) parser.add_argument('-min-dog-coverage',help='Minimum FPKM for DoG discovery. Default is 0.15 FPKM.',type=float, default=0.15) parser.add_argument('-gene-types',help='Limit gene sets for reporting. Default is all gene types.',nargs='+', action="store") parser.add_argument('-skip-bam-summary',help='Skip summary of BAM files (useful for time saving).',default=False, action='store_true') args = parser.parse_known_args()[0] if args.mode in ['preprocess','readthrough','get_dogs','diff_exp_read_in','diff_exp_dogs']: print(f'Running {args.mode} mode...') else: print('No valid run mode specified... Will generate all files...') args.mode = None #Check if home and BAM file directories exist. If they do, load ARTDeco file structure. if os.path.isdir(args.home_dir) and os.path.isdir(args.bam_files_dir): print('Loading ARTDeco file structure...') artdeco_dir = ARTDecoDir(args.bam_files_dir,args.home_dir) elif not os.path.isdir(args.home_dir): print('User-specified home directory does not exist... Exiting...') sys.exit(1) else: print('User-specified BAM file directory does not exist... Exiting...') sys.exit(1) #Check for BAM files. If there are no BAM files, exit. if len(artdeco_dir.bam_files) == 0: print('No BAM files... Exiting...') sys.exit(1) #Overwrite specified. if args.overwrite: print('Overwrite specified... Will regenerate all files...') #Create summary file directory if it does not exist. if not os.path.isdir(artdeco_dir.summary_dir): os.mkdir(artdeco_dir.summary_dir) #Create preprocess_files directory if it does not exist. if not os.path.isdir(artdeco_dir.preprocess_dir): os.mkdir(artdeco_dir.preprocess_dir) #Generate meta and comparisons if it is needed. if (args.mode and (args.mode in ['diff_exp_read_in','diff_exp_dogs']) or (args.mode == 'preprocess' and args.meta_file)) or (not args.mode and args.meta_file): from .DESeq2 import reformat_meta,reformat_comparisons,generate_comparisons,load_deseq_dataset,run_deseq,\ deseq_results #Specify whether meta file needs to be generated. if args.overwrite: new_meta = True elif os.path.isfile(artdeco_dir.meta_file): print('Reformatted meta file exists...') new_meta = False else: new_meta = True #Generate meta. if new_meta: #Check meta file. if args.meta_file and os.path.isfile(args.meta_file): meta = open(args.meta_file).readlines() meta_format = True i = 0 while i < len(meta) and meta_format: line = meta[i].strip().split('\t') #If the length of the split line is different than 2, the meta file isn't properly formatted. if len(line) != 2: meta_format = False #Otherwise, ensure that the first line is the proper format. else: if i == 0: if line[0] != 'Experiment' or line[1] != 'Group': meta_format = False i += 1 if meta_format: print('Meta file properly formatted... Generating reformatted meta...') reformat_meta(args.meta_file,artdeco_dir.preprocess_dir) else: print('Meta file not properly formatted... Exiting...') sys.exit(1) elif args.meta_file: print('Meta file does not exist... Exiting...') sys.exit(1) else: print('No meta file supplied... Exiting...') sys.exit(1) #Specify whether comparisons file needs to be generated. if args.overwrite: new_comparisons = True elif new_meta: new_comparisons = True elif os.path.isfile(artdeco_dir.comparisons_file): print('Reformatted comparisons file exists...') new_comparisons = False else: new_comparisons = True #Generate comparisons. if new_comparisons: #Grab groups. groups = [line.strip().split('\t')[1] for line in open(artdeco_dir.meta_file).readlines()[1:]] #Check comparisons file. if args.comparisons_file and os.path.isfile(args.comparisons_file): print('Comparisons file exists...') #Check format. comparisons = [line.strip().split('\t') for line in open(args.comparisons_file).readlines()] comparisons_lens = [len(line) for line in comparisons] #Check if lines are tab-separated formatted. if len(set(comparisons_lens)) == 1 and len(comparisons[0]) == 2: comparisons_format = True for line in comparisons: line[0] = line[0].replace('-','_').replace(' ','_') line[1] = line[1].replace('-', '_').replace(' ', '_') if not line[0] in groups or not line[1] in groups: comparisons_format = False else: comparisons_format = False #If the file is properly formatted, reformat it. Otherwise, generate an all-by-all file. if comparisons_format: print('Comparisons file properly formatted... Generating reformatted comparisons...') reformat_comparisons(args.comparisons_file,artdeco_dir.preprocess_dir) else: print('Comparisons file not properly formatted... Generating all-by-all comparisons file...') generate_comparisons(artdeco_dir.meta_file,artdeco_dir.preprocess_dir) else: print('Comparison file does not exist or not provided... Generating comparisons file...') generate_comparisons(artdeco_dir.meta_file,artdeco_dir.preprocess_dir) comparisons = [line.strip().split('\t') for line in open(artdeco_dir.comparisons_file).readlines()] #Update files in ARTDeco directory. if os.path.exists(artdeco_dir.meta_file): artdeco_dir.set_diff_exp_output() #Generate output files. out_files = artdeco_dir.get_files(args.mode,os.path.exists(artdeco_dir.meta_file),args.overwrite) if out_files: print('ARTDeco will generate the following files:\n'+'\n'.join(out_files)) else: print('All necessary files generated... Exiting...') sys.exit(1) #Update file structure. artdeco_dir.update_dir_lists(out_files) #Check if GTF file is needed for generating output. if artdeco_dir.gtf_needed: print('GTF file needed... Checking...') if args.gtf_file and os.path.isfile(args.gtf_file): print('GTF file exists...') elif args.gtf_file: print('User-supplied GTF file does not exist... Exiting...') sys.exit(1) else: print('No GTF file supplied... Exiting...') sys.exit(1) #Check if BAM file formats are needed. If they are, check if the user has specified them. If the user has not, #infer those formats. Summarize file if the format is needed. if artdeco_dir.format_needed: print('BAM file format needed... Checking... Will infer if not user-specified.') if args.layout: if str.lower(args.layout) in ['pe','se']: infer_layout = False if str.lower(args.layout) == 'pe': print('BAM files specified as paired-end...') pe = True else: print('BAM files specified as single-end...') pe = False else: print('Improper layout specified... Will infer...') infer_layout = True else: print('No layout specified... Will infer...') infer_layout = True if args.stranded: if str.lower(args.stranded) in ['true','false']: infer_strandedness = False if str.lower(args.stranded) == 'true': print('BAM files specified as stranded...') stranded = True else: print('BAM files specified as unstranded...') stranded = False else: print('Improper indication of strandedness...') infer_strandedness = True elif args.orientation and str.lower(args.orientation) in ['forward','reverse']: print('No strandedness specified but strand orientation specified... Will assign data as stranded...') infer_strandedness = False stranded = True else: print('No strandedness specified... Will infer...') infer_strandedness = True if args.orientation: if str.lower(args.orientation) in ['forward','reverse']: infer_orientation = False if str.lower(args.orientation) == 'forward': print('BAM files specified as forward-strand oriented...') flip = False else: print('BAM files specified as reverse-strand oriented...') flip = True else: print('Improper strand orientation specified... Will infer...') infer_orientation = True elif not infer_strandedness: if stranded: print('No strand orientation specified... Data is stranded... Will infer orientation...') infer_orientation = True else: print('No strand orientation specified... Data is unstranded... No need to infer orientation...') infer_orientation = False flip = False else: print('No strand orientation specified... Will infer...') infer_orientation = True #Infer layout if necessary. if infer_layout or infer_strandedness or infer_orientation: print('Will infer BAM formats...') #Check if full genes BED exists. If it doesn't, regenerate it. if os.path.isfile(artdeco_dir.genes_full) and not args.overwrite: print('Full genes BED file exists...') else: print('Generating full genes BED file...') parse_gtf(args.gtf_file,args.home_dir) out_files -= {artdeco_dir.genes_full,artdeco_dir.genes_condensed,artdeco_dir.gene_to_transcript, artdeco_dir.gene_types} artdeco_dir.update_dir_lists(out_files) #Check file formats. print('Inferring BAM file formats...') formats = infer_experiments_group(artdeco_dir.bam_files,artdeco_dir.genes_full, min(args.cpu,len(artdeco_dir.bam_files))) #Check layout. if infer_layout: if len(set(x[1] for x in formats)) == 1: pe = formats[0][1] if pe: print('All BAM files inferred as Paired-End...') else: print('All BAM files inferred as Single-End...') else: print('Error... One or more files do not match in inferred format... Exiting...') for f in formats: out_str = f'BAM file {f[0]} inferred as '+output_inferred_format(f) print(out_str) sys.exit(1) #Check strandedness. if infer_strandedness: if len(set(x[2] for x in formats)) == 1: stranded = formats[0][2] if stranded: print('All BAM files inferred as strand-specific...') else: print('All BAM files inferred as single-stranded...') else: print('Error... One or more files do not match in inferred format... Exiting...') for f in formats: out_str = f'BAM file {f[0]} inferred as '+output_inferred_format(f) print(out_str) sys.exit(1) #Check strand orientation. if infer_orientation: if len(set(x[3] for x in formats)) == 1: flip = formats[0][3] if flip: print('All BAM files inferred as reverse-strand oriented...') else: print('All BAM files inferred as forward-strand oriented...') else: print('Error... One or more files do not match in inferred format... Exiting...') for f in formats: out_str = f'BAM file {f[0]} inferred as '+output_inferred_format(f) print(out_str) sys.exit(1) #Summarize files. if args.skip_bam_summary: print('Skipping summary of BAM file stats...') else: print('Summarizing BAM file stats...') summary_file = os.path.join(artdeco_dir.summary_dir,'bam_summary.txt') if os.path.isfile(summary_file): os.remove(summary_file) summary = summarize_bam_files(artdeco_dir.bam_files,args.cpu,pe,stranded,flip) for line in summary.split('\n'): print(line) with open(summary_file,'w') as f: f.write(summary) #Load chromosome sizes file if needed. if artdeco_dir.chrom_sizes_needed: if args.chrom_sizes_file and os.path.isfile(args.chrom_sizes_file): chrom_sizes_file = open(args.chrom_sizes_file) chrom_sizes = {} for line in chrom_sizes_file.readlines(): line = line.strip().split('\t') chrom_sizes[line[0]] = int(line[1]) elif args.chrom_sizes_file: print('Chromosome sizes file does not exist... Exiting...') sys.exit(1) else: print('No chromosome sizes file supplied... Exiting...') sys.exit(1) #Generate preprocessing files. if artdeco_dir.preprocessing_files: if not os.path.isdir(artdeco_dir.preprocess_dir): os.mkdir(artdeco_dir.preprocess_dir) if artdeco_dir.preprocessing_files & {artdeco_dir.genes_condensed,artdeco_dir.genes_full, artdeco_dir.gene_to_transcript,artdeco_dir.gene_types}: parse_gtf(args.gtf_file,args.home_dir) #Load genes. genes = pd.read_csv(artdeco_dir.genes_condensed,sep='\t',header=None, names=['Chrom','Start','Stop','Name','Score','Strand']) del genes['Score'] genes = genes[['Name','Chrom','Strand','Start','Stop']] #Create read-in BED file. if artdeco_dir.read_in_bed in artdeco_dir.preprocessing_files: print('Generating read-in region BED file...') if stranded: read_in_df = create_stranded_read_in_df(genes,chrom_sizes,max_len=args.intergenic_max_len, min_len=args.intergenic_min_len,upstream_dist=args.read_in_dist) else: read_in_df = create_unstranded_read_in_df(genes,chrom_sizes,max_len=args.intergenic_max_len, min_len=args.intergenic_min_len, upstream_dist=args.read_in_dist) #Format and create BED file. read_in_df['Score'] = 0 read_in_df = read_in_df[['Chrom','Start','Stop','Name','Score','Strand']] read_in_df['Start'] = read_in_df['Start'].astype(int) read_in_df['Stop'] = read_in_df['Stop'].astype(int) #Output BED file. read_in_df.to_csv(artdeco_dir.read_in_bed,sep='\t',header=False,index=False) #Create readthrough BED file. if artdeco_dir.readthrough_bed in artdeco_dir.preprocessing_files: print('Generating readthrough region BED file...') if stranded: readthrough_df = create_stranded_downstream_df(genes,chrom_sizes,max_len=args.intergenic_max_len, min_len=args.intergenic_min_len, downstream_dist=args.readthrough_dist) else: readthrough_df = create_unstranded_downstream_df(genes,chrom_sizes,max_len=args.intergenic_max_len, min_len=args.intergenic_min_len, downstream_dist=args.readthrough_dist) readthrough_df['Score'] = 0 readthrough_df = readthrough_df[['Chrom','Start','Stop','Name','Score','Strand']] readthrough_df['Start'] = readthrough_df['Start'].astype(int) readthrough_df['Stop'] = readthrough_df['Stop'].astype(int) readthrough_df.to_csv(artdeco_dir.readthrough_bed,sep='\t',header=False,index=False) #Creating tag directories. if artdeco_dir.tag_dirs: print('Creating tag directories...') make_multi_tag_dirs([artdeco_dir.tag_dir_to_bam[tag_dir] for tag_dir in artdeco_dir.tag_dirs], artdeco_dir.preprocess_dir,flip,pe,stranded,args.single,min(len(artdeco_dir.tag_dirs),args.cpu)) #Generate quantification files. if artdeco_dir.quantification_files: if not os.path.isdir(artdeco_dir.quantification_dir): print('Creating quantification directory...') os.mkdir(artdeco_dir.quantification_dir) if artdeco_dir.quantification_files & {artdeco_dir.gene_fpkm,artdeco_dir.gene_raw}: print('Generating gene expression files...') get_multi_gene_exp(artdeco_dir.all_tag_dirs,args.gtf_file,stranded,artdeco_dir.quantification_dir,args.cpu) if artdeco_dir.max_isoform in artdeco_dir.quantification_files: print('Getting maximum isoform...') get_max_isoform(artdeco_dir.gene_fpkm,artdeco_dir.gene_to_transcript,artdeco_dir.quantification_dir) if artdeco_dir.read_in_exp in artdeco_dir.quantification_files: print('Generating read-in expression file...') get_regions_exp((artdeco_dir.all_tag_dirs,artdeco_dir.read_in_bed,stranded,'-raw', artdeco_dir.quantification_dir,min(len(artdeco_dir.all_tag_dirs),args.cpu))) if artdeco_dir.readthrough_exp in artdeco_dir.quantification_files: print('Generating readthrough expression file...') get_regions_exp((artdeco_dir.all_tag_dirs, artdeco_dir.readthrough_bed,stranded,'-raw', artdeco_dir.quantification_dir,min(len(artdeco_dir.all_tag_dirs),args.cpu))) #Generate readthrough files. if artdeco_dir.readthrough_files: if not os.path.isdir(artdeco_dir.readthrough_dir): print('Creating readthrough directory...') os.mkdir(artdeco_dir.readthrough_dir) if artdeco_dir.read_in_levels in artdeco_dir.readthrough_files: print('Generate read-in vs. expression file...') get_gene_v_intergenic(artdeco_dir.gene_raw,artdeco_dir.gene_fpkm,artdeco_dir.max_isoform, artdeco_dir.read_in_exp,'Read-In',artdeco_dir.read_in_levels) if artdeco_dir.corrected_exp in artdeco_dir.readthrough_files: print('Correcting gene expression using read-in information...') deconvolute_exp(artdeco_dir.read_in_levels,artdeco_dir.corrected_exp) if artdeco_dir.readthrough_levels in artdeco_dir.readthrough_files: print('Generate readthrough vs. expression file...') get_gene_v_intergenic(artdeco_dir.gene_raw,artdeco_dir.gene_fpkm,artdeco_dir.max_isoform, artdeco_dir.readthrough_exp,'Readthrough',artdeco_dir.readthrough_levels) if artdeco_dir.read_in_assignments in artdeco_dir.readthrough_files: print(f'Read-in genes assigned with read-in level threshold is {args.read_in_threshold} and read-in FPKM '+\ f'threshold is {args.read_in_fpkm}...') if args.gene_types and len(open(artdeco_dir.gene_types).readlines()) > 1: print('Using the following gene types: ' + ', '.join(args.gene_types) + '...') else: args.gene_types = None print('Using all genes...') assign_genes(artdeco_dir.read_in_levels,args.read_in_threshold,args.read_in_fpkm, artdeco_dir.read_in_assignments,artdeco_dir.gene_types,args.gene_types) #Summarize output. print('Summarizing readthrough output...') if args.gene_types and len(open(artdeco_dir.gene_types).readlines()) > 1: print('Using the following gene types: '+', '.join(args.gene_types)+'...') else: args.gene_types = None print('Using all genes...') summary_file = os.path.join(artdeco_dir.summary_dir,'readthrough_summary.txt') if os.path.isfile(summary_file): os.remove(summary_file) expts = [] for f in os.listdir(artdeco_dir.bam_files_dir): if f[-4:] == '.bam': expt = f[:-4].replace('-', '_').replace(' ', '_') expts.append(expt) summary = summarize_readthrough_stats(artdeco_dir.read_in_levels,expts,'Read-In', args.summary_genes,artdeco_dir.gene_types,args.gene_types) if os.path.isfile(artdeco_dir.readthrough_levels): summary += '\n'+summarize_readthrough_stats(artdeco_dir.readthrough_levels,expts,'Readthrough', args.summary_genes,artdeco_dir.gene_types,args.gene_types) summary += '\n'+summarize_read_in_assignments(artdeco_dir.read_in_assignments,expts,args.read_in_threshold, args.read_in_fpkm) for line in summary.split('\n'): print(line) with open(summary_file,'w') as f: f.write(summary) #Generate DoG files. if artdeco_dir.dogs_files: if not os.path.isdir(artdeco_dir.dogs_dir): print('Creating DoG output directory...') os.mkdir(artdeco_dir.dogs_dir) if artdeco_dir.dogs_beds: print(f'Finding DoGs...\nGet genes with potential DoGs with minimum length of {args.min_dog_len} bp, a '+ f'minimum coverage of {args.min_dog_coverage} FPKM, and screening window of {args.dog_window} bp...') screening_genes = get_dog_screening(artdeco_dir.genes_condensed,args.min_dog_len) print(f'Generate initial screening BED file for DoGs with minimum length {args.min_dog_len} bp and window'+ f' size {args.dog_window} bp...') generate_screening_bed(screening_genes,args.min_dog_len,args.dog_window,args.home_dir) print(f'Initial screening coverage for DoGs with minimum length of {args.min_dog_len} bp...') #Screen for coverage threshold. dogs_tag_dirs = [artdeco_dir.dogs_bed_to_tagdir[dogs_bed] for dogs_bed in artdeco_dir.dogs_beds] screening_coverage_dfs = get_multi_interval_coverage(dogs_tag_dirs,args.home_dir, [os.path.join(args.home_dir,'intervals.bed')], args.min_dog_coverage,stranded, min(args.cpu,len(dogs_tag_dirs))) #Find genes that pass threshold for minimum length. screening_genes_dfs = {} for i in range(len(screening_coverage_dfs)): new_df = screening_coverage_dfs[i].copy() new_df = new_df.groupby('Name').count() new_df = new_df[new_df.ID == args.min_dog_len/args.dog_window] screening_genes_dfs[dogs_tag_dirs[i]] = screening_genes[screening_genes.Name.isin(new_df.index)].copy() #Remove screening BED files. os.remove(os.path.join(args.home_dir,'intervals.bed')) print('Generate screening BED file for pre-screened DoGs...') generate_full_screening_bed(dogs_tag_dirs,artdeco_dir.genes_condensed,screening_genes_dfs, artdeco_dir.read_in_assignments,args.chrom_sizes_file,args.dog_window,args.cpu, args.home_dir) print('Screening coverage for pre-screened DoGs...') #Screen for coverage threshold. screening_coverage_dfs = get_multi_interval_coverage(dogs_tag_dirs,args.home_dir, [os.path.join(args.home_dir, tag_dir.split('/')[-1]+'.bed') for tag_dir in dogs_tag_dirs],args.min_dog_coverage, stranded,min(args.cpu,len(dogs_tag_dirs))) #Remove screening BED files. for tag_dir in dogs_tag_dirs: expt_name = tag_dir.split('/')[-1] os.remove(os.path.join(args.home_dir,f'{expt_name}.bed')) print('Discovering DoG coordinates for pre-screened DoGs and output BED files...') get_multi_dog_beds(screening_genes,screening_coverage_dfs,args.dog_window,args.cpu,dogs_tag_dirs, artdeco_dir.dogs_dir) if artdeco_dir.all_dogs_bed in artdeco_dir.dogs_files or artdeco_dir.dogs_beds: print('Merge DoGs into a single annotation...') merge_dogs(artdeco_dir.all_dogs_beds,artdeco_dir.dogs_dir) if artdeco_dir.dogs_raw & artdeco_dir.dogs_files or artdeco_dir.dogs_fpkm & artdeco_dir.dogs_files: print('Generating expression data for DoGs in individual experiments...') get_dog_exp(artdeco_dir.all_tag_dirs,artdeco_dir.all_dogs_beds,stranded,artdeco_dir.dogs_dir,args.cpu) if artdeco_dir.all_dogs_fpkm in artdeco_dir.dogs_files or artdeco_dir.dogs_beds: print('Generating expression data in FPKM for all DoGs...') get_regions_exp((artdeco_dir.all_tag_dirs,artdeco_dir.all_dogs_bed,stranded,'-fpkm',artdeco_dir.dogs_dir, min(args.cpu,len(artdeco_dir.all_tag_dirs)))) if artdeco_dir.all_dogs_raw in artdeco_dir.dogs_files or artdeco_dir.dogs_beds: print('Generating raw expression data for all DoGs...') get_regions_exp((artdeco_dir.all_tag_dirs,artdeco_dir.all_dogs_bed,stranded,'-raw',artdeco_dir.dogs_dir, min(args.cpu,len(artdeco_dir.all_tag_dirs)))) #Summarize DoG files. summary_file = os.path.join(artdeco_dir.summary_dir,'dogs_summary.txt') if os.path.isfile(summary_file): os.remove(summary_file) summary = summarize_all_dogs(artdeco_dir.all_dogs_bed,artdeco_dir.all_dogs_beds,artdeco_dir.all_dogs_fpkm, artdeco_dir.all_dogs_fpkm_expts,args.min_dog_len,args.min_dog_coverage, args.dog_window) for line in summary.split('\n'): print(line) with open(summary_file,'w') as f: f.write(summary) #Generate differential expression output. try: if artdeco_dir.diff_exp_files: if not os.path.isdir(artdeco_dir.diff_exp_dir): print('Creating differential expression output directory...') os.mkdir(artdeco_dir.diff_exp_dir) print('Running DESeq2 on gene expression data...') dds = load_deseq_dataset(artdeco_dir.gene_raw,artdeco_dir.meta_file) dds_results = run_deseq(dds) #Output results. print('Output DESeq2 results...') for condition1, condition2 in comparisons: deseq_results(dds_results,condition1,condition2,artdeco_dir.diff_exp_dir) except: pass #Generate differential expression with read-in information. try: if artdeco_dir.diff_exp_read_in_files: if not os.path.isdir(artdeco_dir.diff_exp_read_in_dir): print('Creating differential expression with read-in information directory...') os.mkdir(artdeco_dir.diff_exp_read_in_dir) #Join differential expression information to read-in information. Use this to infer read-in genes. print('Combining differential expression results and read-in information... Inferring read-in genes for '+\ f'upregulated genes with log2 fold change > {args.log2FC}, p-value < {args.pval}, and FPKM > '+\ f'{args.read_in_fpkm}... Read-in level threshold is {args.read_in_threshold}...') if args.gene_types and len(open(artdeco_dir.gene_types).readlines()) > 1: print('Using the following gene types: ' + ', '.join(args.gene_types) + '...') else: args.gene_types = None print('Using all genes...') for condition1,condition2 in comparisons: read_in_diff_exp(artdeco_dir.read_in_levels,artdeco_dir.meta_file, os.path.join(artdeco_dir.diff_exp_dir,f'{condition1}-{condition2}-results.txt'), artdeco_dir.diff_exp_read_in_dir) assign_read_in_genes(os.path.join(artdeco_dir.diff_exp_read_in_dir, f'{condition1}-{condition2}-read_in.txt'),args.log2FC,args.pval, args.read_in_fpkm,args.read_in_threshold,artdeco_dir.gene_types,args.gene_types, artdeco_dir.diff_exp_read_in_dir) #Summarize output. print('Summarize read-in gene inference with differential expression information...') summary_file = os.path.join(artdeco_dir.summary_dir,'diff_exp_read_in_summary.txt') if os.path.isfile(summary_file): os.remove(summary_file) assignment_files = [] for condition1,condition2 in comparisons: assignment_files.append(os.path.join(artdeco_dir.diff_exp_read_in_dir, f'{condition1}-{condition2}-read_in_assignment.txt')) summary = summarize_diff_exp_read_in_assignments(assignment_files,args.log2FC,args.pval,args.read_in_fpkm, args.read_in_threshold) for line in summary.split('\n'): print(line) with open(summary_file,'w') as f: f.write(summary) except: pass #Generate differential expression output for DoGs. try: if artdeco_dir.diff_exp_dogs_files: if not os.path.isdir(artdeco_dir.diff_exp_dogs_dir): print('Creating differential expression for DoGs directory...') os.mkdir(artdeco_dir.diff_exp_dogs_dir) print('Running DESeq2 on DoGs...') dds = load_deseq_dataset(artdeco_dir.all_dogs_raw,artdeco_dir.meta_file) dds_results = run_deseq(dds) #Output results. print('Output DESeq2 results...') for condition1,condition2 in comparisons: deseq_results(dds_results,condition1,condition2,artdeco_dir.diff_exp_dogs_dir) except: pass if __name__ == '__main__': main()
50.351351
124
0.600134
de55d4438511c2128b11627b1d5374a495e0798b
735
py
Python
garagem/migrations/0001_initial.py
araujo88/minhaGaragem
31fb16a686eef2caa26e194c03a0528e43867188
[ "MIT" ]
null
null
null
garagem/migrations/0001_initial.py
araujo88/minhaGaragem
31fb16a686eef2caa26e194c03a0528e43867188
[ "MIT" ]
null
null
null
garagem/migrations/0001_initial.py
araujo88/minhaGaragem
31fb16a686eef2caa26e194c03a0528e43867188
[ "MIT" ]
null
null
null
# Generated by Django 3.2.6 on 2021-08-16 04:28 from django.db import migrations, models import uuid class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Veiculo', fields=[ ('tipo', models.CharField(choices=[('carro', 'Carro'), ('moto', 'Moto')], max_length=5)), ('cor', models.CharField(max_length=50)), ('modelo', models.CharField(max_length=50)), ('ano', models.IntegerField(max_length=4)), ('id', models.UUIDField(default=uuid.uuid4, editable=False, primary_key=True, serialize=False, unique=True)), ], ), ]
28.269231
125
0.567347
078566f13ce531287701b07b35096a1713e3fe65
6,576
py
Python
3.3.2/gdal-utils/osgeo_utils/gdal_fillnodata.py
benjamintd/pygdal
1cd86a248f944e2ab28a818c3648b7d7c065e252
[ "MIT" ]
1
2020-11-13T09:22:12.000Z
2020-11-13T09:22:12.000Z
flusstools/osgeo_utils/gdal_fillnodata.py
Ecohydraulics/flusstools
ab356788846dee089af146e924822dfafd096828
[ "BSD-3-Clause" ]
null
null
null
flusstools/osgeo_utils/gdal_fillnodata.py
Ecohydraulics/flusstools
ab356788846dee089af146e924822dfafd096828
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python3 # ****************************************************************************** # $Id$ # # Project: GDAL Python Interface # Purpose: Application for filling nodata areas in a raster by interpolation # Author: Frank Warmerdam, [email protected] # # ****************************************************************************** # Copyright (c) 2008, Frank Warmerdam # Copyright (c) 2009-2011, Even Rouault <even dot rouault at spatialys.com> # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # ****************************************************************************** import sys from osgeo import gdal def CopyBand(srcband, dstband): for line in range(srcband.YSize): line_data = srcband.ReadRaster(0, line, srcband.XSize, 1) dstband.WriteRaster(0, line, srcband.XSize, 1, line_data, buf_type=srcband.DataType) def Usage(): print("""gdal_fillnodata [-q] [-md max_distance] [-si smooth_iterations] [-o name=value] [-b band] srcfile [-nomask] [-mask filename] [-of format] [-co name=value]* [dstfile]""") return 1 def main(argv): max_distance = 100 smoothing_iterations = 0 options = [] quiet_flag = 0 src_filename = None src_band = 1 dst_filename = None frmt = 'GTiff' creation_options = [] mask = 'default' argv = gdal.GeneralCmdLineProcessor(argv) if argv is None: return 0 # Parse command line arguments. i = 1 while i < len(argv): arg = argv[i] if arg == '-of' or arg == '-f': i = i + 1 frmt = argv[i] elif arg == '-co': i = i + 1 creation_options.append(argv[i]) elif arg == '-q' or arg == '-quiet': quiet_flag = 1 elif arg == '-si': i = i + 1 smoothing_iterations = int(argv[i]) elif arg == '-b': i = i + 1 src_band = int(argv[i]) elif arg == '-md': i = i + 1 max_distance = float(argv[i]) elif arg == '-nomask': mask = 'none' elif arg == '-mask': i = i + 1 mask = argv[i] elif arg == '-mask': i = i + 1 mask = argv[i] elif arg[:2] == '-h': return Usage() elif src_filename is None: src_filename = argv[i] elif dst_filename is None: dst_filename = argv[i] else: return Usage() i = i + 1 if src_filename is None: return Usage() # ============================================================================= # Verify we have next gen bindings with the sievefilter method. # ============================================================================= try: gdal.FillNodata except AttributeError: print('') print('gdal.FillNodata() not available. You are likely using "old gen"') print('bindings or an older version of the next gen bindings.') print('') return 1 # ============================================================================= # Open source file # ============================================================================= if dst_filename is None: src_ds = gdal.Open(src_filename, gdal.GA_Update) else: src_ds = gdal.Open(src_filename, gdal.GA_ReadOnly) if src_ds is None: print('Unable to open %s' % src_filename) return 1 srcband = src_ds.GetRasterBand(src_band) # ============================================================================= # Create output file if one is specified. # ============================================================================= if dst_filename is not None: drv = gdal.GetDriverByName(frmt) dst_ds = drv.Create(dst_filename, src_ds.RasterXSize, src_ds.RasterYSize, 1, srcband.DataType, creation_options) wkt = src_ds.GetProjection() if wkt != '': dst_ds.SetProjection(wkt) gt = src_ds.GetGeoTransform(can_return_null=True) if gt: dst_ds.SetGeoTransform(gt) dstband = dst_ds.GetRasterBand(1) ndv = srcband.GetNoDataValue() if ndv is not None: dstband.SetNoDataValue(ndv) color_interp = srcband.GetColorInterpretation() dstband.SetColorInterpretation(color_interp) if color_interp == gdal.GCI_PaletteIndex: color_table = srcband.GetColorTable() dstband.SetColorTable(color_table) CopyBand(srcband, dstband) else: dstband = srcband # ============================================================================= # Invoke algorithm. # ============================================================================= if quiet_flag: prog_func = None else: prog_func = gdal.TermProgress_nocb if mask == 'default': maskband = dstband.GetMaskBand() elif mask == 'none': maskband = None else: mask_ds = gdal.Open(mask) maskband = mask_ds.GetRasterBand(1) result = gdal.FillNodata(dstband, maskband, max_distance, smoothing_iterations, options, callback=prog_func) src_ds = None dst_ds = None mask_ds = None return result if __name__ == '__main__': sys.exit(main(sys.argv))
30.586047
95
0.517336
9abded428ecc595262538c22fb751686427a9593
512
py
Python
requests/__version__.py
AbishiekJay/MyRequest
dd9d8d2f401b29e91deea9e36875d8660e773170
[ "Apache-2.0" ]
null
null
null
requests/__version__.py
AbishiekJay/MyRequest
dd9d8d2f401b29e91deea9e36875d8660e773170
[ "Apache-2.0" ]
null
null
null
requests/__version__.py
AbishiekJay/MyRequest
dd9d8d2f401b29e91deea9e36875d8660e773170
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # .-. .-. .-. . . .-. .-. .-. .-. # |( |- |.| | | |- `-. | `-. # ' ' `-' `-`.`-' `-' `-' ' `-' __title__ = 'requests' __description__ = 'Python HTTP for Humans.' __url__ = 'http://python-requests.org' __version__ = '2.14.2' __build__ = 0x021402 __author__ = 'Kenneth Reitz' __author_email__ = '[email protected]' __license__ = 'Apache 2.0' __copyright__ = 'Copyright 2017 Kenneth Reitz' __cake__ = u'✨ 🍰 ✨ Thanks for using my software. It means the world to me. --kennethreitz'
32
90
0.580078
9a5c1f68a20ae77f851b7c77808363e8f8cfadda
1,714
py
Python
swap_in/clothes/models/clothes.py
Swap-in/swap.in_master
22b052749bcaf779cde709fd8dde6129715d0314
[ "MIT" ]
null
null
null
swap_in/clothes/models/clothes.py
Swap-in/swap.in_master
22b052749bcaf779cde709fd8dde6129715d0314
[ "MIT" ]
null
null
null
swap_in/clothes/models/clothes.py
Swap-in/swap.in_master
22b052749bcaf779cde709fd8dde6129715d0314
[ "MIT" ]
null
null
null
# Django from django.db import models # Models from swap_in.users.models import User from swap_in.utils.models import SwapinModel from .categories import category TYPE_GENDER = [ ("FEMALE", "FEMALE"), ("MALE", "MALE"), ("UNISEX", "UNISEX") ] class Clothes(SwapinModel): """Clothes Model.""" title = models.CharField( max_length=150, null=False ) description = models.CharField( max_length=500, null=False ) category_id = models.ForeignKey( category, related_name='category', on_delete=models.CASCADE, null=False ) size = models.CharField( max_length=20, null=False ) gender = models.CharField( max_length=8, choices=TYPE_GENDER ) user_id = models.ForeignKey( User, related_name='clothes', on_delete=models.CASCADE ) brand = models.CharField( max_length=100, blank=True, null=False ) picture_1 = models.CharField( max_length=500, blank=False, null=False ) picture_2 = models.CharField( max_length=500, blank=True, null=True ) picture_3 = models.CharField( max_length=500, blank=True, null=True ) picture_4 = models.CharField( max_length=500, blank=True, null=True ) picture_5 = models.CharField( max_length=500, blank=True, null=True )
23.162162
44
0.507585
7aa78d118bc9bd0b2d8da4477f5af1366ad98597
2,107
py
Python
project_name/settings.py
joshvillbrandt/django-quick-start-project
e7ddb6f80a2a36f12f3a5415aef49a3dcd703888
[ "Apache-2.0" ]
2
2017-09-30T14:45:40.000Z
2018-03-10T13:25:42.000Z
project_name/settings.py
joshvillbrandt/django-quick-start-project
e7ddb6f80a2a36f12f3a5415aef49a3dcd703888
[ "Apache-2.0" ]
null
null
null
project_name/settings.py
joshvillbrandt/django-quick-start-project
e7ddb6f80a2a36f12f3a5415aef49a3dcd703888
[ "Apache-2.0" ]
1
2022-02-13T09:40:56.000Z
2022-02-13T09:40:56.000Z
""" Django settings for {{ project_name }} project. For more information on this file, see https://docs.djangoproject.com/en/{{ docs_version }}/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/{{ docs_version }}/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os BASE_DIR = os.path.dirname(os.path.dirname(__file__)) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/{{ docs_version }}/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '{{ secret_key }}' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True TEMPLATE_DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', '{{ project_name }}', #'app_name', ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ) ROOT_URLCONF = '{{ project_name }}.urls' WSGI_APPLICATION = '{{ project_name }}.wsgi.application' # Database # https://docs.djangoproject.com/en/{{ docs_version }}/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Internationalization # https://docs.djangoproject.com/en/{{ docs_version }}/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/{{ docs_version }}/howto/static-files/ STATIC_URL = '/static/'
24.788235
86
0.719032
447263db6850010a7828305b60c3bee72703dde1
3,784
py
Python
tensor2tensor/data_generators/quora_qpairs.py
jaseweir/tensor2tensor
2a33b152d7835af66a6d20afe7961751047e28dd
[ "Apache-2.0" ]
12,921
2017-06-15T17:11:46.000Z
2022-03-31T15:22:11.000Z
tensor2tensor/data_generators/quora_qpairs.py
jaseweir/tensor2tensor
2a33b152d7835af66a6d20afe7961751047e28dd
[ "Apache-2.0" ]
1,635
2017-06-18T15:29:27.000Z
2022-03-19T20:35:23.000Z
tensor2tensor/data_generators/quora_qpairs.py
jaseweir/tensor2tensor
2a33b152d7835af66a6d20afe7961751047e28dd
[ "Apache-2.0" ]
3,521
2017-06-15T18:25:42.000Z
2022-03-31T05:47:55.000Z
# coding=utf-8 # Copyright 2021 The Tensor2Tensor Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Data generators for the Quora Question Pairs dataset.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import zipfile from tensor2tensor.data_generators import generator_utils from tensor2tensor.data_generators import problem from tensor2tensor.data_generators import text_encoder from tensor2tensor.data_generators import text_problems from tensor2tensor.utils import registry import tensorflow.compat.v1 as tf EOS = text_encoder.EOS @registry.register_problem class QuoraQuestionPairs(text_problems.TextConcat2ClassProblem): """Quora duplicate question pairs binary classification problems.""" # Link to data from GLUE: https://gluebenchmark.com/tasks _QQP_URL = ("https://firebasestorage.googleapis.com/v0/b/" "mtl-sentence-representations.appspot.com/o/" "data%2FQQP.zip?alt=media&token=700c6acf-160d-" "4d89-81d1-de4191d02cb5") @property def is_generate_per_split(self): return True @property def dataset_splits(self): return [{ "split": problem.DatasetSplit.TRAIN, "shards": 100, }, { "split": problem.DatasetSplit.EVAL, "shards": 1, }] @property def approx_vocab_size(self): return 2**15 @property def num_classes(self): return 2 def class_labels(self, data_dir): del data_dir return ["not_duplicate", "duplicate"] def _maybe_download_corpora(self, tmp_dir): qqp_filename = "QQP.zip" qqp_finalpath = os.path.join(tmp_dir, "QQP") if not tf.gfile.Exists(qqp_finalpath): zip_filepath = generator_utils.maybe_download( tmp_dir, qqp_filename, self._QQP_URL) zip_ref = zipfile.ZipFile(zip_filepath, "r") zip_ref.extractall(tmp_dir) zip_ref.close() return qqp_finalpath def example_generator(self, filename): skipped = 0 for idx, line in enumerate(tf.gfile.Open(filename, "rb")): if idx == 0: continue # skip header line = text_encoder.to_unicode_utf8(line.strip()) split_line = line.split("\t") if len(split_line) < 6: skipped += 1 tf.logging.info("Skipping %d" % skipped) continue s1, s2, l = split_line[3:] # A neat data augmentation trick from Radford et al. (2018) # https://blog.openai.com/language-unsupervised/ inputs = [[s1, s2], [s2, s1]] for inp in inputs: yield { "inputs": inp, "label": int(l) } def generate_samples(self, data_dir, tmp_dir, dataset_split): qqp_dir = self._maybe_download_corpora(tmp_dir) if dataset_split == problem.DatasetSplit.TRAIN: filesplit = "train.tsv" else: filesplit = "dev.tsv" filename = os.path.join(qqp_dir, filesplit) for example in self.example_generator(filename): yield example @registry.register_problem class QuoraQuestionPairsCharacters(QuoraQuestionPairs): """Quora duplicate question pairs classification problems, character level""" @property def vocab_type(self): return text_problems.VocabType.CHARACTER def global_task_id(self): return problem.TaskID.EN_SIM
30.516129
79
0.707452
032bf77c610e3d4eb6da5358889a46fd510bc4b8
276
py
Python
pwnlib/filesystem/path.py
tkmikan/pwntools
1238fc359eb72313d3f82849b2effdb7063ab429
[ "MIT" ]
8,966
2015-01-02T11:58:14.000Z
2022-03-31T21:19:56.000Z
pwnlib/filesystem/path.py
tkmikan/pwntools
1238fc359eb72313d3f82849b2effdb7063ab429
[ "MIT" ]
1,401
2015-01-01T00:56:22.000Z
2022-03-31T16:19:53.000Z
pwnlib/filesystem/path.py
tkmikan/pwntools
1238fc359eb72313d3f82849b2effdb7063ab429
[ "MIT" ]
1,844
2015-01-07T04:38:06.000Z
2022-03-30T03:54:46.000Z
import six import tempfile if six.PY3: from pathlib import * else: from pathlib2 import * @classmethod def mktemp(cls): return cls(tempfile.mktemp()) @classmethod def mkdtemp(cls): return cls(tempfile.mkdtemp()) Path.mktemp = mktemp Path.mkdtemp = mkdtemp
14.526316
34
0.717391
a8615309cb4ec296ecee2675dc364629291dd52b
506
py
Python
com/blueberr/python/study/day1/interaction.py
CoderHongKong/python-study
4e13359e3546b67d555a79adee63422cac7968c2
[ "Apache-2.0" ]
null
null
null
com/blueberr/python/study/day1/interaction.py
CoderHongKong/python-study
4e13359e3546b67d555a79adee63422cac7968c2
[ "Apache-2.0" ]
null
null
null
com/blueberr/python/study/day1/interaction.py
CoderHongKong/python-study
4e13359e3546b67d555a79adee63422cac7968c2
[ "Apache-2.0" ]
null
null
null
# -*- coding: UTF-8 -*- #!/usr/bin/env python #------------------------------------------------------------------------------- # Name: # Purpose: # # Author: hekai #------------------------------------------------------------------------------- name = input("name:") pwd = input("pwd:") age = int(input("age:")) print(type(age)) print(name, pwd) info = ''' age:%d ''' %(age) print(info) info = ''' age:{age} '''.format(age = age) print(info) info = ''' age:{0} '''.format(age) print(info)
16.322581
80
0.367589
c2ef9b9232407070c45955419539f04d3b2db128
2,285
py
Python
src/deepproblog/examples/neurogta/train_on_more_data.py
vossenwout/gtadeepproblog
65509b740518af422b96e84ef10716e0ac246e75
[ "Apache-2.0" ]
null
null
null
src/deepproblog/examples/neurogta/train_on_more_data.py
vossenwout/gtadeepproblog
65509b740518af422b96e84ef10716e0ac246e75
[ "Apache-2.0" ]
null
null
null
src/deepproblog/examples/neurogta/train_on_more_data.py
vossenwout/gtadeepproblog
65509b740518af422b96e84ef10716e0ac246e75
[ "Apache-2.0" ]
null
null
null
import torch from deepproblog.engines import ExactEngine from deepproblog.examples.neurogta.data.dataset import train_dataset, test_dataset from deepproblog.model import Model from deepproblog.network import Network from deepproblog.dataset import DataLoader from deepproblog.engines import ExactEngine from deepproblog.evaluate import get_confusion_matrix from deepproblog.examples.neurogta.data.dataset import train_dataset, test_dataset from deepproblog.model import Model from deepproblog.network import Network from deepproblog.train import train_model from deepproblog.utils.standard_networks import smallnet, SmallNet, MLP from deepproblog.utils.stop_condition import Threshold, StopOnPlateau import numpy as np import keyboard import torchvision.transforms as transforms import cv2 import time import os from Xlib import display, X from PIL import Image from deepproblog.utils.standard_networks import smallnet, SmallNet from deepproblog.query import Query from problog.logic import Term, Constant """ THIS SCRIPT REQUIRES solver.solve() IN solver.py TO NOT CLEAR THE CACHE REMEMBER TO UNDO THE COMMENT WHEN TRAINING A NEW MODEL REMEMBER TO COMMENT WHEN RUNNING THIS SCRIPT W """ key_dict = {0:"w", 4 : "w, a", 5 : "w, d"} lr = 1e-4 gta_network1 = SmallNet(num_classes=3, N=10752) gta_network2 = SmallNet(num_classes=3, N=768) batch_size = 5 loader = DataLoader(train_dataset, batch_size) gta_net1 = Network(gta_network1, "gta_net1", batching=True) gta_net1.optimizer = torch.optim.Adam(gta_network1.parameters(), lr=lr) gta_net2 = Network(gta_network2, "gta_net2", batching=True) gta_net2.optimizer = torch.optim.Adam(gta_network2.parameters(), lr=lr) model = Model("model5.pl", [gta_net1, gta_net2]) model.add_tensor_source("train", train_dataset) model.add_tensor_source("test", test_dataset) model.set_engine(ExactEngine(model), cache=True) model.load_state("saved_models/gtamodel.pth") train_obj = train_model( model, loader, StopOnPlateau("Accuracy", warm_up=10, patience=10) | Threshold("Accuracy", 1.0, duration=1), log_iter=100 // batch_size, test_iter=100 // batch_size, test=lambda x: [("Accuracy", get_confusion_matrix(x, test_dataset).accuracy())], infoloss=0.25, ) model.save_state("saved_models/gtamodel.pth")
29.294872
84
0.791685
ad8a5eb792aae7ff19a44c7cfa95795f02fde078
789
py
Python
built-in/PyTorch/Official/cv/image_classification/Gluon_ResNet50_v1d_for_PyTorch/hubconf.py
Ascend/modelzoo
f018cfed33dbb1cc2110b9ea2e233333f71cc509
[ "Apache-2.0" ]
12
2020-12-13T08:34:24.000Z
2022-03-20T15:17:17.000Z
built-in/PyTorch/Official/cv/image_classification/Gluon_ResNet50_v1d_for_PyTorch/hubconf.py
Ascend/modelzoo
f018cfed33dbb1cc2110b9ea2e233333f71cc509
[ "Apache-2.0" ]
1
2022-01-20T03:11:05.000Z
2022-01-20T06:53:39.000Z
built-in/PyTorch/Official/cv/image_classification/Gluon_ResNet50_v1d_for_PyTorch/hubconf.py
Ascend/modelzoo
f018cfed33dbb1cc2110b9ea2e233333f71cc509
[ "Apache-2.0" ]
2
2021-07-10T12:40:46.000Z
2021-12-17T07:55:15.000Z
# Copyright [yyyy] [name of copyright owner] # Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # dependencies = ['torch'] from timm.models import registry globals().update(registry._model_entrypoints)
37.571429
78
0.721166
86e4b9137d76900952dc519cec28e05827550bf8
2,490
py
Python
tests/test_parse_context.py
gubschk/CDEWIP
fb628593417df5f955eb1fa62176b7cb3c322ebc
[ "MIT" ]
null
null
null
tests/test_parse_context.py
gubschk/CDEWIP
fb628593417df5f955eb1fa62176b7cb3c322ebc
[ "MIT" ]
null
null
null
tests/test_parse_context.py
gubschk/CDEWIP
fb628593417df5f955eb1fa62176b7cb3c322ebc
[ "MIT" ]
1
2021-02-21T02:51:39.000Z
2021-02-21T02:51:39.000Z
# -*- coding: utf-8 -*- """ test_parse_apparatus ~~~~~~~~~~~~~~~~~~~~ """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import logging import unittest from lxml import etree from chemdataextractor.doc.text import Sentence, Paragraph from chemdataextractor.parse.context import context_phrase logging.basicConfig(level=logging.DEBUG) log = logging.getLogger(__name__) class TestParseApparatus(unittest.TestCase): """Simple apparatus parse tests.""" maxDiff = None def do_parse(self, input, expected): s = Sentence(input) log.debug(s) log.debug(s.tagged_tokens) results = [] for i, r in enumerate(context_phrase.scan(s.tagged_tokens)): log.debug(etree.tostring(r[0], pretty_print=True, encoding='unicode')) results.append(etree.tostring(r[0], encoding='unicode')) self.assertEqual(expected, results) def test_apparatus(self): """""" s = 'The photoluminescence quantum yield (PLQY) was measured using a HORIBA Jobin Yvon FluoroMax-4 spectrofluorimeter' expected = ['<context_phrase><measurement><quantum_yield>photoluminescence quantum yield PLQY</quantum_yield></measurement><apparatus>HORIBA Jobin Yvon FluoroMax-4 spectrofluorimeter</apparatus></context_phrase>'] self.do_parse(s, expected) def test_apparatus2(self): """""" s = '1H NMR spectra were recorded on a Varian MR-400 MHz instrument.' expected = ['<context_phrase><measurement><nmr>1H</nmr></measurement><apparatus>Varian MR-400 MHz instrument</apparatus></context_phrase>'] self.do_parse(s, expected) def test_apparatus_record(self): """""" p = Paragraph('The photoluminescence quantum yield (PLQY) was measured using a HORIBA Jobin Yvon FluoroMax-4 spectrofluorimeter.') expected = [{'quantum_yields': [{'apparatus': u'HORIBA Jobin Yvon FluoroMax-4 spectrofluorimeter'}]}] self.assertEqual(expected, [r.serialize() for r in p.records]) def test_apparatus_record2(self): """""" p = Paragraph('NMR was run on a 400 MHz Varian NMR.') expected = [{'nmr_spectra': [{'apparatus': '400 MHz Varian NMR'}]}] self.assertEqual(expected, [r.serialize() for r in p.records]) if __name__ == '__main__': unittest.main()
35.571429
222
0.669478
23dcaad02972a1fdf94b45ba9fb8b7a9ecd6fc36
3,309
py
Python
sopel_modules/sports/mlb.py
RustyBower/sopel-sports
302333371a0d24e653978e18eac1c6796dca1992
[ "MIT" ]
1
2021-10-01T15:38:53.000Z
2021-10-01T15:38:53.000Z
sopel_modules/sports/mlb.py
RustyBower/sopel-sports
302333371a0d24e653978e18eac1c6796dca1992
[ "MIT" ]
8
2020-02-23T00:30:46.000Z
2021-09-26T16:03:09.000Z
sopel_modules/sports/mlb.py
RustyBower/sopel-sports
302333371a0d24e653978e18eac1c6796dca1992
[ "MIT" ]
null
null
null
# coding=utf-8 # Copyright 2019, Rusty Bower, rustybower.com import arrow import requests from sopel.formatting import bold from sopel.module import commands, example def parse_games(date): if date: r = requests.get( "https://statsapi.mlb.com/api/v1/schedule?sportId=1&date={}".format(date) ) else: r = requests.get("https://statsapi.mlb.com/api/v1/schedule?sportId=1") reply = [] for date in r.json()["dates"]: # TODO - Figure out what events and matches are for game in date["games"]: # Game Is Not Started if game["status"]["abstractGameState"] == "Preview": reply.append( "{} @ {} {} Eastern".format( game["teams"]["away"]["team"]["name"], game["teams"]["home"]["team"]["name"], # TODO - Allow users to specify timezone to return arrow.get(game["gameDate"]).to("US/Eastern").format("HH:mm"), ) ) elif game["status"]["abstractGameState"] == "Final": # Away Team Win if int(game["teams"]["away"]["score"]) > int( game["teams"]["home"]["score"] ): reply.append( "{} {} {} {} Final".format( bold(game["teams"]["away"]["team"]["name"]), bold(str(game["teams"]["away"]["score"])), game["teams"]["home"]["team"]["name"], str(game["teams"]["home"]["score"]), ) ) # Home Team Win elif int(game["teams"]["home"]["score"]) > int( game["teams"]["away"]["score"] ): reply.append( "{} {} {} {} Final".format( game["teams"]["away"]["team"]["name"], str(game["teams"]["away"]["score"]), bold(game["teams"]["home"]["team"]["name"]), bold(str(game["teams"]["home"]["score"])), ) ) # Tie Game else: reply.append( "{} {} {} {} Final".format( game["teams"]["away"]["team"]["name"], game["teams"]["away"]["score"], game["teams"]["home"]["team"]["name"], game["teams"]["home"]["score"], ) ) return reply @commands("mlb") @example(".mlb") @example(".mlb 2019-10-29") def mlb(bot, trigger): date = trigger.group(2) or None # Get Game Data reply = " | ".join(parse_games(date)) # Split if greater than 200 characters so we don't accidentally cut anything off if len(reply) > 200: length = int(len(reply.split(" | ")) / 2) bot.reply(" | ".join(reply.split(" | ")[0:length])) bot.reply(" | ".join(reply.split(" | ")[length:])) return else: if reply: return bot.reply(reply) else: return
37.602273
85
0.414929
9a452cd5aefae61e8f8734abb9e18f3e71576a07
1,218
py
Python
pyvisdk/do/host_cnx_failed_no_connection_event.py
Infinidat/pyvisdk
f2f4e5f50da16f659ccc1d84b6a00f397fa997f8
[ "MIT" ]
null
null
null
pyvisdk/do/host_cnx_failed_no_connection_event.py
Infinidat/pyvisdk
f2f4e5f50da16f659ccc1d84b6a00f397fa997f8
[ "MIT" ]
null
null
null
pyvisdk/do/host_cnx_failed_no_connection_event.py
Infinidat/pyvisdk
f2f4e5f50da16f659ccc1d84b6a00f397fa997f8
[ "MIT" ]
null
null
null
import logging from pyvisdk.exceptions import InvalidArgumentError ######################################## # Automatically generated, do not edit. ######################################## log = logging.getLogger(__name__) def HostCnxFailedNoConnectionEvent(vim, *args, **kwargs): '''This event records a failure to connect to a host due to a host not being present on the network.''' obj = vim.client.factory.create('{urn:vim25}HostCnxFailedNoConnectionEvent') # do some validation checking... if (len(args) + len(kwargs)) < 4: raise IndexError('Expected at least 5 arguments got: %d' % len(args)) required = [ 'chainId', 'createdTime', 'key', 'userName' ] optional = [ 'changeTag', 'computeResource', 'datacenter', 'ds', 'dvs', 'fullFormattedMessage', 'host', 'net', 'vm', 'dynamicProperty', 'dynamicType' ] for name, arg in zip(required+optional, args): setattr(obj, name, arg) for name, value in kwargs.items(): if name in required + optional: setattr(obj, name, value) else: raise InvalidArgumentError("Invalid argument: %s. Expected one of %s" % (name, ", ".join(required + optional))) return obj
34.8
124
0.614943
6c63e1aa11dd355b3ea3fb2b6c70dd70ecef6fa9
88
py
Python
tests/periodicities/Hour/Cycle_Hour_3200_H_30.py
jmabry/pyaf
afbc15a851a2445a7824bf255af612dc429265af
[ "BSD-3-Clause" ]
null
null
null
tests/periodicities/Hour/Cycle_Hour_3200_H_30.py
jmabry/pyaf
afbc15a851a2445a7824bf255af612dc429265af
[ "BSD-3-Clause" ]
1
2019-11-30T23:39:38.000Z
2019-12-01T04:34:35.000Z
tests/periodicities/Hour/Cycle_Hour_3200_H_30.py
jmabry/pyaf
afbc15a851a2445a7824bf255af612dc429265af
[ "BSD-3-Clause" ]
null
null
null
import pyaf.tests.periodicities.period_test as per per.buildModel((30 , 'H' , 3200));
17.6
50
0.727273
aff9983d1697103bd24ad5c778ae7a2ff1cb41e5
9,603
py
Python
zerver/tests/test_alert_words.py
sa2c/zulip
a00d911ed1071e6a8bbaa17d8df9e96115973588
[ "Apache-2.0" ]
1
2021-05-15T00:44:42.000Z
2021-05-15T00:44:42.000Z
zerver/tests/test_alert_words.py
sa2c/zulip
a00d911ed1071e6a8bbaa17d8df9e96115973588
[ "Apache-2.0" ]
1
2019-12-24T06:51:52.000Z
2019-12-24T06:51:52.000Z
zerver/tests/test_alert_words.py
sa2c/zulip
a00d911ed1071e6a8bbaa17d8df9e96115973588
[ "Apache-2.0" ]
1
2021-07-22T10:14:08.000Z
2021-07-22T10:14:08.000Z
import orjson from zerver.lib.actions import do_add_alert_words, do_remove_alert_words from zerver.lib.alert_words import alert_words_in_realm, user_alert_words from zerver.lib.test_classes import ZulipTestCase from zerver.lib.test_helpers import most_recent_message, most_recent_usermessage from zerver.models import AlertWord, UserProfile class AlertWordTests(ZulipTestCase): interesting_alert_word_list = ["alert", "multi-word word", "☃"] def get_user(self) -> UserProfile: # One nice thing about Hamlet is that he is # already subscribed to Denmark. user = self.example_user("hamlet") # delete words from populate_db to simplify tests AlertWord.objects.filter(user_profile=user).delete() return user def test_internal_endpoint(self) -> None: user = self.get_user() self.login_user(user) params = { "alert_words": orjson.dumps(["milk", "cookies"]).decode(), } result = self.client_post("/json/users/me/alert_words", params) self.assert_json_success(result) words = user_alert_words(user) self.assertEqual(set(words), {"milk", "cookies"}) def test_default_no_words(self) -> None: """ Users start out with no alert words. """ user = self.get_user() words = user_alert_words(user) self.assertEqual(words, []) def test_basics(self) -> None: """ Verifies the basic behavior of modifying alert words. Also verifies the cache-flushing behavior. """ user = self.get_user() realm_alert_words = alert_words_in_realm(user.realm) self.assert_length(realm_alert_words.get(user.id, []), 0) # Add several words, including multi-word and non-ascii words. do_add_alert_words(user, self.interesting_alert_word_list) words = user_alert_words(user) self.assertEqual(set(words), set(self.interesting_alert_word_list)) realm_alert_words = alert_words_in_realm(user.realm) self.assert_length(realm_alert_words[user.id], 3) # Test the case-insensitivity of adding words do_add_alert_words(user, {"ALert", "ALERT"}) words = user_alert_words(user) self.assertEqual(set(words), set(self.interesting_alert_word_list)) realm_alert_words = alert_words_in_realm(user.realm) self.assert_length(realm_alert_words[user.id], 3) # Test the case-insensitivity of removing words do_remove_alert_words(user, {"ALert"}) words = user_alert_words(user) self.assertEqual(set(words), set(self.interesting_alert_word_list) - {"alert"}) realm_alert_words = alert_words_in_realm(user.realm) self.assert_length(realm_alert_words[user.id], 2) def test_remove_word(self) -> None: """ Removing alert words works via do_remove_alert_words, even for multi-word and non-ascii words. """ user = self.get_user() expected_remaining_alerts = set(self.interesting_alert_word_list) do_add_alert_words(user, self.interesting_alert_word_list) for alert_word in self.interesting_alert_word_list: do_remove_alert_words(user, [alert_word]) expected_remaining_alerts.remove(alert_word) actual_remaining_alerts = user_alert_words(user) self.assertEqual(set(actual_remaining_alerts), expected_remaining_alerts) def test_realm_words(self) -> None: """ We can gather alert words for an entire realm via alert_words_in_realm. Alerts added for one user do not impact other users. """ # Clear all the words that we got from populate_db. AlertWord.objects.all().delete() user1 = self.get_user() do_add_alert_words(user1, self.interesting_alert_word_list) user2 = self.example_user("othello") do_add_alert_words(user2, ["another"]) realm_words = alert_words_in_realm(user2.realm) self.assertEqual(len(realm_words), 2) self.assertEqual(set(realm_words.keys()), {user1.id, user2.id}) self.assertEqual(set(realm_words[user1.id]), set(self.interesting_alert_word_list)) self.assertEqual(set(realm_words[user2.id]), {"another"}) def test_json_list_default(self) -> None: user = self.get_user() self.login_user(user) result = self.client_get("/json/users/me/alert_words") self.assert_json_success(result) self.assertEqual(result.json()["alert_words"], []) def test_json_list_nonempty(self) -> None: user = self.get_user() do_add_alert_words(user, ["one", "two", "three"]) self.login_user(user) result = self.client_get("/json/users/me/alert_words") self.assert_json_success(result) self.assertEqual(set(result.json()["alert_words"]), {"one", "two", "three"}) def test_json_list_add(self) -> None: user = self.get_user() self.login_user(user) result = self.client_post( "/json/users/me/alert_words", {"alert_words": orjson.dumps(["one ", "\n two", "three"]).decode()}, ) self.assert_json_success(result) self.assertEqual(set(result.json()["alert_words"]), {"one", "two", "three"}) def test_json_list_remove(self) -> None: user = self.get_user() self.login_user(user) result = self.client_post( "/json/users/me/alert_words", {"alert_words": orjson.dumps(["one", "two", "three"]).decode()}, ) self.assert_json_success(result) self.assertEqual(set(result.json()["alert_words"]), {"one", "two", "three"}) result = self.client_delete( "/json/users/me/alert_words", {"alert_words": orjson.dumps(["one"]).decode()} ) self.assert_json_success(result) self.assertEqual(set(result.json()["alert_words"]), {"two", "three"}) def message_does_alert(self, user: UserProfile, message: str) -> bool: """Send a bunch of messages as othello, so our user is notified""" self.send_stream_message(self.example_user("othello"), "Denmark", message) user_message = most_recent_usermessage(user) return "has_alert_word" in user_message.flags_list() def test_alert_flags(self) -> None: user = self.get_user() self.login_user(user) result = self.client_post( "/json/users/me/alert_words", {"alert_words": orjson.dumps(["one", "two", "three"]).decode()}, ) self.assert_json_success(result) self.assertEqual(set(result.json()["alert_words"]), {"one", "two", "three"}) # Alerts in the middle of messages work. self.assertTrue(self.message_does_alert(user, "Normal alert one time")) # Alerts at the end of messages work. self.assertTrue(self.message_does_alert(user, "Normal alert one")) # Alerts at the beginning of messages work. self.assertTrue(self.message_does_alert(user, "two normal alerts")) # Alerts with surrounding punctuation work. self.assertTrue(self.message_does_alert(user, "This one? should alert")) self.assertTrue(self.message_does_alert(user, "Definitely time for three.")) # Multiple alerts in a message work. self.assertTrue(self.message_does_alert(user, "One two three o'clock")) # Alerts are case-insensitive. self.assertTrue(self.message_does_alert(user, "One o'clock")) self.assertTrue(self.message_does_alert(user, "Case of ONE, won't stop me")) # We don't cause alerts for matches in URLs. self.assertFalse(self.message_does_alert(user, "Don't alert on http://t.co/one/ URLs")) self.assertFalse(self.message_does_alert(user, "Don't alert on http://t.co/one URLs")) # We don't cause alerts for matches within a word. self.assertFalse( self.message_does_alert(user, "Don't alert on clone, twofold or seventytwofold") ) def test_update_alert_words(self) -> None: user = self.get_user() self.login_user(user) result = self.client_post( "/json/users/me/alert_words", {"alert_words": orjson.dumps(["ALERT"]).decode()} ) content = "this is an ALERT for you" self.send_stream_message(user, "Denmark", content) self.assert_json_success(result) original_message = most_recent_message(user) user_message = most_recent_usermessage(user) self.assertIn("has_alert_word", user_message.flags_list()) result = self.client_patch( "/json/messages/" + str(original_message.id), { "message_id": original_message.id, "content": "new ALERT for you", }, ) self.assert_json_success(result) user_message = most_recent_usermessage(user) self.assertEqual(user_message.message.content, "new ALERT for you") self.assertIn("has_alert_word", user_message.flags_list()) result = self.client_patch( "/json/messages/" + str(original_message.id), { "message_id": original_message.id, "content": "sorry false alarm", }, ) self.assert_json_success(result) user_message = most_recent_usermessage(user) self.assertEqual(user_message.message.content, "sorry false alarm") self.assertNotIn("has_alert_word", user_message.flags_list())
39.681818
95
0.649797
177718b33dc92ce41940f9dc56cc200f255f3ea9
7,043
py
Python
discord/ui/input_text.py
zearakun/pycyat
5f77f120df0caf6e4c4dd8b8f03c426354b0882f
[ "MIT" ]
null
null
null
discord/ui/input_text.py
zearakun/pycyat
5f77f120df0caf6e4c4dd8b8f03c426354b0882f
[ "MIT" ]
null
null
null
discord/ui/input_text.py
zearakun/pycyat
5f77f120df0caf6e4c4dd8b8f03c426354b0882f
[ "MIT" ]
null
null
null
from __future__ import annotations import os from typing import TYPE_CHECKING, Optional from ..components import InputText as InputTextComponent from ..enums import ComponentType, InputTextStyle from ..utils import MISSING __all__ = ("InputText",) if TYPE_CHECKING: from ..types.components import InputText as InputTextComponentPayload class InputText: """Represents a UI text input field. Parameters ---------- style: :class:`discord.InputTextStyle` The style of the input text field. custom_id: Optional[:class:`str`] The ID of the input text field that gets received during an interaction. label: :class:`str` The label for the input text field. Must be 45 characters or fewer. placeholder: Optional[:class:`str`] The placeholder text that is shown if nothing is selected, if any. Must be 100 characters or fewer. min_length: Optional[:class:`int`] The minimum number of characters that must be entered. Defaults to 0 and must be less than 4000. max_length: Optional[:class:`int`] The maximum number of characters that can be entered. Must be between 1 and 4000. required: Optional[:class:`bool`] Whether the input text field is required or not. Defaults to `True`. value: Optional[:class:`str`] Pre-fills the input text field with this value. Must be 4000 characters or fewer. row: Optional[:class:`int`] The relative row this input text field belongs to. A modal dialog can only have 5 rows. By default, items are arranged automatically into those 5 rows. If you'd like to control the relative positioning of the row then passing an index is advised. For example, row=1 will show up before row=2. Defaults to ``None``, which is automatic ordering. The row number must be between 0 and 4 (i.e. zero indexed). """ def __init__( self, *, style: InputTextStyle = InputTextStyle.short, custom_id: str = MISSING, label: str, placeholder: Optional[str] = None, min_length: Optional[int] = None, max_length: Optional[int] = None, required: Optional[bool] = True, value: Optional[str] = None, row: Optional[int] = None, ): super().__init__() custom_id = os.urandom(16).hex() if custom_id is MISSING else custom_id if not (isinstance(custom_id, str) or custom_id is None): raise TypeError(f"expected custom_id to be str, not {custom_id.__class__.__name__}") self._underlying = InputTextComponent._raw_construct( type=ComponentType.input_text, style=style, custom_id=custom_id, label=label, placeholder=placeholder, min_length=min_length, max_length=max_length, required=required, value=value, ) self._input_value = False self.row = row self._rendered_row: Optional[int] = None @property def type(self) -> ComponentType: return self._underlying.type @property def style(self) -> InputTextStyle: """:class:`discord.InputTextStyle`: The style of the input text field.""" return self._underlying.style @style.setter def style(self, value: InputTextStyle): if not isinstance(value, InputTextStyle): raise TypeError(f"style must be of type InputTextStyle not {value.__class__}") self._underlying.style = value @property def custom_id(self) -> str: """:class:`str`: The ID of the input text field that gets received during an interaction.""" return self._underlying.custom_id @custom_id.setter def custom_id(self, value: str): if not isinstance(value, str): raise TypeError(f"custom_id must be None or str not {value.__class__}") self._underlying.custom_id = value @property def label(self) -> str: """:class:`str`: The label of the input text field.""" return self._underlying.label @label.setter def label(self, value: str): if not isinstance(value, str): raise TypeError(f"label should be str not {value.__class__}") self._underlying.label = value @property def placeholder(self) -> Optional[str]: """Optional[:class:`str`]: The placeholder text that is shown before anything is entered, if any.""" return self._underlying.placeholder @placeholder.setter def placeholder(self, value: Optional[str]): if value and not isinstance(value, str): raise TypeError(f"placeholder must be None or str not {value.__class__}") # type: ignore self._underlying.placeholder = value @property def min_length(self) -> Optional[int]: """Optional[:class:`int`]: The minimum number of characters that must be entered. Defaults to `0`.""" return self._underlying.min_length @min_length.setter def min_length(self, value: Optional[int]): if value and not isinstance(value, int): raise TypeError(f"min_length must be None or int not {value.__class__}") # type: ignore self._underlying.min_length = value @property def max_length(self) -> Optional[int]: """Optional[:class:`int`]: The maximum number of characters that can be entered.""" return self._underlying.max_length @max_length.setter def max_length(self, value: Optional[int]): if value and not isinstance(value, int): raise TypeError(f"min_length must be None or int not {value.__class__}") # type: ignore self._underlying.max_length = value @property def required(self) -> Optional[bool]: """Optional[:class:`bool`]: Whether the input text field is required or not. Defaults to `True`.""" return self._underlying.required @required.setter def required(self, value: Optional[bool]): if not isinstance(value, bool): raise TypeError(f"required must be bool not {value.__class__}") # type: ignore self._underlying.required = bool(value) @property def value(self) -> Optional[str]: """Optional[:class:`str`]: The value entered in the text field.""" if self._input_value is not False: # only False on init, otherwise the value was either set or cleared return self._input_value # type: ignore return self._underlying.value @value.setter def value(self, value: Optional[str]): if value and not isinstance(value, str): raise TypeError(f"value must be None or str not {value.__class__}") # type: ignore self._underlying.value = value @property def width(self) -> int: return 5 def to_component_dict(self) -> InputTextComponentPayload: return self._underlying.to_dict() def refresh_state(self, data) -> None: self._input_value = data["value"]
37.663102
109
0.650859
e395e0e044aab6f7b82bd9dba6afbfff2001bbd5
1,677
py
Python
roll_prob.py
slaymaker1907/dnd-stuff
7da4294fadcf52759a033d68f5b429d571870ff7
[ "MIT" ]
null
null
null
roll_prob.py
slaymaker1907/dnd-stuff
7da4294fadcf52759a033d68f5b429d571870ff7
[ "MIT" ]
null
null
null
roll_prob.py
slaymaker1907/dnd-stuff
7da4294fadcf52759a033d68f5b429d571870ff7
[ "MIT" ]
null
null
null
import collections as c # Dicts mapping rolls to probabilities. def combine_rolls(roll1, roll2): result = c.defaultdict(lambda: 0) for value1, prob1 in roll1.items(): for value2, prob2 in roll2.items(): result[value1 + value2] += prob1 * prob2 return result def generic_roll(dice_type, dice_count): base_prob = 1 / dice_type base_roll = {i:base_prob for i in range(1, dice_type + 1)} result = base_roll for i in range(dice_count - 1): result = combine_rolls(result, base_roll) return result def advantage_roll(dice_type): result = dict() search_space = pow(dice_type, 2) for i in range(1, dice_type + 1): nums_lower = i - 1 result[i] = (1 + nums_lower) / search_space return result def stats_roll(): def get_possib(dice_count): if dice_count == 1: return [(i,) for i in range(1, 7)] result = [] previous = get_possib(dice_count - 1) for prev in previous: for i in range(1, 7): result.append((i,) + prev) return result rolls = get_possib(4) rolls = [sum(roll) - min(roll) for roll in rolls] counts = c.Counter(rolls) result = dict() for val_sum, count in counts.items(): result[val_sum] = count / len(rolls) return result def make_culumlative(distribution, max_val, min_val): cumulative = 0 result = dict() for i in range(max_val, min_val, -1): cumulative += distribution[i] result[i] = cumulative return result stats_cumulative = make_culumlative(stats_roll(), 18, 3) print(pow(stats_cumulative[15], 3)) print(generic_roll(8, 20))
29.946429
62
0.627311
22915b91623e8b3eeb5b8c65d97961d3e45b148d
14,570
py
Python
morf-python-api/build/lib/morf/workflow/extract.py
jpgard/morf
f17afcacef68929a5ce9e7714208be1002a42418
[ "MIT" ]
14
2018-06-27T13:15:46.000Z
2021-08-30T08:24:38.000Z
morf-python-api/build/lib/morf/workflow/extract.py
jpgard/morf
f17afcacef68929a5ce9e7714208be1002a42418
[ "MIT" ]
58
2018-02-03T15:31:15.000Z
2019-10-15T02:12:05.000Z
morf-python-api/build/lib/morf/workflow/extract.py
jpgard/morf
f17afcacef68929a5ce9e7714208be1002a42418
[ "MIT" ]
7
2018-03-29T14:47:34.000Z
2021-06-22T01:34:52.000Z
# Copyright (c) 2018 The Regents of the University of Michigan # and the University of Pennsylvania # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """ Feature extraction functions for the MORF 2.0 API. For more information about the API, see the documentation. """ from multiprocessing import Pool from morf.utils.alerts import send_email_alert from morf.utils.api_utils import * from morf.utils.config import MorfJobConfig from morf.utils.job_runner_utils import run_image from morf.utils.log import set_logger_handlers # define module-level variables for config.properties CONFIG_FILENAME = "config.properties" module_logger = logging.getLogger(__name__) def extract_all(): """ Extract features using the docker image across all courses and all sessions except holdout. :return: """ mode = "extract" level = "all" job_config = MorfJobConfig(CONFIG_FILENAME) job_config.update_mode(mode) # clear any preexisting data for this user/job/mode clear_s3_subdirectory(job_config) # only call job_runner once with --mode-extract and --level=all; this will load ALL data up and run the docker image run_image(job_config, job_config.raw_data_buckets, level=level) result_file = collect_all_results(job_config) upload_key = make_s3_key_path(job_config, filename=result_file) upload_file_to_s3(result_file, bucket=job_config.proc_data_bucket, key=upload_key) os.remove(result_file) send_email_alert(job_config) return def extract_course(raw_data_dir="morf-data/", multithread = True): """ Extract features using the Docker image, building individual feature sets for each course. :return: """ mode = "extract" level = "course" job_config = MorfJobConfig(CONFIG_FILENAME) job_config.update_mode(mode) logger = set_logger_handlers(module_logger, job_config) # clear any preexisting data for this user/job/mode clear_s3_subdirectory(job_config) if multithread: num_cores = job_config.max_num_cores else: num_cores = 1 # call job_runner once percourse with --mode=extract and --level=course for raw_data_bucket in job_config.raw_data_buckets: logger.info("processing bucket {}".format(raw_data_bucket)) courses = fetch_courses(job_config, raw_data_bucket, raw_data_dir) reslist = [] with Pool(num_cores) as pool: for course in courses: poolres = pool.apply_async(run_image, [job_config, raw_data_bucket, course, None, level, None]) reslist.append(poolres) pool.close() pool.join() for res in reslist: logger.info(res.get()) result_file = collect_course_results(job_config) upload_key = make_s3_key_path(job_config, filename=result_file) upload_file_to_s3(result_file, bucket=job_config.proc_data_bucket, key=upload_key) os.remove(result_file) send_email_alert(job_config) return def extract_session(labels=False, raw_data_dir="morf-data/", label_type="labels-train", multithread=True): """ Extract features using the Docker image, building individual feature sets for each "session" or iteration of the course. :labels: flag for whether this is a job to generate output labels; if so, the collected result file is copied back into the raw data folder in s3 (as labels-train.csv). :raw_data_dir: path to directory in all data buckets where course-level directories are located; this should be uniform for every raw data bucket. :label_type: type of outcome label to use (string). :multithread: whether to run job in parallel (multithread = false can be useful for debugging). :return: """ level = "session" mode = "extract" job_config = MorfJobConfig(CONFIG_FILENAME) job_config.update_mode(mode) logger = set_logger_handlers(module_logger, job_config) # # clear any preexisting data for this user/job/mode and set number of cores clear_s3_subdirectory(job_config) if multithread: num_cores = job_config.max_num_cores else: num_cores = 1 ## for each bucket, call job_runner once per session with --mode=extract and --level=session for raw_data_bucket in job_config.raw_data_buckets: logger.info("processing bucket {}".format(raw_data_bucket)) courses = fetch_courses(job_config, raw_data_bucket, raw_data_dir) reslist = [] with Pool(num_cores) as pool: for course in courses: for session in fetch_sessions(job_config, raw_data_bucket, raw_data_dir, course, fetch_holdout_session_only=False): poolres = pool.apply_async(run_image, [job_config, raw_data_bucket, course, session, level]) reslist.append(poolres) pool.close() pool.join() for res in reslist: logger.info(res.get()) if not labels: # normal feature extraction job; collects features across all buckets and upload to proc_data_bucket result_file = collect_session_results(job_config) upload_key = "{}/{}/extract/{}".format(job_config.user_id, job_config.job_id, result_file) upload_file_to_s3(result_file, bucket=job_config.proc_data_bucket, key=upload_key) else: # label extraction job; copy file into raw course data dir instead of proc_data_bucket, creating separate label files for each bucket for raw_data_bucket in job_config.raw_data_buckets: result_file = collect_session_results(job_config, raw_data_buckets=[raw_data_bucket]) upload_key = raw_data_dir + "{}.csv".format(label_type) upload_file_to_s3(result_file, bucket=raw_data_bucket, key=upload_key) os.remove(result_file) send_email_alert(job_config) return def extract_holdout_all(): """ Extract features using the Docker image across all courses and all sessions of holdout data. :return: """ mode = "extract-holdout" level = "all" job_config = MorfJobConfig(CONFIG_FILENAME) job_config.update_mode(mode) # clear any preexisting data for this user/job/mode clear_s3_subdirectory(job_config) # only call job_runner once with --mode-extract and --level=all; this will load ALL data up and run the docker image run_image(job_config, job_config.raw_data_buckets, level=level) result_file = collect_all_results(job_config) upload_key = make_s3_key_path(job_config, filename=result_file) upload_file_to_s3(result_file, bucket=job_config.proc_data_bucket, key=upload_key) os.remove(result_file) send_email_alert(job_config) return def extract_holdout_course(raw_data_dir="morf-data/", multithread = True): """ Extract features using the Docker image across each course of holdout data. :return: """ mode = "extract-holdout" level = "course" job_config = MorfJobConfig(CONFIG_FILENAME) job_config.update_mode(mode) logger = set_logger_handlers(module_logger, job_config) # clear any preexisting data for this user/job/mode clear_s3_subdirectory(job_config) if multithread: num_cores = job_config.max_num_cores else: num_cores = 1 # call job_runner once percourse with --mode=extract and --level=course for raw_data_bucket in job_config.raw_data_buckets: logger.info("processing bucket {}".format(raw_data_bucket)) courses = fetch_courses(job_config, raw_data_bucket, raw_data_dir) reslist = [] with Pool(num_cores) as pool: for course in courses: holdout_session = fetch_sessions(job_config, raw_data_bucket, raw_data_dir, course, fetch_holdout_session_only=True)[0] # only use holdout run; unlisted poolres = pool.apply_async(run_image, [job_config, raw_data_bucket, course, holdout_session, level, None]) reslist.append(poolres) pool.close() pool.join() for res in reslist: logger.info(res.get()) result_file = collect_course_results(job_config) upload_key = make_s3_key_path(job_config, filename=result_file) upload_file_to_s3(result_file, bucket=job_config.proc_data_bucket, key=upload_key) os.remove(result_file) send_email_alert(job_config) return def extract_holdout_session(labels=False, raw_data_dir="morf-data/", label_type="labels-train", multithread=True): """ Extract features using the Docker image across each session of holdout data. :labels: flag for whether this is a job to generate output labels; if so, the collected result file is copied back into the raw data folder in s3 (as labels-test.csv). :return: None """ mode = "extract-holdout" level = "session" job_config = MorfJobConfig(CONFIG_FILENAME) job_config.update_mode(mode) logger = set_logger_handlers(module_logger, job_config) # call job_runner once per session with --mode=extract-holdout and --level=session # clear any preexisting data for this user/job/mode clear_s3_subdirectory(job_config) if multithread: num_cores = job_config.max_num_cores else: num_cores = 1 for raw_data_bucket in job_config.raw_data_buckets: logger.info("[INFO] processing bucket {}".format(raw_data_bucket)) courses = fetch_courses(job_config, raw_data_bucket, raw_data_dir) reslist = [] with Pool(num_cores) as pool: for course in courses: holdout_session = fetch_sessions(job_config, raw_data_bucket, raw_data_dir, course, fetch_holdout_session_only=True)[0] # only use holdout run; unlisted poolres = pool.apply_async(run_image, [job_config, raw_data_bucket, course, holdout_session, level]) reslist.append(poolres) pool.close() pool.join() for res in reslist: logger.info(res.get()) if not labels: # normal feature extraction job; collects features across all buckets and upload to proc_data_bucket result_file = collect_session_results(job_config, holdout=True) upload_key = "{}/{}/{}/{}".format(job_config.user_id, job_config.job_id, job_config.mode, result_file) upload_file_to_s3(result_file, bucket=job_config.proc_data_bucket, key=upload_key) else: # label extraction job; copy file into raw course data dir instead of proc_data_bucket, creating separate label files for each bucket for raw_data_bucket in job_config.raw_data_buckets: result_file = collect_session_results(job_config, raw_data_buckets=[raw_data_bucket], holdout = True) upload_key = raw_data_dir + "{}-test.csv".format(label_type) upload_file_to_s3(result_file, bucket=raw_data_bucket, key=upload_key) os.remove(result_file) send_email_alert(job_config) return def fork_features(job_id_to_fork, raw_data_dir = "morf-data/"): """ Copies features from job_id_to_fork into current job_id. :param job_id_to_fork: string, name of job_id (must be from same user). :return: None. """ job_config = MorfJobConfig(CONFIG_FILENAME) #todo: multithread this for mode in ["extract", "extract-holdout"]: job_config.update_mode(mode) clear_s3_subdirectory(job_config) for raw_data_bucket in job_config.raw_data_buckets: print("[INFO] forking features from bucket {} mode {}".format(raw_data_bucket, mode)) courses = fetch_courses(job_config, raw_data_bucket, raw_data_dir) for course in courses: for session in fetch_sessions(job_config, raw_data_bucket, raw_data_dir, course, fetch_holdout_session_only = mode == "extract-holdout"): # get current location of file, with old jobid name prev_job_archive_filename = generate_archive_filename(job_config, course = course, session = session, mode = mode, job_id = job_id_to_fork) # get location of prev archive file in s3 prev_job_key = make_s3_key_path(job_config, filename=prev_job_archive_filename, course=course, session=session, mode=mode, job_id=job_id_to_fork) prev_job_s3_url = "s3://{}/{}".format(job_config.proc_data_bucket, prev_job_key) # make new location of file, with new jobid name current_job_archive_filename = generate_archive_filename(job_config, course=course, session=session, mode=mode) # copy frmo current location to new location current_job_key = make_s3_key_path(job_config, filename=current_job_archive_filename, course=course, session=session, mode=mode) current_job_s3_url = "s3://{}/{}".format(job_config.proc_data_bucket, current_job_key) copy_s3_file(job_config, sourceloc = prev_job_s3_url, destloc = current_job_s3_url) # after copying individual extraction results, copy collected feature file result_file = collect_session_results(job_config, holdout = mode == "extract-holdout") upload_key = "{}/{}/{}/{}".format(job_config.user_id, job_config.job_id, job_config.mode, result_file) upload_file_to_s3(result_file, bucket=job_config.proc_data_bucket, key=upload_key) return
50.590278
172
0.704118
c5389057ce8c483ea98a57cca8e33012d0dce7fd
1,446
py
Python
examples/searchbot_example.py
tysen2k/ffai
2fa1fd45a8877986fdb21e3fea5e01cbf819d3ec
[ "Apache-2.0" ]
null
null
null
examples/searchbot_example.py
tysen2k/ffai
2fa1fd45a8877986fdb21e3fea5e01cbf819d3ec
[ "Apache-2.0" ]
null
null
null
examples/searchbot_example.py
tysen2k/ffai
2fa1fd45a8877986fdb21e3fea5e01cbf819d3ec
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 from ffai.core import Agent, Game from ffai.core.load import * from ffai.ai.registry import register_bot, make_bot import examples.scripted_bot_example # Load configurations, rules, arena and teams config = load_config("bot-bowl-i.json") ruleset = load_rule_set(config.ruleset, all_rules=False) # We don't need all the rules arena = load_arena(config.arena) home = load_team_by_filename("human", ruleset) away = load_team_by_filename("human", ruleset) config.competition_mode = False # Play 5 games as away for i in range(5): away_agent = make_bot('searchbot') away_agent.name = 'searchbot' home_agent = make_bot('searchbot') home_agent.name = 'searchbot' config.debug_mode = False game = Game(i, home, away, home_agent, away_agent, config, arena=arena, ruleset=ruleset) game.config.fast_mode = True print("Starting game", (i + 1)) start = time.time() game.init() end = time.time() print(end - start) # Play 5 games as home for i in range(5): away_agent = make_bot('searchbot') away_agent.name = 'searchbot' home_agent = make_bot('searchbot') home_agent.name = 'searchbot' config.debug_mode = False game = Game(i, home, away, home_agent, away_agent, config, arena=arena, ruleset=ruleset) game.config.fast_mode = True print("Starting game", (i + 1)) start = time.time() game.init() end = time.time() print(end - start)
29.510204
92
0.697787
942c3627acd262b51a189fafadf3a87b1248fa70
205
py
Python
src/eavatar.ava/ava/__init__.py
eavatar/ava
4f09c5417b7187dd919b7edabb8c516d8efc0696
[ "BSD-3-Clause" ]
null
null
null
src/eavatar.ava/ava/__init__.py
eavatar/ava
4f09c5417b7187dd919b7edabb8c516d8efc0696
[ "BSD-3-Clause" ]
null
null
null
src/eavatar.ava/ava/__init__.py
eavatar/ava
4f09c5417b7187dd919b7edabb8c516d8efc0696
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- import time VERSION_MAJOR = 0 VERSION_MINOR = 1 VERSION_MICRO = time.time() __version__ = '%d.%d.%d' % (VERSION_MAJOR, VERSION_MINOR, VERSION_MICRO) VERSION_STRING = __version__
18.636364
72
0.717073
9fccdf46a86e70b879eb9c475d56ba89c04aa4b6
904
py
Python
src/euler_python_package/euler_python/medium/p188.py
wilsonify/euler
5214b776175e6d76a7c6d8915d0e062d189d9b79
[ "MIT" ]
null
null
null
src/euler_python_package/euler_python/medium/p188.py
wilsonify/euler
5214b776175e6d76a7c6d8915d0e062d189d9b79
[ "MIT" ]
null
null
null
src/euler_python_package/euler_python/medium/p188.py
wilsonify/euler
5214b776175e6d76a7c6d8915d0e062d189d9b79
[ "MIT" ]
null
null
null
# # import sys from euler_python.utils import eulerlib def problem188(): x, y, m = 1777, 1855, 10 ** 8 sys.setrecursionlimit( y + 30 ) # Because the default recursion limit of 1000 is insufficient ans = tetration_mod(x, y, m) return ans def tetration_mod(x, y, m): if y == 1: return x % m else: # Fact: If x and m are coprime, then x^y mod m = x^(y mod totient(m)) mod m return pow(x, tetration_mod(x, y - 1, totient(m)), m) def totient(n): assert n > 0 p = 1 i = 2 end = eulerlib.sqrt(n) while i <= end: if n % i == 0: # Found a factor p *= i - 1 n //= i while n % i == 0: p *= i n //= i end = eulerlib.sqrt(n) i += 1 if n != 1: p *= n - 1 return p if __name__ == "__main__": print(problem188())
19.652174
83
0.484513
31d9b97154e9c376a0f7765397099fd09f1e86f9
4,139
py
Python
bigml/api_handlers/timeserieshandler.py
mmerce/python
696ddc2a10c985cfe266ec2807c24b98f0c9a317
[ "Apache-2.0" ]
null
null
null
bigml/api_handlers/timeserieshandler.py
mmerce/python
696ddc2a10c985cfe266ec2807c24b98f0c9a317
[ "Apache-2.0" ]
6
2016-10-27T18:26:12.000Z
2017-10-03T22:54:20.000Z
bigml/api_handlers/timeserieshandler.py
mmerce/python
696ddc2a10c985cfe266ec2807c24b98f0c9a317
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # # Copyright 2017-2020 BigML # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Base class for time series'' REST calls https://bigml.com/api/timeseries """ try: import simplejson as json except ImportError: import json from bigml.api_handlers.resourcehandler import ResourceHandlerMixin from bigml.api_handlers.resourcehandler import check_resource_type, \ resource_is_ready, get_time_series_id from bigml.constants import TIME_SERIES_PATH class TimeSeriesHandlerMixin(ResourceHandlerMixin): """This class is used by the BigML class as a mixin that provides the REST calls models. It should not be instantiated independently. """ def __init__(self): """Initializes the TimeSeriesHandler. This class is intended to be used as a mixin on ResourceHandler, that inherits its attributes and basic method from BigMLConnection, and must not be instantiated independently. """ self.time_series_url = self.url + TIME_SERIES_PATH def create_time_series(self, datasets, args=None, wait_time=3, retries=10): """Creates a time series from a `dataset` of a list o `datasets`. """ create_args = self._set_create_from_datasets_args( datasets, args=args, wait_time=wait_time, retries=retries) body = json.dumps(create_args) return self._create(self.time_series_url, body) def get_time_series(self, time_series, query_string='', shared_username=None, shared_api_key=None): """Retrieves a time series. The model parameter should be a string containing the time series id or the dict returned by create_time_series. As a time series is an evolving object that is processed until it reaches the FINISHED or FAULTY state, the function will return a dict that encloses the time series values and state info available at the time it is called. If this is a shared time series, the username and sharing api key must also be provided. """ check_resource_type(time_series, TIME_SERIES_PATH, message="A time series id is needed.") return self.get_resource(time_series, query_string=query_string, shared_username=shared_username, shared_api_key=shared_api_key) def time_series_is_ready(self, time_series, **kwargs): """Checks whether a time series's status is FINISHED. """ check_resource_type(time_series, TIME_SERIES_PATH, message="A time series id is needed.") resource = self.get_time_series(time_series, **kwargs) return resource_is_ready(resource) def list_time_series(self, query_string=''): """Lists all your time series. """ return self._list(self.time_series_url, query_string) def update_time_series(self, time_series, changes): """Updates a time series. """ check_resource_type(time_series, TIME_SERIES_PATH, message="A time series id is needed.") return self.update_resource(time_series, changes) def delete_time_series(self, time_series): """Deletes a time series. """ check_resource_type(time_series, TIME_SERIES_PATH, message="A time series id is needed.") return self.delete_resource(time_series)
36.307018
76
0.657405
bf5ce32e8a8339c4e84d6a73d1169490899ae6a8
17,659
py
Python
tests/test_basic.py
pierretr/troposphere
1bd6a010a3132aa3436ffe6b892f352876face4b
[ "BSD-2-Clause" ]
4,573
2015-01-02T20:31:04.000Z
2022-03-31T17:15:32.000Z
tests/test_basic.py
pierretr/troposphere
1bd6a010a3132aa3436ffe6b892f352876face4b
[ "BSD-2-Clause" ]
1,730
2015-01-02T19:24:47.000Z
2022-03-31T23:22:52.000Z
tests/test_basic.py
pierretr/troposphere
1bd6a010a3132aa3436ffe6b892f352876face4b
[ "BSD-2-Clause" ]
1,753
2015-01-01T01:24:12.000Z
2022-03-27T05:36:17.000Z
import pickle import unittest from troposphere import ( AWSObject, AWSProperty, Cidr, If, Join, NoValue, Output, Parameter, Ref, Region, Split, Sub, Template, cloudformation, depends_on_helper, ) from troposphere.ec2 import Instance, NetworkInterface, Route, SecurityGroupRule from troposphere.elasticloadbalancing import HealthCheck from troposphere.s3 import Bucket, PublicRead from troposphere.validators import positive_integer class TestBasic(unittest.TestCase): def test_badproperty(self): with self.assertRaises(AttributeError): Instance( "ec2instance", foobar=True, ) def test_badrequired(self): with self.assertRaises(ValueError): t = Template() t.add_resource(NetworkInterface("networkinterface")) t.to_json() def test_badtype(self): with self.assertRaises(AttributeError): Instance("ec2instance", image_id=0.11) def test_goodrequired(self): NetworkInterface("interface", SubnetId="abc123") def test_extraattribute(self): class ExtendedInstance(Instance): def __init__(self, *args, **kwargs): self.attribute = None super().__init__(*args, **kwargs) instance = ExtendedInstance("ec2instance", attribute="value") self.assertEqual(instance.attribute, "value") def test_depends_on_helper_with_resource(self): resource_name = "Bucket1" b1 = Bucket(resource_name) self.assertEqual(depends_on_helper(b1), resource_name) def test_depends_on_helper_with_string(self): resource_name = "Bucket1" self.assertEqual(depends_on_helper(resource_name), resource_name) def test_resource_depends_on(self): b1 = Bucket("B1") b2 = Bucket("B2", DependsOn=b1) self.assertEqual(b1.title, b2.resource["DependsOn"]) def test_resource_depends_on_attr(self): b1 = Bucket("B1") b2 = Bucket("B2", DependsOn=b1) self.assertEqual(b1.title, b2.DependsOn) def test_resource_depends_on_list(self): b1 = Bucket("B1") b2 = Bucket("B2") b3 = Bucket("B3", DependsOn=[b1, b2]) self.assertEqual(b1.title, b3.DependsOn[0]) self.assertEqual(b2.title, b3.DependsOn[1]) def test_pickle_ok(self): # tests that objects can be pickled/un-pickled without hitting issues bucket_name = "test-bucket" b = Bucket("B1", BucketName=bucket_name) p = pickle.dumps(b) b2 = pickle.loads(p) self.assertEqual(b2.BucketName, b.BucketName) def double(x): return positive_integer(x) * 2 def call_correct(x): return x def call_incorrect(x): raise ValueError class FakeAWSObject(AWSObject): type = "Fake::AWS::Object" props = { "callcorrect": (call_correct, False), "callincorrect": (call_incorrect, False), "singlelist": (list, False), "multilist": ([bool, int, float], False), "multituple": ((bool, int), False), "helperfun": (positive_integer, False), "listhelperfun": ([double], False), } def validate(self): properties = self.properties title = self.title type = self.type if "callcorrect" in properties and "singlelist" in properties: raise ValueError( ( "Cannot specify both 'callcorrect and 'singlelist' in " "object %s (type %s)" % (title, type) ) ) class FakeAWSProperty(AWSProperty): props = {} class TestValidators(unittest.TestCase): def test_callcorrect(self): FakeAWSObject("fake", callcorrect=True) def test_callincorrect(self): with self.assertRaises(ValueError): FakeAWSObject("fake", callincorrect=True) def test_list(self): FakeAWSObject("fake", singlelist=["a", 1]) def test_badlist(self): with self.assertRaises(TypeError): FakeAWSObject("fake", singlelist=True) def test_multilist(self): FakeAWSObject("fake", multilist=[1, True, 2, 0.3]) def test_badmultilist(self): with self.assertRaises(TypeError): FakeAWSObject("fake", multilist=True) with self.assertRaises(TypeError): FakeAWSObject("fake", multilist=[1, "a"]) def test_mutualexclusion(self): t = Template() t.add_resource(FakeAWSObject("fake", callcorrect=True, singlelist=[10])) with self.assertRaises(ValueError): t.to_json() def test_tuples(self): FakeAWSObject("fake", multituple=True) FakeAWSObject("fake", multituple=10) with self.assertRaises(TypeError): FakeAWSObject("fake", multituple=0.1) def test_helperfun(self): FakeAWSObject("fake", helperfun=Ref("fake_ref")) def test_listhelperfun(self): with self.assertRaises(TypeError): FakeAWSObject("fake", listhelperfun=1) x = FakeAWSObject("fake", listhelperfun=[1, 2]) if x.listhelperfun != [2, 4]: raise ValueError with self.assertRaises(ValueError): FakeAWSObject("fake", listhelperfun=[1, -2]) with self.assertRaises(ValueError): FakeAWSObject("fake", listhelperfun=[1, "foo"]) def test_exception(self): def ExceptionValidator(x): raise ValueError class ExceptionAWSProperty(AWSProperty): props = { "foo": (ExceptionValidator, True), } with self.assertRaises(ValueError): ExceptionAWSProperty(foo="bar") class TestHealthCheck(unittest.TestCase): def test_healthy_interval_ok(self): HealthCheck( HealthyThreshold="2", Interval="2", Target="HTTP:80/index.html", Timeout="4", UnhealthyThreshold="9", ) def test_healthy_interval_too_low(self): with self.assertRaises(ValueError): HealthCheck( HealthyThreshold="1", Interval="2", Target="HTTP:80/index.html", Timeout="4", UnhealthyThreshold="9", ) class TestOutput(unittest.TestCase): def test_noproperty(self): t = Output("MyOutput", Value="myvalue") d = t.to_dict() with self.assertRaises(KeyError): d["Properties"] def test_empty_awsproperty_outputs_empty_object(self): t = FakeAWSProperty() d = t.to_dict() self.assertEqual(len(d), 0) class TestParameter(unittest.TestCase): def test_noproperty(self): t = Parameter("MyParameter", Type="String") d = t.to_dict() with self.assertRaises(KeyError): d["Properties"] def test_property_validator(self): p = Parameter("BasicString", Type="String", MaxLength=10) p.validate() p = Parameter("BasicString", Type="String", MaxValue=10) with self.assertRaises(ValueError): p.validate() p = Parameter("BasicNumber", Type="Number", MaxValue=10) p.validate() p = Parameter("BasicNumber", Type="Number", AllowedPattern=".*") with self.assertRaises(ValueError): p.validate() def test_invalid_parameter_property_in_template(self): t = Template() p = Parameter("BasicNumber", Type="Number", AllowedPattern=".*") t.add_parameter(p) with self.assertRaises(ValueError): t.to_json() def test_get_or_add_adds(self): t = Template() p = Parameter("param", Type="String", Default="foo") result = t.get_or_add_parameter(p) self.assertEqual(t.parameters["param"], p) self.assertEqual(result, p) def test_add_or_get_returns_with_out_adding_duplicate(self): t = Template() p = Parameter("param", Type="String", Default="foo") t.add_parameter(p) result = t.get_or_add_parameter(p) self.assertEqual(t.parameters["param"], p) self.assertEqual(result, p) self.assertEqual(len(t.parameters), 1) def test_property_default(self): p = Parameter("param", Type="String", Default="foo") p.validate() p = Parameter("param", Type="Number", Default=1) p.validate() p = Parameter("param", Type="Number", Default=1.0) p.validate() p = Parameter("param", Type="Number", Default=0.1) p.validate() p = Parameter("param", Type="List<Number>", Default="1, 2, 3") p.validate() p = Parameter("param", Type="List<Number>", Default=" 0.1 , 2 , 1.1 ") p.validate() with self.assertRaises(ValueError): p = Parameter("param", Type="String", Default=1) p.validate() with self.assertRaises(ValueError): p = Parameter("param", Type="Number", Default="foo") p.validate() with self.assertRaises(TypeError): p = Parameter("param", Type="Number", Default=["foo"]) p.validate() with self.assertRaises(ValueError): p = Parameter("param", Type="List<Number>", Default="foo") p.validate() with self.assertRaises(ValueError): p = Parameter("param", Type="List<Number>", Default="1, 2, foo") p.validate() with self.assertRaises(TypeError): p = Parameter("param", Type="List<Number>", Default=["1", "2"]) p.validate() class TestProperty(unittest.TestCase): def test_noproperty(self): t = SecurityGroupRule( IpProtocol="tcp", FromPort="22", ToPort="22", CidrIp="0.0.0.0/0", ) d = t.to_dict() with self.assertRaises(KeyError): d["Properties"] def test_awsproperty_invalid_property(self): t = FakeAWSProperty() with self.assertRaises(AttributeError) as context: t.badproperty = 5 self.assertTrue("FakeAWSProperty" in context.exception.args[0]) self.assertTrue("badproperty" in context.exception.args[0]) class TestDuplicate(unittest.TestCase): def test_output(self): t = Template() o = Output("MyOutput", Value="myvalue") t.add_output(o) with self.assertRaises(ValueError): t.add_output(o) def test_parameter(self): t = Template() p = Parameter("MyParameter", Type="String") t.add_parameter(p) with self.assertRaises(ValueError): t.add_parameter(p) def test_resource(self): t = Template() r = FakeAWSObject("fake", callcorrect=True) t.add_resource(r) with self.assertRaises(ValueError): t.add_resource(r) class TestRef(unittest.TestCase): def test_ref(self): param = Parameter("param", Description="description", Type="String") t = Ref(param) ref = t.to_dict() self.assertEqual(ref["Ref"], "param") def test_ref_eq(self): s = "AWS::NoValue" r = Ref(s) wch = cloudformation.WaitConditionHandle("TestResource") self.assertEqual(s, r) self.assertEqual(s, NoValue) self.assertEqual(r, NoValue) self.assertEqual(wch.Ref(), "TestResource") self.assertNotEqual(r, "AWS::Region") self.assertNotEqual(r, Region) self.assertNotEqual(r, Ref) self.assertNotEqual(wch.Ref(), "NonexistantResource") def test_ref_hash(self): s = hash("AWS::NoValue") r = hash(Ref("AWS::NoValue")) wch = cloudformation.WaitConditionHandle("TestResource") self.assertEqual(s, r) self.assertEqual(s, hash(NoValue)) self.assertEqual(r, hash(NoValue)) self.assertEqual(hash(wch.Ref()), hash("TestResource")) self.assertNotEqual(r, hash("AWS::Region")) self.assertNotEqual(r, hash(Region)) self.assertNotEqual(r, hash(Ref)) self.assertNotEqual(hash(wch.Ref()), hash("NonexistantResource")) class TestName(unittest.TestCase): def test_ref(self): name = "fake" t = Template() resource = t.add_resource(Instance(name)) self.assertEqual(resource.name, name) class TestCidr(unittest.TestCase): def test_getcidr(self): raw = Cidr("10.1.10.1/24", 2) actual = raw.to_dict() expected = {"Fn::Cidr": ["10.1.10.1/24", 2]} self.assertEqual(expected, actual) def test_getcidr_withsizemask(self): raw = Cidr("10.1.10.1/24", 2, 10) actual = raw.to_dict() expected = {"Fn::Cidr": ["10.1.10.1/24", 2, 10]} self.assertEqual(expected, actual) class TestSub(unittest.TestCase): def test_sub_without_vars(self): s = "foo ${AWS::Region}" raw = Sub(s) actual = raw.to_dict() expected = {"Fn::Sub": "foo ${AWS::Region}"} self.assertEqual(expected, actual) def test_sub_with_vars_unpakaged(self): s = "foo ${AWS::Region} ${sub1} ${sub2}" values = {"sub1": "uno", "sub2": "dos"} raw = Sub(s, **values) actual = raw.to_dict() expected = {"Fn::Sub": ["foo ${AWS::Region} ${sub1} ${sub2}", values]} self.assertEqual(expected, actual) def test_sub_with_vars_not_unpakaged(self): s = "foo ${AWS::Region} ${sub1} ${sub2}" values = {"sub1": "uno", "sub2": "dos"} raw = Sub(s, values) actual = raw.to_dict() expected = {"Fn::Sub": ["foo ${AWS::Region} ${sub1} ${sub2}", values]} self.assertEqual(expected, actual) def test_sub_with_vars_mix(self): s = "foo ${AWS::Region} ${sub1} ${sub2} ${sub3}" values = {"sub1": "uno", "sub2": "dos"} raw = Sub(s, values, sub3="tres") actual = raw.to_dict() expected = { "Fn::Sub": [ "foo ${AWS::Region} ${sub1} ${sub2} ${sub3}", {"sub1": "uno", "sub2": "dos", "sub3": "tres"}, ] } self.assertEqual(expected, actual) class TestSplit(unittest.TestCase): def test_split(self): delimiter = "," source_string = ( '{ "Fn::ImportValue": { "Fn::Sub": ' '"${VpcStack}-PublicSubnets" }' ) raw = Split(delimiter, source_string) actual = raw.to_dict() expected = { "Fn::Split": [ ",", '{ "Fn::ImportValue": { ' '"Fn::Sub": "${VpcStack}-PublicSubnets" }', ] } self.assertEqual(expected, actual) with self.assertRaises(ValueError): Split(10, "foobar") class TestJoin(unittest.TestCase): def test_join(self): delimiter = "," source_string = ( '{ [ "arn:aws:lambda:",{ "Ref": "AWS::Region" },":",' '{ "Ref": "AWS::AccountId" },' '":function:cfnRedisEndpointLookup" ] }' ) raw = Join(delimiter, source_string) actual = raw.to_dict() expected = { "Fn::Join": [ ",", '{ [ "arn:aws:lambda:",{ "Ref": ' '"AWS::Region" },":",{ "Ref": "AWS::AccountId" },' '":function:cfnRedisEndpointLookup" ] }', ] } self.assertEqual(expected, actual) with self.assertRaises(ValueError): Join(10, "foobar") class TestValidation(unittest.TestCase): def test_validation(self): route = Route( "Route66", DestinationCidrBlock="0.0.0.0/0", RouteTableId=Ref("RouteTable66"), InstanceId=If("UseNat", Ref("AWS::NoValue"), Ref("UseNat")), NatGatewayId=If("UseNat", Ref("UseNat"), Ref("AWS::NoValue")), ) t = Template() t.add_resource(route) with self.assertRaises(ValueError): t.to_json() def test_novalidation(self): route = Route( "Route66", validation=False, DestinationCidrBlock="0.0.0.0/0", RouteTableId=Ref("RouteTable66"), InstanceId=If("UseNat", Ref("AWS::NoValue"), Ref("UseNat")), NatGatewayId=If("UseNat", Ref("UseNat"), Ref("AWS::NoValue")), ) t = Template() t.add_resource(route) t.to_json() def test_no_validation_method(self): route = Route( "Route66", DestinationCidrBlock="0.0.0.0/0", RouteTableId=Ref("RouteTable66"), InstanceId=If("UseNat", Ref("AWS::NoValue"), Ref("UseNat")), NatGatewayId=If("UseNat", Ref("UseNat"), Ref("AWS::NoValue")), ).no_validation() t = Template() t.add_resource(route) t.to_json() test_updatereplacepolicy_yaml = """\ Resources: S3Bucket: Properties: AccessControl: PublicRead Type: AWS::S3::Bucket UpdateReplacePolicy: Retain """ class TestAttributes(unittest.TestCase): def test_BogusAttribute(self): t = Template() with self.assertRaises(AttributeError): t.add_resource(Bucket("S3Bucket", Bogus="Retain")) def test_UpdateReplacePolicy(self): t = Template() t.add_resource( Bucket( "S3Bucket", AccessControl=PublicRead, UpdateReplacePolicy="Retain", ) ) t.to_yaml() self.assertEqual(t.to_yaml(), test_updatereplacepolicy_yaml) if __name__ == "__main__": unittest.main()
30.394148
85
0.579931
894376bd4fd9e4abb84a9c267679c5eadbcd2b9b
1,335
py
Python
tests/validation_data.py
DSAdv/tcp-tls-tunnel-py
e9b5271e4cfae1df09b9fab77db4906b7cee8337
[ "MIT" ]
1
2021-08-30T21:03:41.000Z
2021-08-30T21:03:41.000Z
tests/validation_data.py
DSAdv/tcp-tls-tunnel-py
e9b5271e4cfae1df09b9fab77db4906b7cee8337
[ "MIT" ]
1
2022-03-31T12:02:29.000Z
2022-03-31T12:02:29.000Z
tests/validation_data.py
DSAdv/tcp-tls-tunnel-py
e9b5271e4cfae1df09b9fab77db4906b7cee8337
[ "MIT" ]
1
2021-08-28T14:35:18.000Z
2021-08-28T14:35:18.000Z
HOWSMYSSL_VALIDATION_RESPONSE = { 'given_cipher_suites': [ 'TLS_GREASE_IS_THE_WORD_AA', 'TLS_AES_128_GCM_SHA256', 'TLS_AES_256_GCM_SHA384', 'TLS_CHACHA20_POLY1305_SHA256', 'TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256', 'TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256', 'TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384', 'TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384', 'TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256', 'TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256', 'TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA', 'TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA', 'TLS_RSA_WITH_AES_128_GCM_SHA256', 'TLS_RSA_WITH_AES_256_GCM_SHA384', 'TLS_RSA_WITH_AES_128_CBC_SHA', 'TLS_RSA_WITH_AES_256_CBC_SHA' ], 'ephemeral_keys_supported': True, 'session_ticket_supported': True, 'tls_compression_supported': False, 'unknown_cipher_suite_supported': False, 'beast_vuln': False, 'able_to_detect_n_minus_one_splitting': False, 'insecure_cipher_suites': {}, 'tls_version': 'TLS 1.3', 'rating': 'Probably Okay', }
43.064516
64
0.602247
48b861b4975598c12cc3b1ba2a63e9d06b3ae77d
7,828
py
Python
tests/network_coefficient_plots.py
RenYuanXue/residual-sample-nn
0f05a88c9e9d99b3c1c73dc4d8a2d638a689ebfb
[ "MIT" ]
2
2020-03-06T00:27:19.000Z
2020-03-06T00:27:57.000Z
tests/network_coefficient_plots.py
RenYuanXue/residual-sample-nn
0f05a88c9e9d99b3c1c73dc4d8a2d638a689ebfb
[ "MIT" ]
3
2021-04-30T21:13:23.000Z
2022-02-10T01:14:50.000Z
tests/network_coefficient_plots.py
RenYuanXue/residual-sample-nn
0f05a88c9e9d99b3c1c73dc4d8a2d638a689ebfb
[ "MIT" ]
2
2020-04-17T20:33:25.000Z
2020-04-17T20:46:19.000Z
import sys sys.path.append("../residual-sample-nn") # for finding the source files import GenerateData as generate_data import Network as Network import numpy as np import pandas as pd import matplotlib.pyplot as plt import configparser def RSNN_param_test(X_train, X_test, y_train, y_test, h_nodes, epochs, lr, times, threshold, coefficient, type): """ Trains a regular 3-layer our NN, and returns the accuracy results :param X_train: Numpy array/pandas dataframe, data for the keras model. :param X_test: Numpy array/pandas dataframe, data for the keras model. :param y_train: Numpy array/pandas dataframe, data for the keras model. :param y_test: Numpy array/pandas dataframe, data for the keras model. :param h_nodes: Int, number of nodes in the hidden layer. :param epochs: Int, number of epochs to train the NN. :param lr: Float, learning rate for training. :param times: Integer, number of times to MC sample. :param threshold: Integer, used as threshold for forming residual to sample from. :param coefficient: Float, used as the ratio for updating the variance. :param type: string, select type of loss function. :return: (training_acc, test_acc), training/testing accuracies """ in_dim = X_train.shape[1] out_dim = y_train.shape[1] #Initialize the network np.random.seed(10) # Ensures each network is initialized the same way. net = Network.Network([in_dim, h_nodes, out_dim], type = type, pdw =['gaussian'] * 2, pdb =['gaussian'] * 2) net.Learn(X_train, y_train, epochs=epochs, lrate = lr, times = times, threshold = threshold, bootstrap = False, coefficient = coefficient) acc_train = net.ClassificationAccuracy(X_train, y_train) acc_test = net.ClassificationAccuracy(X_test, y_test) return(acc_train, acc_test) def network_coefficient_plots(X_train, X_test, y_train, y_test, rs_nn_params, coef_samples, fold=False): """ Trains on a data set. Then plots are created and saved to the working directory comparing training/test accuracies during the training process for each neural network. :param X_train: numpy array/pandas dataframe, input data to train :param X_test: numpy array/pandas dataframe, input data to test :param y_train: numpy array/pandas dataframe, target data to train :param y_test: numpy array/pandas dataframe, target data to test :param rs_nn_params: Dict, parameters used to create and train the residual sameple neural net :param keras_params: Dict, parameters used to create and train the keras neural net :param decay_params: Dict, parameters used to create and train the keras neural net with decay :param coef_samples: Dict, used to set start,stop, and number of points for various coefficients attempted. :param fold: Boolean, used to select whether folds are to be used (only iris). :return: """ coef_trials = np.linspace(float(coef_samples['start']), float(coef_samples['stop']),num = int(coef_samples['points'])) trials = len(coef_trials) train_acc = [0] * trials # For storing training accuracies. test_acc = [0] * trials # For storing test accuracies. if fold: # Train a RS-NN splits = len(X_train) for i, num_sample in enumerate(coef_trials): for j in range(0, splits): (RSNN_train_acc, RSNN_test_acc) = RSNN_param_test(X_train[j], X_test[j], y_train[j], y_test[j], int(rs_nn_params['h_nodes']), int(rs_nn_params['epochs']), float(rs_nn_params['lr']), int(rs_nn_params['times']), float(rs_nn_params['threshold']), num_sample,type= rs_nn_params['type']) train_acc[i] += np.array(RSNN_train_acc) / splits test_acc[i] += np.array(RSNN_test_acc) / splits else: # Train a RS-NN for i, num_sample in enumerate(coef_trials): (RSNN_train_acc, RSNN_test_acc) = RSNN_param_test(X_train, X_test, y_train, y_test, int(rs_nn_params['h_nodes']), int(rs_nn_params['epochs']), float(rs_nn_params['lr']),int(rs_nn_params['times']), float(rs_nn_params['threshold']), num_sample, type=rs_nn_params['type']) train_acc[i] = RSNN_train_acc test_acc[i] = RSNN_test_acc # Plot the accuracies plt.figure(0) plt.title("Training Accuracy vs. Coefficient") plt.scatter(coef_trials, train_acc) plt.xlabel('Coefficient') plt.ylabel('Accuracy') plt.savefig('train_acc_coefsamples.png') plt.figure(1) plt.title("Test Accuracy vs. Coefficient") plt.scatter(coef_trials, test_acc) plt.xlabel('Coefficient') plt.ylabel('Accuracy') plt.savefig('test_acc_coefsamples.png') plt.show() def main(): config = configparser.ConfigParser() config.read('config_coefficient.ini') # select correct data train_size = int(config['DATA']['train_size']) test_size = int(config['DATA']['test_size']) if config['DATA']['dataset'] == "simulated": num_cov = int(config['DATA']['num_cov']) mu = float(config['DATA']['mu']) std = float(config['DATA']['std']) range_cov = float(config['DATA']['range_cov']) range_coef = float(config['DATA']['range_coef']) range_bias = float(config['DATA']['range_bias']) generator = generate_data.GenerateData(num_cov, mu, std, range_cov, range_coef, range_bias, seed=100)# Maybe add to config file.. X_train, y_train, _ = generator.generate(seed=15, sample_size=train_size) X_test, y_test, _ = generator.generate(seed=16, sample_size=test_size) network_coefficient_plots(X_train, X_test, y_train, y_test, config['RS NN PARAMS'], config['COEFFICIENT']) if config['DATA']['dataset'] == "mnist": import mnist_loader train_full, validate_full, test_full = mnist_loader.load_data_wrapper() # we wont need validate dataset X_train = np.array(train_full[0][:train_size]) y_train = np.array(train_full[1][:train_size]) X_test = np.array(test_full[0][:test_size]) y_test = np.array(test_full[1][:test_size]) network_coefficient_plots(X_train, X_test, y_train, y_test, config['RS NN PARAMS'], config['COEFFICIENT']) if config['DATA']['dataset'] == "iris": from sklearn import datasets from sklearn.model_selection import KFold fold = True data = datasets.load_iris() y_train = pd.get_dummies(data.target).values X_train = data.data splits = int(config['DATA']['splits']) # Number of splits selected. kf = KFold(splits) kf.get_n_splits(X_train) kf.split(X_train) Xtr = [] Xtest = [] ytr = [] ytest = [] for train_index, test_index in kf.split(X_train): # train # print("TRAIN:", train_index, "TEST:", test_index) Xtr.append(X_train[train_index]) ytr.append(y_train[train_index]) # test Xtest.append(X_train[test_index]) ytest.append(y_train[test_index]) network_coefficient_plots(Xtr, Xtest, ytr, ytest, config['RS NN PARAMS'], config['COEFFICIENT'], fold=fold) # run benchmarking function if __name__ == "__main__": main()
47.731707
142
0.627619
68a5a791e8feb36b742f033238643818f7ab4d7c
1,251
py
Python
setup.py
patrickaudriaz/mini-project
49d8200b8210fe1b09a1a05f2357260a77e10c36
[ "MIT" ]
4
2020-10-07T11:16:29.000Z
2021-09-19T05:49:32.000Z
setup.py
patrickaudriaz/mini-project
49d8200b8210fe1b09a1a05f2357260a77e10c36
[ "MIT" ]
12
2020-09-09T05:59:43.000Z
2020-10-07T13:23:18.000Z
setup.py
patrickaudriaz/mini-project
49d8200b8210fe1b09a1a05f2357260a77e10c36
[ "MIT" ]
1
2020-10-06T03:52:05.000Z
2020-10-06T03:52:05.000Z
#!/usr/bin/env python # coding=utf-8 from setuptools import setup, find_packages def load_requirements(f): retval = [str(k.strip()) for k in open(f, "rt")] return [k for k in retval if k and k[0] not in ("#", "-")] setup( name="rrgp", version="1.0.7", description="This project aims to train a model to recognise human activities (like walking, standing, or sitting) based on accelerometer and gyroscope data collected with a smartphone.", url="https://github.com/patrickaudriaz/mini-project", license="MIT", author="Geoffrey Raposo, Patrick Audriaz", author_email="[email protected], [email protected]", long_description=open("README.md").read(), long_description_content_type="text/markdown", packages=find_packages(), include_package_data=True, install_requires=load_requirements("requirements.txt"), entry_points={"console_scripts": ["rrgp = rrgp.run:main"]}, classifiers=[ "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Natural Language :: English", "Programming Language :: Python", "Programming Language :: Python :: 3", "Topic :: Software Development :: Libraries :: Python Modules", ], )
35.742857
191
0.673062
99d05b4f5d9395b3236b58b8060a91c56948b8f9
9,983
py
Python
analysis/cloud9/coverage.py
wangpeipei90/cloud9
a15558d1fa3e397b157b1191aa1ef9b225eef2dd
[ "BSD-3-Clause" ]
40
2015-01-08T10:28:20.000Z
2022-03-11T02:48:46.000Z
analysis/cloud9/coverage.py
mcanthony/cloud9
a15558d1fa3e397b157b1191aa1ef9b225eef2dd
[ "BSD-3-Clause" ]
3
2015-04-13T04:13:39.000Z
2020-03-28T05:23:41.000Z
analysis/cloud9/coverage.py
mcanthony/cloud9
a15558d1fa3e397b157b1191aa1ef9b225eef2dd
[ "BSD-3-Clause" ]
24
2015-03-30T04:39:28.000Z
2022-01-04T17:17:33.000Z
#!/usr/bin/python # # Copyright (c) 2012 Google Inc. All Rights Reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of the Dependable Systems Laboratory, EPFL nor the # names of its contributors may be used to endorse or promote products # derived from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE DEPENDABLE SYSTEMS LABORATORY, EPFL BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # # All contributors are listed in CLOUD9-AUTHORS file. # """Coverage log manipulation.""" __author__ = "[email protected] (Stefan Bucur)" import fnmatch import logging import os import shutil import struct import sys import jinja2 import cloud9.CoverageLogs_pb2 as CoverageLogs ################################################################################ # Annotation data - Final product passed to the template rendering engine ################################################################################ class AnnotatedSourceFile(object): def __init__(self, source_stats, lines): self.source_stats = source_stats self.lines = lines class SourceFileStatistics(object): def __init__(self, file_name, coverage, covered_line_count, coverable_line_count): self.file_name = file_name self.coverage = coverage self.covered_line_count = covered_line_count self.coverable_line_count = coverable_line_count class AnnotatedSourceLine(object): def __init__(self, number, contents, coverable, covered): self.number = number self.contents = contents self.coverable = coverable self.covered = covered ################################################################################ # Protobuf Parsing ################################################################################ def _ReadCoverageInfoEntry(data_file): """Reads a packet of data from the specified file.""" UINT32_SIZE = 4 pkt_size_buf = data_file.read(UINT32_SIZE) if len(pkt_size_buf) != UINT32_SIZE: raise ValueError("Invalid packet size read.") pkt_size = struct.unpack("I", pkt_size_buf)[0] pkt = data_file.read(pkt_size) if len(pkt) != pkt_size: raise ValueError("Incomplete packet.") return pkt def _ReadCoverageInfoMessage(message): """Parses a coverage protobuf message.""" cov_info = {} for file_cov_msg in message.file_coverage: file_path = os.path.abspath(file_cov_msg.file_name) cov_info[file_path] = set(file_cov_msg.covered_lines) return cov_info def ReadLastCoverageInfo(data_file): """Reads the last set of coverage values from the specified file.""" try: header_pkt = _ReadCoverageInfoEntry(data_file) except ValueError as e: logging.error("Cannot read header packet: %s" % e) sys.exit(1) coverable_lines_msg = CoverageLogs.CoverageInfo() coverable_lines_msg.ParseFromString(header_pkt) last_coverage_pkt = None while True: try: last_coverage_pkt = _ReadCoverageInfoEntry(data_file) except ValueError: break if not last_coverage_pkt: logging.error("Cannot read coverage packet.") sys.exit(1) covered_lines_msg = CoverageLogs.CoverageInfo() covered_lines_msg.ParseFromString(last_coverage_pkt) coverable_lines = _ReadCoverageInfoMessage(coverable_lines_msg) covered_lines = _ReadCoverageInfoMessage(covered_lines_msg) return coverable_lines, covered_lines ################################################################################ class SourceFilter(object): """Filter object based on a .coverable file.""" def __init__(self, file_list): self.file_list = file_list def IsValid(self, file_name): """Returns True if file_name passes the filter.""" for suffix in self.file_list: if file_name.endswith(suffix): return True return False def LoadSourceFilter(coverable_file_name): """Loads a SourceFilter from a specified file.""" with open(coverable_file_name, "r") as cov_file: file_list = [line.strip() for line in cov_file.readlines()] return SourceFilter(file_list) ################################################################################ class CoverageAnnotator(object): """Produces coverage annotation.""" def __init__(self, coverage_data=None, ground_coverage_data=None, source_filter=None): self.source_filter = source_filter self.coverage_data = coverage_data self.ground_coverage_data = ground_coverage_data # Statistics self._total_coverable_count = 0 self._total_covered_count = 0 def AnnotateSourceFile(self, file_name): """Annotates source file based on available coverage information.""" coverable_lines = set() covered_lines = set() # Search for the available coverage information for candidate_name in self.ground_coverage_data.iterkeys(): if candidate_name.endswith(file_name): coverable_lines = self.ground_coverage_data[candidate_name] break for candidate_name in self.coverage_data.iterkeys(): if candidate_name.endswith(file_name): covered_lines = self.coverage_data[candidate_name] # Generate statistics self._total_coverable_count += len(coverable_lines) self._total_covered_count += len(covered_lines) source_stats = SourceFileStatistics( file_name, 100.0*len(covered_lines)/len(coverable_lines) if coverable_lines else 0.0, len(covered_lines), len(coverable_lines)) # Generate per-line annotation annotated_file = AnnotatedSourceFile(source_stats, []) with open(file_name, "r") as source_file: line_counter = 1 for source_line in source_file: annotated_line = AnnotatedSourceLine( line_counter, source_line.rstrip(), line_counter in coverable_lines, line_counter in covered_lines) annotated_file.lines.append(annotated_line) line_counter += 1 return annotated_file def AnnotateDirectory(self, root_path): """Annotate all source files under the given directory.""" annotation_data = [] for dirpath, _, filenames in os.walk(root_path): for filename in filenames: if not self._DefaultFileNameFilter(filename): continue file_path = os.path.abspath(os.path.join(dirpath, filename)) logging.info("Processing '%s'" % file_path) if self.source_filter and not self.source_filter.IsValid(file_path): logging.info(" *SKIPPING*") continue annotated_file = self.AnnotateSourceFile(file_path) annotation_data.append(annotated_file) return annotation_data @staticmethod def _DefaultFileNameFilter(file_name): return (fnmatch.fnmatch(file_name, '*.cc') or fnmatch.fnmatch(file_name, '*.h')) ################################################################################ class AnnotationRenderer(object): def __init__(self): self.base_dir = os.path.dirname(os.path.abspath(sys.argv[0])) # Construct the HTML template self.jinja_env = jinja2.Environment( loader=jinja2.PackageLoader("cloud9", "views")) self.report_template = self.jinja_env.get_template("report.html") self.source_template = self.jinja_env.get_template("source-list.html") @staticmethod def _CreateUniqueDirectory(output_path, write_sym_link=True): sym_link = None unique_path = output_path if os.path.exists(unique_path): counter = 0 while os.path.exists(unique_path): counter += 1 unique_path = "%s-%d" % (output_path, counter) sym_link = "%s-last" % output_path os.mkdir(unique_path) if sym_link and write_sym_link: if os.path.islink(sym_link): os.unlink(sym_link) if not os.path.exists(sym_link): os.symlink(unique_path, sym_link) return unique_path def RenderAnnotation(self, annotation_data, output_path): """Renders HTML report of specified coverage annotation. The current directory is changed in the report. """ output_path = self._CreateUniqueDirectory(output_path) os.chdir(output_path) with open("report.html", "w") as report_file: report_file.write( self.report_template.render(annotation_data=annotation_data)) os.mkdir("src") for annotated_file in annotation_data: with open("src/%s.html" % annotated_file.source_stats.file_name.replace("/", "_"), "w") as source_file: source_file.write(self.source_template.render(source_stats=annotated_file.source_stats, lines=annotated_file.lines)) for static in ["cloud9/css/source.css", "cloud9/css/report.css"]: shutil.copy(os.path.join(self.base_dir, static), ".")
32.624183
124
0.67625
a8895b2313c148747c0fe50b6ef84ede31f3fcb3
4,945
py
Python
scripts/release-diff.py
EBI-Metabolights/galaxy
4b3c94822a2e859c83bef221fe99ddb87d4d9cae
[ "CC-BY-3.0" ]
null
null
null
scripts/release-diff.py
EBI-Metabolights/galaxy
4b3c94822a2e859c83bef221fe99ddb87d4d9cae
[ "CC-BY-3.0" ]
null
null
null
scripts/release-diff.py
EBI-Metabolights/galaxy
4b3c94822a2e859c83bef221fe99ddb87d4d9cae
[ "CC-BY-3.0" ]
null
null
null
#!/usr/bin/env python import argparse import glob import subprocess from pathlib import Path import yaml def flatten(d, path): """ Flatten a dictionary into ('some/path/to/key', value) >>> flatten({'a': {'b': 2}, 'q': 3}, []) [('a.b', 2), ('q', 3)] """ if isinstance(d, dict): for k, v in d.items(): yield from flatten(v, path + [k]) else: yield (".".join(path), d) def flat_dict(d): return dict(flatten(d, [])) # Load without the includes since we can't follow those across git revisions. class MockOrderedLoader(yaml.SafeLoader): def include(self, node): return {} MockOrderedLoader.add_constructor("!include", MockOrderedLoader.include) def diff_files(old, new): # Flatten them old_kv = flat_dict(old) new_kv = flat_dict(new) # Compare them old_k = set(old_kv.keys()) new_k = set(new_kv.keys()) added = [] for item in new_k - old_k: parent = ".".join(item.split(".")[0:-1]) if parent in new_k and parent not in old_k: added.append(item) else: added.append(parent) added = set(added) removed = [] for item in old_k - new_k: parent = ".".join(item.split(".")[0:-1]) if parent in old_k and parent not in new_k: removed.append(item) else: removed.append(parent) removed = set(removed) shared = old_k & new_k changed = [(k, old_kv[k], new_kv[k]) for k in shared if old_kv[k] != new_kv[k]] return added, removed, changed def _report_dict(title, subheading, data, mapper): print(title) print("-" * len(title)) print() print(subheading) print() for fn in data: print(fn) print("~" * len(fn)) print() for k in data[fn]: print(mapper(k)) print() print() def _indent(s, by=4): whitespace = " " * by s = s if isinstance(s, list) else s.splitlines() return "\n".join(f"{whitespace}{line}" for line in s) def report_diff(added, changed, removed, new_files): # Print out report if added or changed or removed: print("Configuration Changes") print("=====================") print() if added: _report_dict("Added", "The following configuration options are new", added, lambda x: f"- {x}") if changed: _report_dict( "Changed", "The following configuration options have been changed", changed, lambda x: f"- {x[0]} has changed from\n\n ::\n\n{_indent(x[1])}\n\n to\n\n ::\n\n{_indent(x[2])}\n\n", ) if removed: _report_dict( "Removed", "The following configuration options have been completely removed", removed, lambda x: f"- {x}" ) if new_files: print("New Configuration Files") print("-----------------------") print() print("The following files are new, or recently converted to yaml") print() for k in new_files: print(f"- ``{k}``") def load_at_time(path, revision=None): if revision is not None: return subprocess.check_output(["git", "show", f"{revision}:{path}"], stderr=subprocess.STDOUT) else: with open(path) as handle: return handle.read() def main(old_revision, new_revision=None): globs = ( "config/*.yml.sample", "lib/galaxy/config/schemas/*schema.yml", ) files_to_diff = [f for g in globs for f in glob.glob(g)] added = {} removed = {} changed = {} new_files = [] for file in files_to_diff: filename = file if "config_schema.yml" in file: filename = "config/galaxy.yml.sample:galaxy" elif "uwsgi_schema.yml" in file: filename = "config/galaxy.yml.sample:uwsgi" real_path = Path(file).resolve().relative_to(Path.cwd()) try: old_contents = yaml.load(load_at_time(real_path, old_revision), Loader=MockOrderedLoader) new_contents = yaml.load(load_at_time(real_path, new_revision), Loader=MockOrderedLoader) (a, r, c) = diff_files(old_contents, new_contents) if a: added[filename] = sorted(a) if r: removed[filename] = sorted(r) if c: changed[filename] = sorted(c) except subprocess.CalledProcessError: new_files.append(file) report_diff(added, changed, removed, new_files) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Diff yaml configuration files between two points in time.") parser.add_argument("old_revision", help="Old revision") parser.add_argument( "--new_revision", help="New revision (defaults to whatever is currently in tree)", ) args = parser.parse_args() main(args.old_revision, args.new_revision)
27.17033
121
0.581193