Datasets:
pretty_name: Lucie Training Dataset
license: cc-by-nc-sa-4.0
language:
- en
- fr
- de
- es
- it
- code
multilinguality:
- multilingual
task_categories:
- text-generation
- text2text-generation
task_ids:
- language-modeling
tags:
- text-generation
- conditional-text-generation
size_categories:
- n>1T
viewer: true
configs:
- config_name: default
data_files:
- path: data/*/*/*/*parquet
split: train
- config_name: en
data_files:
- path: data/natural/en/*/*parquet
split: train
- config_name: fr
data_files:
- path: data/natural/fr/*/*parquet
split: train
- config_name: de
data_files:
- path: data/natural/de/*/*parquet
split: train
- config_name: es
data_files:
- path: data/natural/es/*/*parquet
split: train
- config_name: it
data_files:
- path: data/natural/it/*/*parquet
split: train
- config_name: de,fr
data_files:
- path: data/natural/de-fr/*/*.parquet
split: train
- config_name: es,en
data_files:
- path: data/natural/es-en/*/*.parquet
split: train
- config_name: fr,en
data_files:
- path: data/natural/fr-en/*/*.parquet
split: train
- config_name: it,en
data_files:
- path: data/natural/it-en/*/*.parquet
split: train
- config_name: natural
data_files:
- path: data/natural/*/*/*.parquet
split: train
- config_name: code
data_files:
- path: data/code/*/*/*parquet
split: train
- config_name: code-assembly
data_files:
- path: data/code/assembly/*/*.parquet
split: train
- config_name: code-c
data_files:
- path: data/code/c/*/*.parquet
split: train
- config_name: code-c#
data_files:
- path: data/code/c#/*/*.parquet
split: train
- config_name: code-c++
data_files:
- path: data/code/c++/*/*.parquet
split: train
- config_name: code-clojure
data_files:
- path: data/code/clojure/*/*.parquet
split: train
- config_name: code-dart
data_files:
- path: data/code/dart/*/*.parquet
split: train
- config_name: code-elixir
data_files:
- path: data/code/elixir/*/*.parquet
split: train
- config_name: code-erlang
data_files:
- path: data/code/erlang/*/*.parquet
split: train
- config_name: code-fortran
data_files:
- path: data/code/fortran/*/*.parquet
split: train
- config_name: code-go
data_files:
- path: data/code/go/*/*.parquet
split: train
- config_name: code-haskell
data_files:
- path: data/code/haskell/*/*.parquet
split: train
- config_name: code-java
data_files:
- path: data/code/java/*/*.parquet
split: train
- config_name: code-javascript
data_files:
- path: data/code/javascript/*/*.parquet
split: train
- config_name: code-julia
data_files:
- path: data/code/julia/*/*.parquet
split: train
- config_name: code-kotlin
data_files:
- path: data/code/kotlin/*/*.parquet
split: train
- config_name: code-lua
data_files:
- path: data/code/lua/*/*.parquet
split: train
- config_name: code-mathematica
data_files:
- path: data/code/mathematica/*/*.parquet
split: train
- config_name: code-matlab
data_files:
- path: data/code/matlab/*/*.parquet
split: train
- config_name: code-ocaml
data_files:
- path: data/code/ocaml/*/*.parquet
split: train
- config_name: code-perl
data_files:
- path: data/code/perl/*/*.parquet
split: train
- config_name: code-php
data_files:
- path: data/code/php/*/*.parquet
split: train
- config_name: code-python
data_files:
- path: data/code/python/*/*.parquet
split: train
- config_name: code-r
data_files:
- path: data/code/r/*/*.parquet
split: train
- config_name: code-racket
data_files:
- path: data/code/racket/*/*.parquet
split: train
- config_name: code-ruby
data_files:
- path: data/code/ruby/*/*.parquet
split: train
- config_name: code-rust
data_files:
- path: data/code/rust/*/*.parquet
split: train
- config_name: code-scala
data_files:
- path: data/code/scala/*/*.parquet
split: train
- config_name: code-swift
data_files:
- path: data/code/swift/*/*.parquet
split: train
- config_name: code-tex
data_files:
- path: data/code/tex/*/*.parquet
split: train
- config_name: code-typescript
data_files:
- path: data/code/typescript/*/*.parquet
split: train
- config_name: AmendementsParlement
data_files:
- path: data/natural/*/AmendementsParlement/*.parquet
split: train
- config_name: AmericanStories
data_files:
- path: data/natural/*/AmericanStories/*.parquet
split: train
- config_name: Claire
data_files:
- path: data/natural/*/Claire/*.parquet
split: train
- config_name: Claire-en
data_files:
- path: data/natural/en/Claire/*.parquet
split: train
- config_name: Claire-fr
data_files:
- path: data/natural/fr/Claire/*.parquet
split: train
- config_name: CroissantAligned
data_files:
- path: data/natural/*/CroissantAligned/*.parquet
split: train
- config_name: DiscoursPublics
data_files:
- path: data/natural/*/DiscoursPublics/*.parquet
split: train
- config_name: Europarl
data_files:
- path: data/natural/*/Europarl/*.parquet
split: train
- config_name: Europarl-de
data_files:
- path: data/natural/de/Europarl/*.parquet
split: train
- config_name: Europarl-en
data_files:
- path: data/natural/en/Europarl/*.parquet
split: train
- config_name: Europarl-es
data_files:
- path: data/natural/es/Europarl/*.parquet
split: train
- config_name: Europarl-fr
data_files:
- path: data/natural/fr/Europarl/*.parquet
split: train
- config_name: EuroparlAligned
data_files:
- path: data/natural/*/EuroparlAligned/*.parquet
split: train
- config_name: EuroparlAligned-de,fr
data_files:
- path: data/natural/de-fr/EuroparlAligned/*.parquet
split: train
- config_name: EuroparlAligned-es,en
data_files:
- path: data/natural/es-en/EuroparlAligned/*.parquet
split: train
- config_name: EuroparlAligned-fr,en
data_files:
- path: data/natural/fr-en/EuroparlAligned/*.parquet
split: train
- config_name: EuroparlAligned-it,en
data_files:
- path: data/natural/it-en/EuroparlAligned/*.parquet
split: train
- config_name: Eurovoc
data_files:
- path: data/natural/*/Eurovoc/*.parquet
split: train
- config_name: Eurovoc-de
data_files:
- path: data/natural/de/Eurovoc/*.parquet
split: train
- config_name: Eurovoc-en
data_files:
- path: data/natural/en/Eurovoc/*.parquet
split: train
- config_name: Eurovoc-es
data_files:
- path: data/natural/es/Eurovoc/*.parquet
split: train
- config_name: Eurovoc-it
data_files:
- path: data/natural/it/Eurovoc/*.parquet
split: train
- config_name: FineWebEdu
data_files:
- path: data/natural/*/FineWebEdu/*.parquet
split: train
- config_name: GallicaMonographies
data_files:
- path: data/natural/*/GallicaMonographies/*.parquet
split: train
- config_name: GallicaPress
data_files:
- path: data/natural/*/GallicaPress/*.parquet
split: train
- config_name: Gutenberg
data_files:
- path: data/natural/*/Gutenberg/*.parquet
split: train
- config_name: Gutenberg-de
data_files:
- path: data/natural/de/Gutenberg/*.parquet
split: train
- config_name: Gutenberg-en
data_files:
- path: data/natural/en/Gutenberg/*.parquet
split: train
- config_name: Gutenberg-es
data_files:
- path: data/natural/es/Gutenberg/*.parquet
split: train
- config_name: Gutenberg-fr
data_files:
- path: data/natural/fr/Gutenberg/*.parquet
split: train
- config_name: Gutenberg-it
data_files:
- path: data/natural/it/Gutenberg/*.parquet
split: train
- config_name: HAL
data_files:
- path: data/natural/*/HAL/*.parquet
split: train
- config_name: MathPile
data_files:
- path: data/natural/*/MathPile/*.parquet
split: train
- config_name: OpenData
data_files:
- path: data/natural/*/OpenData/*.parquet
split: train
- config_name: OpenEdition
data_files:
- path: data/natural/*/OpenEdition/*.parquet
split: train
- config_name: PeS2o
data_files:
- path: data/natural/*/PeS2o/*.parquet
split: train
- config_name: Persee
data_files:
- path: data/natural/*/Persee/*.parquet
split: train
- config_name: RedPajama
data_files:
- path: data/natural/*/RedPajama/*.parquet
split: train
- config_name: RedPajama-de
data_files:
- path: data/natural/de/RedPajama/*.parquet
split: train
- config_name: RedPajama-es
data_files:
- path: data/natural/es/RedPajama/*.parquet
split: train
- config_name: RedPajama-fr
data_files:
- path: data/natural/fr/RedPajama/*.parquet
split: train
- config_name: RedPajama-it
data_files:
- path: data/natural/it/RedPajama/*.parquet
split: train
- config_name: Stac
data_files:
- path: data/natural/*/Stac/*.parquet
split: train
- config_name: TheStack
data_files:
- path: data/code/*/TheStack/*.parquet
split: train
- config_name: Theses
data_files:
- path: data/natural/*/Theses/*.parquet
split: train
- config_name: Wikipedia
data_files:
- path: data/natural/*/Wikipedia/*.parquet
split: train
- config_name: Wikipedia-de
data_files:
- path: data/natural/de/Wikipedia/*.parquet
split: train
- config_name: Wikipedia-en
data_files:
- path: data/natural/en/Wikipedia/*.parquet
split: train
- config_name: Wikipedia-es
data_files:
- path: data/natural/es/Wikipedia/*.parquet
split: train
- config_name: Wikipedia-fr
data_files:
- path: data/natural/fr/Wikipedia/*.parquet
split: train
- config_name: Wikipedia-it
data_files:
- path: data/natural/it/Wikipedia/*.parquet
split: train
- config_name: Wikisource
data_files:
- path: data/natural/*/Wikisource/*.parquet
split: train
- config_name: Wiktionary
data_files:
- path: data/natural/*/Wiktionary/*.parquet
split: train
- config_name: YouTube
data_files:
- path: data/natural/*/YouTube/*.parquet
split: train
Dataset Card
The Lucie Training Dataset is a curated collection of text data in English, French, German, Spanish and Italian, from the web, video subtitles, collections of books, newspapers, monographies, and magazines processed by Optical Character Recognition (OCR), as well as collections of files in diverse programming languages.
It was used to pretrain Lucie-7B, a foundation LLM with strong capabilities in French and English.
Dataset Description
This dataset was made to provide an extensive and diverse dataset for training Large Language Models (LLM), with the following motivations in mind:
- Data mix:
- French is as well represented as English (Lucie Training Dataset is one of the biggest of collection of French text data with a minimum of quality),
- German, Spanish and Italian are also represented to some extend,
- Code is also included to boost the reasoning capabilities of LLM.
- Data filtering and deduplication:
- The dataset is cleaned low-quality data
- The dataset is cleaned from duplicates to some extend, following best practices.
- Ethics:
- A special care was taken to respect copyright laws and the privacy of individuals. All books, newspapers, monographies, and magazines are in the public domain (which depends on the author's death date, and the country of publication).
- There is no data from the web for which robots.txt files forbid crawling.
Dataset Structure
The corpus contains the following information for each text sample:
text
: the text sample itself.source
: an identifier for the source(s) of the text sample (Wikipedia
,RedPajama
,Gutenberg
, …). The list of all sources is described in this document.id
: an identifier that is unique among the source.language
: the language of the text sample, which can be:- the ISO 639-1 code of a natural language:
en
,fr
,de
,es
, orit
; - the common name prefixed by "
code:
" of a programming language:code:python
,code:c++
, …; or - a list of ISO 639-1 codes separated by commas, if the text sample is multilingual:
fr,en
,de,fr
,es,en
,it,en
(or in the opposite order if the languages appear in the opposite order in the text).
- the ISO 639-1 code of a natural language:
url
(optional): the URL of the original text sample on the web, if available.title
(optional): the title of the original text sample, if available.author
(optional): the author of the original text sample, if available. Usually the author name in plain text, except forGutenberg
where it is the JSON serialized object of the author metadata.date
(optional): the publication date of the original text sample, if available. The text format of the source depends on the source.quality_signals
(optional): a list of quality signals about the text sample (that could be used for further filtering or sample weighting). It can include indicators computed byfasttext
andCCNet
, statistics about occurrences of characters, words, special characters, etc. This field is always a JSON serialized object.extra
(optional): JSON serialized extra information about the text sample. This can include metadata about the source subset, the rights, etc.
Examples of metadata (except from text
) are shown for each source in metadata_examples.json.
Example use in python
Load the dataset using the datasets
library:
from datasets import load_dataset
kwargs = {"split": "train", "streaming": True}
dataset = load_dataset("OpenLLM-France/Lucie-Training-Dataset", **kwargs)
Several configurations are available to select a language, a source, or both, illustrated in the following examples.
Only load data in French:
dataset = load_dataset("OpenLLM-France/Lucie-Training-Dataset", "fr", **kwargs)
Load data that is aligned in French and English:
dataset = load_dataset("OpenLLM-France/Lucie-Training-Dataset", "fr,en", **kwargs)
Only load data corresponding to programming languages:
dataset = load_dataset("OpenLLM-France/Lucie-Training-Dataset", "code", **kwargs)
Only load data in python:
dataset = load_dataset("OpenLLM-France/Lucie-Training-Dataset", "code:python", **kwargs)
Only load data from Wikipedia:
dataset = load_dataset("OpenLLM-France/Lucie-Training-Dataset", "Wikipedia", **kwargs)
Only load data from Wikipedia in French:
dataset = load_dataset("OpenLLM-France/Lucie-Training-Dataset", "Wikipedia-fr", **kwargs)