Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
Jeronymous's picture
Update README.md
a07b06a verified
|
raw
history blame
58.2 kB
metadata
pretty_name: Lucie Training Dataset
license: cc-by-nc-sa-4.0
language:
  - en
  - fr
  - de
  - es
  - it
  - code
multilinguality:
  - multilingual
task_categories:
  - text-generation
  - text2text-generation
task_ids:
  - language-modeling
tags:
  - text-generation
  - conditional-text-generation
size_categories:
  - n>1T
viewer: true
configs:
  - config_name: default
    data_files:
      - path: data/*/*/*/*parquet
        split: train
  - config_name: en
    data_files:
      - path: data/natural/en/*/*parquet
        split: train
  - config_name: fr
    data_files:
      - path: data/natural/fr/*/*parquet
        split: train
  - config_name: de
    data_files:
      - path: data/natural/de/*/*parquet
        split: train
  - config_name: es
    data_files:
      - path: data/natural/es/*/*parquet
        split: train
  - config_name: it
    data_files:
      - path: data/natural/it/*/*parquet
        split: train
  - config_name: de,fr
    data_files:
      - path: data/natural/de-fr/*/*.parquet
        split: train
  - config_name: es,en
    data_files:
      - path: data/natural/es-en/*/*.parquet
        split: train
  - config_name: fr,en
    data_files:
      - path: data/natural/fr-en/*/*.parquet
        split: train
  - config_name: it,en
    data_files:
      - path: data/natural/it-en/*/*.parquet
        split: train
  - config_name: natural
    data_files:
      - path: data/natural/*/*/*.parquet
        split: train
  - config_name: code
    data_files:
      - path: data/code/*/*/*parquet
        split: train
  - config_name: code-assembly
    data_files:
      - path: data/code/assembly/*/*.parquet
        split: train
  - config_name: code-c
    data_files:
      - path: data/code/c/*/*.parquet
        split: train
  - config_name: code-c#
    data_files:
      - path: data/code/c#/*/*.parquet
        split: train
  - config_name: code-c++
    data_files:
      - path: data/code/c++/*/*.parquet
        split: train
  - config_name: code-clojure
    data_files:
      - path: data/code/clojure/*/*.parquet
        split: train
  - config_name: code-dart
    data_files:
      - path: data/code/dart/*/*.parquet
        split: train
  - config_name: code-elixir
    data_files:
      - path: data/code/elixir/*/*.parquet
        split: train
  - config_name: code-erlang
    data_files:
      - path: data/code/erlang/*/*.parquet
        split: train
  - config_name: code-fortran
    data_files:
      - path: data/code/fortran/*/*.parquet
        split: train
  - config_name: code-go
    data_files:
      - path: data/code/go/*/*.parquet
        split: train
  - config_name: code-haskell
    data_files:
      - path: data/code/haskell/*/*.parquet
        split: train
  - config_name: code-java
    data_files:
      - path: data/code/java/*/*.parquet
        split: train
  - config_name: code-javascript
    data_files:
      - path: data/code/javascript/*/*.parquet
        split: train
  - config_name: code-julia
    data_files:
      - path: data/code/julia/*/*.parquet
        split: train
  - config_name: code-kotlin
    data_files:
      - path: data/code/kotlin/*/*.parquet
        split: train
  - config_name: code-lua
    data_files:
      - path: data/code/lua/*/*.parquet
        split: train
  - config_name: code-mathematica
    data_files:
      - path: data/code/mathematica/*/*.parquet
        split: train
  - config_name: code-matlab
    data_files:
      - path: data/code/matlab/*/*.parquet
        split: train
  - config_name: code-ocaml
    data_files:
      - path: data/code/ocaml/*/*.parquet
        split: train
  - config_name: code-perl
    data_files:
      - path: data/code/perl/*/*.parquet
        split: train
  - config_name: code-php
    data_files:
      - path: data/code/php/*/*.parquet
        split: train
  - config_name: code-python
    data_files:
      - path: data/code/python/*/*.parquet
        split: train
  - config_name: code-r
    data_files:
      - path: data/code/r/*/*.parquet
        split: train
  - config_name: code-racket
    data_files:
      - path: data/code/racket/*/*.parquet
        split: train
  - config_name: code-ruby
    data_files:
      - path: data/code/ruby/*/*.parquet
        split: train
  - config_name: code-rust
    data_files:
      - path: data/code/rust/*/*.parquet
        split: train
  - config_name: code-scala
    data_files:
      - path: data/code/scala/*/*.parquet
        split: train
  - config_name: code-swift
    data_files:
      - path: data/code/swift/*/*.parquet
        split: train
  - config_name: code-tex
    data_files:
      - path: data/code/tex/*/*.parquet
        split: train
  - config_name: code-typescript
    data_files:
      - path: data/code/typescript/*/*.parquet
        split: train
  - config_name: AmendementsParlement
    data_files:
      - path: data/natural/*/AmendementsParlement/*.parquet
        split: train
  - config_name: AmericanStories
    data_files:
      - path: data/natural/*/AmericanStories/*.parquet
        split: train
  - config_name: Claire
    data_files:
      - path: data/natural/*/Claire/*.parquet
        split: train
  - config_name: Claire-en
    data_files:
      - path: data/natural/en/Claire/*.parquet
        split: train
  - config_name: Claire-fr
    data_files:
      - path: data/natural/fr/Claire/*.parquet
        split: train
  - config_name: CroissantAligned
    data_files:
      - path: data/natural/*/CroissantAligned/*.parquet
        split: train
  - config_name: DiscoursPublics
    data_files:
      - path: data/natural/*/DiscoursPublics/*.parquet
        split: train
  - config_name: Europarl
    data_files:
      - path: data/natural/*/Europarl/*.parquet
        split: train
  - config_name: Europarl-de
    data_files:
      - path: data/natural/de/Europarl/*.parquet
        split: train
  - config_name: Europarl-en
    data_files:
      - path: data/natural/en/Europarl/*.parquet
        split: train
  - config_name: Europarl-es
    data_files:
      - path: data/natural/es/Europarl/*.parquet
        split: train
  - config_name: Europarl-fr
    data_files:
      - path: data/natural/fr/Europarl/*.parquet
        split: train
  - config_name: EuroparlAligned
    data_files:
      - path: data/natural/*/EuroparlAligned/*.parquet
        split: train
  - config_name: EuroparlAligned-de,fr
    data_files:
      - path: data/natural/de-fr/EuroparlAligned/*.parquet
        split: train
  - config_name: EuroparlAligned-es,en
    data_files:
      - path: data/natural/es-en/EuroparlAligned/*.parquet
        split: train
  - config_name: EuroparlAligned-fr,en
    data_files:
      - path: data/natural/fr-en/EuroparlAligned/*.parquet
        split: train
  - config_name: EuroparlAligned-it,en
    data_files:
      - path: data/natural/it-en/EuroparlAligned/*.parquet
        split: train
  - config_name: Eurovoc
    data_files:
      - path: data/natural/*/Eurovoc/*.parquet
        split: train
  - config_name: Eurovoc-de
    data_files:
      - path: data/natural/de/Eurovoc/*.parquet
        split: train
  - config_name: Eurovoc-en
    data_files:
      - path: data/natural/en/Eurovoc/*.parquet
        split: train
  - config_name: Eurovoc-es
    data_files:
      - path: data/natural/es/Eurovoc/*.parquet
        split: train
  - config_name: Eurovoc-it
    data_files:
      - path: data/natural/it/Eurovoc/*.parquet
        split: train
  - config_name: FineWebEdu
    data_files:
      - path: data/natural/*/FineWebEdu/*.parquet
        split: train
  - config_name: GallicaMonographies
    data_files:
      - path: data/natural/*/GallicaMonographies/*.parquet
        split: train
  - config_name: GallicaPress
    data_files:
      - path: data/natural/*/GallicaPress/*.parquet
        split: train
  - config_name: Gutenberg
    data_files:
      - path: data/natural/*/Gutenberg/*.parquet
        split: train
  - config_name: Gutenberg-de
    data_files:
      - path: data/natural/de/Gutenberg/*.parquet
        split: train
  - config_name: Gutenberg-en
    data_files:
      - path: data/natural/en/Gutenberg/*.parquet
        split: train
  - config_name: Gutenberg-es
    data_files:
      - path: data/natural/es/Gutenberg/*.parquet
        split: train
  - config_name: Gutenberg-fr
    data_files:
      - path: data/natural/fr/Gutenberg/*.parquet
        split: train
  - config_name: Gutenberg-it
    data_files:
      - path: data/natural/it/Gutenberg/*.parquet
        split: train
  - config_name: HAL
    data_files:
      - path: data/natural/*/HAL/*.parquet
        split: train
  - config_name: InterventionsParlement
    data_files:
      - path: data/natural/*/InterventionsParlement/*.parquet
        split: train
  - config_name: LEGI
    data_files:
      - path: data/natural/*/LEGI/*.parquet
        split: train
  - config_name: MathPile
    data_files:
      - path: data/natural/*/MathPile/*.parquet
        split: train
  - config_name: OpenData
    data_files:
      - path: data/natural/*/OpenData/*.parquet
        split: train
  - config_name: OpenEdition
    data_files:
      - path: data/natural/*/OpenEdition/*.parquet
        split: train
  - config_name: PeS2o
    data_files:
      - path: data/natural/*/PeS2o/*.parquet
        split: train
  - config_name: Pile
    data_files:
      - path: data/natural/*/Pile/*.parquet
        split: train
  - config_name: Pile-DM_Mathematics
    data_files:
      - path: data/natural/*/Pile/*DM_Mathematics.parquet
        split: train
  - config_name: Pile-FreeLaw
    data_files:
      - path: data/natural/*/Pile/*FreeLaw.parquet
        split: train
  - config_name: Pile-NIH_ExPorter
    data_files:
      - path: data/natural/*/Pile/*NIH_ExPorter.parquet
        split: train
  - config_name: Pile-PhilPapers
    data_files:
      - path: data/natural/*/Pile/*PhilPapers.parquet
        split: train
  - config_name: Pile-StackExchange
    data_files:
      - path: data/natural/*/Pile/*StackExchange.parquet
        split: train
  - config_name: Pile-USPTO_Backgrounds
    data_files:
      - path: data/natural/*/Pile/*USPTO_Backgrounds.parquet
        split: train
  - config_name: Pile-Ubuntu_IRC
    data_files:
      - path: data/natural/*/Pile/*Ubuntu_IRC.parquet
        split: train
  - config_name: QuestionsEcritesParlement
    data_files:
      - path: data/natural/*/QuestionsEcritesParlement/*.parquet
        split: train
  - config_name: RedPajama
    data_files:
      - path: data/natural/*/RedPajama/*.parquet
        split: train
  - config_name: RedPajama-de
    data_files:
      - path: data/natural/de/RedPajama/*.parquet
        split: train
  - config_name: RedPajama-es
    data_files:
      - path: data/natural/es/RedPajama/*.parquet
        split: train
  - config_name: RedPajama-fr
    data_files:
      - path: data/natural/fr/RedPajama/*.parquet
        split: train
  - config_name: RedPajama-it
    data_files:
      - path: data/natural/it/RedPajama/*.parquet
        split: train
  - config_name: Stac
    data_files:
      - path: data/natural/*/Stac/*.parquet
        split: train
  - config_name: TheStack
    data_files:
      - path: data/code/*/TheStack/*.parquet
        split: train
  - config_name: Theses
    data_files:
      - path: data/natural/*/Theses/*.parquet
        split: train
  - config_name: Wikipedia
    data_files:
      - path: data/natural/*/Wikipedia/*.parquet
        split: train
  - config_name: Wikipedia-de
    data_files:
      - path: data/natural/de/Wikipedia/*.parquet
        split: train
  - config_name: Wikipedia-en
    data_files:
      - path: data/natural/en/Wikipedia/*.parquet
        split: train
  - config_name: Wikipedia-es
    data_files:
      - path: data/natural/es/Wikipedia/*.parquet
        split: train
  - config_name: Wikipedia-fr
    data_files:
      - path: data/natural/fr/Wikipedia/*.parquet
        split: train
  - config_name: Wikipedia-it
    data_files:
      - path: data/natural/it/Wikipedia/*.parquet
        split: train
  - config_name: Wikisource
    data_files:
      - path: data/natural/*/Wikisource/*.parquet
        split: train
  - config_name: Wiktionary
    data_files:
      - path: data/natural/*/Wiktionary/*.parquet
        split: train
  - config_name: YouTube
    data_files:
      - path: data/natural/*/YouTube/*.parquet
        split: train

Dataset Card

The Lucie Training Dataset is a curated collection of text data in English, French, German, Spanish and Italian culled from a variety of sources including: web data, video subtitles, academic papers, digital books, newspapers, and magazines, some of which were processed by Optical Character Recognition (OCR). It also contains samples of diverse programming languages.

The Lucie Training Dataset was used to pretrain Lucie-7B, a foundation LLM with strong capabilities in French and English.

Table of Contents:

Dataset Description

This dataset was made to provide an extensive and diverse dataset for training Large Language Models (LLMs). Here are some of the principal features of the corpus:

  • Data mix:
    • The dataset contains equal amounts of French and English data -- it is in fact one of the biggest collections of French text data that has been preprocessed for LLM training -- with the aim of minimizing anglo-centric cultural biases.
    • German, Spanish and Italian are also represented in small amounts.
    • Code is also included to boost the reasoning capabilities of LLMs.
  • Data filtering and deduplication:
    • The dataset has been cleaned in an effort to remove very low-quality data.
    • Duplicate data samples have been removed to some extent, following best practices.
  • Ethics:
    • Special care has been taken to respect copyright laws and individual privacy. All books, newspapers, monographies, and magazines are in the public domain (which depends on the author's date of death and the country of publication).
    • All web data in the dataset came from sites with robots.txt files that do not forbid crawling.

Dataset Structure

The corpus contains the following information for each text sample:

  • text: the text sample itself.
  • source: an identifier for the source(s) of the text sample (Wikipedia, RedPajama, Gutenberg, …). The list of all sources is described in this document.
  • id: an identifier that is unique among the source.
  • language: the language of the text sample, which can be:
    • the ISO 639-1 code of a natural language: en, fr, de, es, or it;
    • the common name prefixed by "code:" of a programming language: code:python, code:c++, …; or
    • a list of ISO 639-1 codes separated by commas, if the text sample is multilingual: fr,en, de,fr, es,en, it,en (or in the opposite order if the languages appear in the opposite order in the text).
  • url (optional): the URL of the original text sample on the web, if available.
  • title (optional): the title of the original text sample, if available.
  • author (optional): the author of the original text sample, if available. Usually the author name in plain text, except for Gutenberg where it is the JSON serialized object of the author metadata.
  • date (optional): the publication date of the original text sample, if available. The text format of the source depends on the source.
  • quality_signals (optional): a list of quality signals about the text sample (that could be used for further filtering or sample weighting). It can include indicators computed by fasttext and CCNet, statistics about occurrences of characters, words, special characters, etc. This field is always a JSON serialized object.
  • extra (optional): JSON serialized extra information about the text sample. This can include metadata about the source subset, the rights, etc.

Examples of metadata (except from text) are shown for each source in metadata_examples.json.

Dataset Composition

The following table provides an overview of the dataset composition, broken down by source and language.

subset language M docs B words B tokens B chars
TOTAL 2186.562 1356.021 2314.862 8842.200
fr 653.812 583.687 928.618 3619.672 RedPajama (477.8 B words), GallicaPress (67.5 B words), GallicaMonographies (15.1 B words), HAL (9.36 B words), Theses (7.55 B words), OpenEdition (2.23 B words), Wikipedia (1.73 B words), OpenData (0.755 B words), wikisource (0.523 B words), Gutenberg (0.227 B words), Claire (0.210 B words), DiscoursPublics (0.163 B words), YouTube (0.145 B words), QuestionsEcritesParlement (0.108 B words), InterventionsParlement (0.104 B words), LEGI (0.0878 B words), wiktionary (0.0531 B words), Europarl (0.0528 B words), AmendementsParlement (0.0452 B words)
en 554.289 412.202 611.894 2553.541 FineWebEdu (327.5 B words), PeS2o (42.3 B words), AmericanStories (8.90 B words), Pile (FreeLaw) (8.20 B words), Wikipedia (4.71 B words), Pile (StackExchange) (4.53 B words), Gutenberg (3.54 B words), Pile (USPTO_Backgrounds) (3.49 B words), MathPile (3.41 B words), Pile (DM_Mathematics) (1.75 B words), Eurovoc (1.52 B words), Pile (Ubuntu_IRC) (0.867 B words), Claire (0.818 B words), Pile (PhilPapers) (0.363 B words), Pile (NIH_ExPorter) (0.288 B words), Europarl (0.0563 B words), Stac (0.0000529 B words)
code 125.769 51.306 228.954 630.749 JAVASCRIPT (8.53 B words), JAVA (7.42 B words), C (5.92 B words), PYTHON (5.43 B words), PHP (4.87 B words), C++ (4.58 B words), C# (3.57 B words), GO (2.73 B words), TYPESCRIPT (2.62 B words), RUST (0.872 B words), RUBY (0.646 B words), SWIFT (0.553 B words), SCALA (0.457 B words), KOTLIN (0.454 B words), TEX (0.394 B words), LUA (0.318 B words), DART (0.308 B words), HASKELL (0.307 B words), PERL (0.297 B words), ASSEMBLY (0.209 B words), FORTRAN (0.192 B words), JULIA (0.152 B words), OCAML (0.130 B words), MATHEMATICA (0.120 B words), ELIXIR (0.0731 B words), ERLANG (0.0657 B words), CLOJURE (0.0448 B words), R (0.0278 B words), MATLAB (0.00865 B words), RACKET (0.00479 B words)
de 165.915 105.609 206.610 764.779 RedPajama (103.1 B words), Wikipedia (1.71 B words), Eurovoc (0.678 B words), Gutenberg (0.0987 B words), Europarl (0.0451 B words)
es 171.651 123.857 200.825 759.457 RedPajama (121.8 B words), Wikipedia (1.25 B words), Eurovoc (0.757 B words), Europarl (0.0524 B words), Gutenberg (0.0512 B words)
it 99.440 62.051 112.031 404.454 RedPajama (60.2 B words), Wikipedia (1.06 B words), Eurovoc (0.731 B words), Gutenberg (0.0657 B words)
fr-en 410.032 17.016 25.494 107.658 CroissantAligned (16.9 B words), EuroparlAligned (0.105 B words)
it-en 1.901 0.100 0.151 0.638 EuroparlAligned
es-en 1.961 0.103 0.143 0.631 EuroparlAligned
de-fr 1.792 0.0908 0.141 0.621 EuroparlAligned

Category: Web

RedPajama fr 640.770 477.758 741.023 2974.596 2023 (27.2 B words), 2022 (64.9 B words), 2021 (82.4 B words), 2020 (75.1 B words), 2019 (86.9 B words), 2018 (81.3 B words), 2017 (55.7 B words), 2016 (2.03 B words), 2015 (0.776 B words), 2014 (1.32 B words)
de 162.779 103.078 201.371 747.631 2023 (24.7 B words), 2022 (60.8 B words), 2021 (17.6 B words)
es 169.447 121.751 197.125 746.984 2023 (28.9 B words), 2022 (72.1 B words), 2021 (20.8 B words)
it 97.324 60.194 108.416 393.012 2023 (14.4 B words), 2022 (35.5 B words), 2021 (10.3 B words)
FineWebEdu en 421.209 327.453 467.837 2018.215 2024 (9.20 B words), 2023 (62.1 B words), 2022 (58.8 B words), 2021 (73.0 B words), 2020 (59.1 B words), 2019 (65.3 B words)

Category: Newspaper

GallicaPress fr 3.205 67.496 121.606 408.882
AmericanStories en 59.420 8.902 14.313 50.844

Category: Technical

PeS2o en 38.972 42.296 65.365 268.963
HAL fr 0.349 9.356 16.224 58.308
Theses fr 0.102 7.547 14.060 47.758
Pile (USPTO_Backgrounds) en 5.139 3.492 5.105 22.309
OpenEdition fr 0.939 2.225 3.604 14.459
Pile (PhilPapers) en 0.0308 0.363 0.618 2.304
Pile (NIH_ExPorter) en 0.914 0.288 0.431 1.979

Category: Book

GallicaMonographies fr 0.278 15.106 25.169 90.456
Gutenberg en 0.0563 3.544 5.516 20.579
fr 0.00345 0.227 0.383 1.392
de 0.00188 0.0987 0.193 0.654
it 0.000958 0.0657 0.129 0.414
es 0.000735 0.0512 0.0920 0.303

Category: Multilingual Parallel Corpora

CroissantAligned fr-en 408.029 16.911 25.351 107.003
EuroparlAligned it-en 1.901 0.100 0.151 0.638
fr-en 2.003 0.105 0.143 0.655
es-en 1.961 0.103 0.143 0.631
de-fr 1.792 0.0908 0.141 0.621

Category: Legislative Texts

Pile (FreeLaw) en 3.415 8.204 14.011 52.580
Eurovoc en 0.272 1.523 2.571 9.468
it 0.245 0.731 1.527 4.867
de 0.247 0.678 1.497 4.915
es 0.246 0.757 1.411 4.684
OpenData fr 1.169 0.755 1.209 4.638
QuestionsEcritesParlement fr 0.189 0.108 0.156 0.705
LEGI fr 0.621 0.0878 0.145 0.563
AmendementsParlement fr 0.673 0.0452 0.0738 0.274

Category: Legislative Transcripts

Europarl de 0.0102 0.0451 0.0734 0.327
es 0.0103 0.0524 0.0733 0.325
fr 0.0103 0.0528 0.0717 0.339
en 0.0111 0.0563 0.0690 0.339
DiscoursPublics fr 0.110 0.163 0.238 1.025
InterventionsParlement fr 1.832 0.104 0.157 0.654

Category: Wiki

Wikipedia en 6.893 4.708 7.898 26.616
de 2.877 1.709 3.476 11.252
fr 2.648 1.726 2.940 9.879
es 1.947 1.245 2.124 7.161
it 1.870 1.060 1.959 6.161
wikisource fr 0.186 0.523 0.795 3.080
wiktionary fr 0.650 0.0531 0.117 0.347

Category: Math

MathPile en 0.737 3.408 9.637 27.290
Pile (DM_Mathematics) en 0.992 1.746 4.928 8.127

Category: Forum

Pile (StackExchange) en 15.269 4.534 10.275 33.609
Pile (Ubuntu_IRC) en 0.0104 0.867 2.159 5.610

Category: Dialogue

Claire en 0.949 0.818 1.161 4.709 MediaSum (0.738 B words), DialogStudio (0.0611 B words), BNC (0.0107 B words), OANC (0.00483 B words), DailyDialog (0.00127 B words), ICSI (0.000888 B words), AMI (0.000798 B words)
fr 0.0393 0.210 0.311 1.314 AssembleeNationale (0.130 B words), Senat (0.0515 B words), Theatre (0.0168 B words), ESLO (0.00510 B words), ORFEO (0.00147 B words), SUMM (0.00127 B words), TCOF (0.000784 B words), CFPP (0.000646 B words), OFROM (0.000593 B words), PFC (0.000506 B words), FREDSum (0.000392 B words), CLAPI (0.000144 B words), CID (0.000120 B words), LINAGORA (0.000106 B words), ACSYNT (0.0000612 B words), OTG (0.0000301 B words), Rhapsodie (0.0000274 B words), ParisStories (0.0000271 B words), UBS (0.00000787 B words)
YouTube fr 0.0375 0.145 0.336 1.003
Stac en 0.0000450 0.0000529 0.000121 0.000327

Category: Programming

TheStack JAVASCRIPT 21.109 8.526 58.609 141.647
JAVA 20.152 7.421 27.680 89.297
C 8.626 5.916 24.092 57.428
PHP 15.905 4.865 22.883 66.844
PYTHON 12.962 5.434 21.683 64.304
C++ 6.378 4.584 18.835 50.892
C# 10.839 3.574 13.381 46.286
GO 4.730 2.735 10.262 25.738
TYPESCRIPT 10.637 2.617 9.836 28.815
RUST 1.387 0.872 3.241 9.529
RUBY 3.405 0.646 2.392 7.139
SWIFT 1.756 0.553 1.876 6.134
KOTLIN 2.243 0.454 1.758 5.769
SCALA 1.362 0.457 1.587 4.862
TEX 0.398 0.394 1.507 3.805
LUA 0.559 0.318 1.367 3.279
DART 0.933 0.308 1.242 3.864
PERL 0.392 0.297 1.149 2.634
MATHEMATICA 0.0269 0.120 1.117 1.720
ASSEMBLY 0.248 0.209 0.867 1.575
HASKELL 0.545 0.307 0.807 2.364
FORTRAN 0.165 0.192 0.780 1.843
JULIA 0.299 0.152 0.660 1.539
OCAML 0.160 0.130 0.430 1.107
ERLANG 0.0994 0.0657 0.260 0.726
ELIXIR 0.282 0.0731 0.258 0.737
CLOJURE 0.126 0.0448 0.179 0.492
R 0.0392 0.0278 0.158 0.305
MATLAB 0.000967 0.00865 0.0427 0.0372
RACKET 0.00420 0.00479 0.0153 0.0378

Details on Data Sources

AmendementsParlement

  • Source: Corpus contributed by OpenLLM partners.
  • Extracted from: Regards citoyens (nodeputes.fr, nossenateurs.fr). API. License: CC BY-SA.
  • Description: A collection of proposed amendments by the French parliament: the legal text and description of the requested modification.
  • Citation: No paper found.

AmericanStories

  • Source: dell-research-harvard/AmericanStories. License: CC BY 4.0.
  • Extracted from: Chronicling America. License: Open.
  • Description: "The American Stories dataset is a collection of full article texts extracted from historical U.S. newspaper images. It includes nearly 20 million scans from the public domain Chronicling America collection maintained by the Library of Congress. The dataset is designed to address the challenges posed by complex layouts and low OCR quality in existing newspaper datasets" (from the dataset card).
  • Citation: Melissa Dell, Jacob Carlson, Tom Bryan, Emily Silcock, Abhishek Arora, Zejiang Shen, Luca D'Amico-Wong, Quan Le, Pablo Querubin and Leander Heldring (2023). "American Stories: A Large-Scale Structured Text Dataset of Historical U.S. Newspapers," arxiv:2308.12477.

Claire (French and English)

  • Sources:
  • Description: The Claire datasets are composed of transcripts of spoken conversation -- including parliamentary proceedings, interviews, debates, meetings, and free conversations -- as well as some written conversations from theater plays and written chats. The dataset is designed to help downstream performance of models fine-tuned for tasks requiring the comprehension of spontaneous spoken conversation, such as meeting summarization. Each dialogue is split into speech turns, and each speech turn is labeled with the name of the speaker or a unique identifier.
  • Citation: Julie Hunter, Jérôme Louradour, Virgile Rennard, Ismaïl Harrando, Guokan Shang, Jean-Pierre Lorré (2023). The Claire French Dialogue Dataset. arXiv:2311.16840.

CroissantAligned

  • Source: croissantllm/croissant_dataset_no_web_data. License: not specified.
  • Extracted from: OPUS, theses, song lyrics
  • Description: A collection of English-French translation pairs selected by a custom filtering pipeline. Designed to "improve the multilingual capabilities of the model" (Arxiv paper).
  • Citation: Manuel Faysse, Patrick Fernandes, Nuno M. Guerreiro, António Loison, Duarte M. Alves, Caio Corro, Nicolas Boizard, João Alves, Ricardo Rei, Pedro H. Martins, Antoni Bigata Casademunt, François Yvon, André F.T. Martins, Gautier Viaud, Céline Hudelot, Pierre Colombo (2024). "CroissantLLM: A Truly Bilingual French-English Language Model," arXiv:2402.00786.

DiscoursPublics

  • Source: Corpus contributed by OpenLLM partners.
  • Extracted from: Vie Publique.
  • Description: A collection of public speeches from the principal public actors in France including speeches from the French President starting from 1974 and from the Prime Minister and members of the government starting from 1980.
  • Citation: No paper found.

Europarl (monolingual and parallel)

  • Sources:
  • Description: "The Europarl parallel corpus is extracted from the proceedings of the European Parliament. It includes versions in 21 European languages: Romanic (French, Italian, Spanish, Portuguese, Romanian), Germanic (English, Dutch, German, Danish, Swedish), Slavik (Bulgarian, Czech, Polish, Slovak, Slovene), Finni-Ugric (Finnish, Hungarian, Estonian), Baltic (Latvian, Lithuanian), and Greek. The goal of the extraction and processing was to generate sentence aligned text for statistical machine translation systems" (www.statmt.org).
  • Citation: Philipp Koehn (2005). "Europarl: A Parallel Corpus for Statistical Machine Translation," MT Summit.

Eurovoc

  • Source: EuropeanParliament/Eurovoc. License: EUPL 1.1.
  • Extracted from: Cellar. License: Open.
  • Description: A collection of mutlilingual documents from the data repository of the Publications Office of the European Union annotated with Eurovoc labels.
  • Citations:
    • Ilias Chalkidis, Emmanouil Fergadiotis, Prodromos Malakasiotis, Nikolaos Aletras, and Ion Androutsopoulos (2019). "Extreme Multi-Label Legal Text Classification: A Case Study in EU Legislation," Proceedings of the Natural Legal Language Processing Workshop 2019, pages 78–87, Minneapolis, Minnesota. Association for Computational Linguistics.
    • Ilias Chalkidis, Manos Fergadiotis, Prodromos Malakasiotis and Ion Androutsopoulos (2019). "Large-Scale Multi-Label Text Classification on EU Legislation," Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (ACL 2019), Florence, Italy, (short papers).
    • Andrei-Marius Avram, Vasile Pais, and Dan Ioan Tufis (2021). "PyEuroVoc: A Tool for Multilingual Legal Document Classification with EuroVoc Descriptors," Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021), pages 92–101, Held Online. INCOMA Ltd.
    • Zein Shaheen, Gerhard Wohlgenannt and Erwin Filtz (2020). "Large scale legal text classification using transformer models," arXiv:2010.12871.

FineWebEdu

  • Source: HuggingFaceFW/fineweb-edu. License: ODC-BY.
  • Extracted from: FineWeb. License: ODC-BY.
  • Description: A 1.3 trillion token selection from FineWeb, which contains 15 trillion tokens of curated data from 96 Common Crawl dumps. Content in FineWebEdu has been selected by a custom designed classifier for its high-quality, educational content.
  • Citation: Guilherme Penedo, Hynek Kydlíček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin Raffel, Leandro Von Werra, Thomas Wolf (2024). "The FineWeb Datasets: Decanting the Web for the Finest Text Data at Scale," arXiv:2406.17557.

GallicaMonographies

  • Source: Corpus contributed by OpenLLM partners. A version is also published here: PleIAs/French-PD-Books. License: None (public domain).
  • Extracted from: Gallicagram.
  • Description: A large collection of French monographies in the public domain made available through the French National Library (Gallica).
  • Citation: No paper found.

GallicaPress

  • Source: Corpus contributed by OpenLLM partners. A version is also published here: PleIAs/French-PD-Newspapers. License: None (public domain).
  • Extracted from: Gallicagram.
  • Description: A large collection of French newspapers and periodicals in the public domain made available through the French National Library (Gallica).
  • Citation: No paper found.

Gutenberg

HAL

  • Source:
  • Extracted from: HAL.
  • Description: A collection of scientific papers and manuscripts distributed through an open science platform.
  • Citation:

InterventionsParlement

MathPile

  • Source: GAIR/MathPile_Commercial. License: CC BY-SA 4.0
  • Extracted from: MathPile. License: CC BY-SA-NC 4.0.
  • Description: A preprocessed collection of documents focused on math, including Textbooks, arXiv, Wikipedia, ProofWiki, StackExchange, and web pages from Common Crawl. The content targets a range of levels, from kindergarten through postgraduate level. MathPile_Commercial was obtained by removing documents from MathPile that do not allow commercial use.
  • Citation: Zengzhi Wang, Rui Xia and Pengfei Liu (2023). "Generative AI for Math: Part I -- MathPile: A Billion-Token-Scale Pretraining Corpus for Math," arXiv:2312.17120.

OpenData

  • Source: Nicolas-BZRD/DILA_OPENDATA_FR_2023 (balo, dole, inca, kali, legi and sarde subsets). License: ODC-BY.
  • Extracted from: OpenData (Data collection date: October, 2023).
  • Description: "The French Government Open Data (DILA) Dataset is a collection of text data extracted from various sources provided by the French government, specifically the Direction de l'information légale et administrative (DILA). This dataset contains a wide range of legal, administrative, and legislative documents. The data has been organized into several categories for easy access and analysis" (from the dataset card).
  • Citation: No paper found.

OpenEdition

  • Source: Corpus contributed by OpenLLM partners.
  • Extracted from: Open Edition.
  • Description:
  • Citation: No paper found.

PeS2o

  • Source: allenai/peS2o. License: ODC BY-v1.0
  • Extracted from: S2ORC (see aclanthology). Knowledge cutoff: 2023-01-03.
  • Description: A preprocessed collection of academic papers designed for pre-training of language models. It includes a subset of full papers and another subset of titles and abstracts.
  • Citation: Luca Soldaini and Kyle Lo (2023). "peS2o (Pretraining Efficiently on S2ORC) Dataset}, Allen Institute for AI. GitHub.

Pile (Uncopyrighted)

  • Source: monology/pile-uncopyrighted.
  • Extracted from: FreeLaw, StackExchange, USPTO Backgrounds, DM Mathematics, Ubuntu IRC, Phil Papers, NIH ExPorter from The Pile. License: MIT.
  • Description (from the Datasheet):
    • FreeLaw: "The Free Law Project is US registered non-profit that provide access to millions of legal opinions and analytical tools for academic studies in the legal realm."
    • StackExchange: "The StackExchange dataset is a dump of anonymized user-contributed content on the Stack Exchange network, a popular collection of websites centered around user-contributed questions and answers."
    • USPTO Backgrounds: "The USPTO Backgrounds dataset is a set of background sections from patents granted by the United States Patent and Trademark Office, derived from its published bulk archives."
    • DM Mathematics: "The DeepMind Mathematics dataset consists of a collection of mathematical problems such as algebra, arithmetic, calculus, number theory, and probability, formatted as natural language prompts Saxton et al., 2019."
    • Ubuntu IRC: "The Ubuntu IRC dataset is derived from the publicly available chatlogs of all Ubunturelated channels on the Freenode IRC chat server."
    • PhilPapers: PhilPapers is a dataset of open access philosophy publications from an international database maintained by the Center for Digital Philosophy at the University of Western Ontario.
    • NIH ExPORTER: "The NIH Grant abstracts provides a bulk-data repository for awarded applications through the ExPORTER4 service covering the fiscal years 1985-present."
  • Citation:
    • Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, Connor Leahy (2020). "The Pile: An 800GB Dataset of Diverse Text for Language Modeling," arXiv:2101.00027.
    • Stella Biderman, Kieran Bicheno, Leo Gao (2022). "Datasheet for the Pile," arXiv:2201.07311.

QuestionsEcritesParlement

  • Source: Corpus contributed by OpenLLM partners.
  • Extracted from: Regards citoyens (text). License: CC BY-NC-SA.
  • Description: Collection of long written questions, read during a session at the french national assembly: from a member of french parliament to a minister (Minister got 2 month to respond). (text).
  • Citation: No paper found.

RedPajama (v2)

  • Source: togethercomputer/RedPajama-Data-V2. License: Apache 2.0 (data preparation code), Not specified (data) but see Common Crawl terms of use.
  • Description: "RedPajama-V2 is an open dataset for training large language models. The dataset includes over 100B text documents coming from 84 CommonCrawl snapshots and processed using the CCNet pipeline. Out of these, there are 30B documents in the corpus that additionally come with quality signals, and 20B documents that are deduplicated" (from GitHub).
  • Citation: Together Computer (2023). "RedPajama-Data-v2: an Open Dataset with 30 Trillion Tokens for Training Large Language Models," GitHub.

STAC

  • Source: STAC. License: CC BY-SA-NC 4.0.
  • Description: A collection of chats from an online version of the game Settlers of Catan.
  • Citation: Nicholas Asher, Julie Hunter, Mathieu Morey, Farah Benamara and Stergos Afantenos (2016). "Discourse structure and dialogue acts in multiparty dialogue: the STAC corpus," The Tenth International Conference on Language Resources and Evaluation (LREC 2016). European Language Resources Association, pp. 2721-2727.

TheStack

  • Source: bigcode/the-stack-dedup. License: Other (mixture of copyleft licenses).
  • Description: "The Stack contains over 6TB of permissively-licensed source code files covering 358 programming languages. The dataset was created as part of the BigCode Project, an open scientific collaboration working on the responsible development of Large Language Models for Code (Code LLMs). The Stack serves as a pre-training dataset for Code LLMs, i.e., code-generating AI systems which enable the synthesis of programs from natural language descriptions as well as other from code snippets. This is the near-deduplicated version with 3TB data" (from the dataset card).
  • Citation: Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou, Carlos Muñoz Ferrandis, Yacine Jernite, Margaret Mitchell, Sean Hughes, Thomas Wolf, Dzmitry Bahdanau, Leandro von Werra and Harm de Vries (2022). "The Stack: 3 TB of permissively licensed source code," arxiv:2211.15533.

Theses

  • Source: Corpus contributed by OpenLLM partners.
  • Extracted from: theses.fr and HAL???.
  • Description:
  • Citation: No paper found.

Wikipedia, Wikisource, Wiktionary

YouTube

  • Source: Corpus contributed by LINAGORA Labs (OpenLLM-France).
  • Extracted from:
  • Description:
  • Citation: No paper found.

Example use in python

Load the dataset using the datasets library:

from datasets import load_dataset

kwargs = {"split": "train", "streaming": True}

dataset = load_dataset("OpenLLM-France/Lucie-Training-Dataset", **kwargs)

for sample in dataset:
   text = sample["text"]
   # ... do something with the text

Several configurations are available to select a language, a source, or both, illustrated in the following examples.

Load data in French:

dataset = load_dataset("OpenLLM-France/Lucie-Training-Dataset", "fr", **kwargs)

Load data where French and English are aligned:

dataset = load_dataset("OpenLLM-France/Lucie-Training-Dataset", "fr,en", **kwargs)

Load data corresponding to files with programming languages:

dataset = load_dataset("OpenLLM-France/Lucie-Training-Dataset", "code", **kwargs)

Load data in Python:

dataset = load_dataset("OpenLLM-France/Lucie-Training-Dataset", "code-python", **kwargs)

Load data from Wikipedia (in available languages):

dataset = load_dataset("OpenLLM-France/Lucie-Training-Dataset", "Wikipedia", **kwargs)

Load data from French pages of Wikipedia (wikipedia.fr):

dataset = load_dataset("OpenLLM-France/Lucie-Training-Dataset", "Wikipedia-fr", **kwargs)

License

TODO

Citation

TODO

Contact

[email protected]