Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
File size: 86,304 Bytes
3c40969
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5913619
3c40969
 
 
5913619
3c40969
 
 
5913619
3c40969
 
 
5913619
3c40969
 
 
5913619
3c40969
 
 
5913619
3c40969
df3d1cd
 
5913619
df3d1cd
e497f10
 
5913619
e497f10
71269d8
5bd858a
5913619
5bd858a
71269d8
5bd858a
5913619
5bd858a
c5ed47b
 
5913619
c5ed47b
3c40969
 
5913619
3c40969
0b874a4
3c40969
5913619
3c40969
0b874a4
3c40969
5913619
3c40969
0b874a4
3c40969
5913619
3c40969
0b874a4
3c40969
5913619
3c40969
0b874a4
3c40969
5913619
3c40969
0b874a4
3c40969
5913619
3c40969
0b874a4
3c40969
5913619
3c40969
0b874a4
3c40969
5913619
3c40969
0b874a4
3c40969
5913619
3c40969
0b874a4
3c40969
5913619
3c40969
0b874a4
3c40969
5913619
3c40969
0b874a4
3c40969
5913619
3c40969
0b874a4
3c40969
5913619
3c40969
0b874a4
3c40969
5913619
3c40969
0b874a4
3c40969
5913619
3c40969
0b874a4
3c40969
5913619
3c40969
0b874a4
3c40969
5913619
3c40969
0b874a4
3c40969
5913619
3c40969
0b874a4
3c40969
5913619
3c40969
0b874a4
3c40969
5913619
3c40969
0b874a4
3c40969
5913619
3c40969
0b874a4
3c40969
5913619
3c40969
0b874a4
3c40969
5913619
3c40969
0b874a4
3c40969
5913619
3c40969
0b874a4
3c40969
5913619
3c40969
0b874a4
3c40969
5913619
3c40969
0b874a4
3c40969
5913619
3c40969
0b874a4
3c40969
5913619
3c40969
0b874a4
3c40969
5913619
3c40969
0b874a4
3c40969
5913619
3c40969
fe24391
 
5913619
fe24391
 
 
5913619
fe24391
 
 
5913619
fe24391
2c64667
fe24391
5913619
fe24391
2c64667
fe24391
5913619
fe24391
 
 
5913619
fe24391
 
 
5913619
fe24391
 
 
5913619
fe24391
2c64667
fe24391
5913619
fe24391
2c64667
fe24391
5913619
fe24391
2c64667
fe24391
5913619
fe24391
2c64667
fe24391
5913619
fe24391
 
 
5913619
fe24391
5bd858a
fe24391
5913619
fe24391
5bd858a
fe24391
5913619
fe24391
5bd858a
fe24391
5913619
fe24391
5bd858a
fe24391
5913619
fe24391
 
 
5913619
fe24391
63adc8e
fe24391
5913619
fe24391
2c64667
fe24391
5913619
fe24391
2c64667
fe24391
5913619
fe24391
2c64667
fe24391
5913619
fe24391
 
 
5913619
fe24391
 
 
5913619
fe24391
 
 
5913619
fe24391
 
 
5913619
fe24391
2c64667
fe24391
5913619
fe24391
2c64667
fe24391
5913619
fe24391
2c64667
fe24391
5913619
fe24391
2c64667
fe24391
5913619
fe24391
2c64667
fe24391
5913619
fe24391
 
 
5913619
fe24391
64d0cc9
 
5913619
64d0cc9
 
 
5913619
64d0cc9
fe24391
 
5913619
fe24391
 
 
5913619
fe24391
 
 
5913619
fe24391
 
 
5913619
fe24391
1945339
 
5913619
1945339
 
 
5913619
1945339
ebc4412
 
5913619
ebc4412
 
 
5913619
ebc4412
 
 
5913619
ebc4412
 
 
5913619
ebc4412
 
 
5913619
ebc4412
 
 
5913619
ebc4412
 
 
5913619
ebc4412
 
 
5913619
ebc4412
64d0cc9
 
5913619
64d0cc9
fe24391
 
5913619
fe24391
2c64667
fe24391
5913619
fe24391
2c64667
fe24391
5913619
fe24391
2c64667
fe24391
5913619
fe24391
2c64667
fe24391
5913619
fe24391
 
 
5913619
fe24391
3c40969
 
5913619
3c40969
fe24391
 
5913619
fe24391
 
 
5913619
fe24391
2c64667
fe24391
5913619
fe24391
2c64667
fe24391
5913619
fe24391
2c64667
fe24391
5913619
fe24391
2c64667
fe24391
5913619
fe24391
2c64667
fe24391
5913619
fe24391
 
 
5913619
fe24391
 
 
5913619
fe24391
 
 
5913619
fe24391
3c40969
c5ed47b
419a82a
c5ed47b
 
aa47305
 
c5ed47b
aa47305
4722756
c5ed47b
aa47305
f28164b
 
 
4722756
cdf9460
f28164b
 
27f929c
f28164b
419a82a
 
 
 
f28164b
 
27f929c
f28164b
419a82a
 
 
 
f28164b
 
27f929c
f28164b
419a82a
 
27f929c
419a82a
f28164b
 
 
 
 
4722756
419a82a
27f929c
 
 
 
419a82a
 
 
 
 
 
 
 
 
27f929c
 
 
 
419a82a
 
 
 
 
4722756
419a82a
 
4722756
27f929c
 
 
 
419a82a
 
 
 
4722756
419a82a
 
 
27f929c
 
 
 
 
f28164b
 
4722756
 
419a82a
 
 
 
 
f28164b
419a82a
f28164b
 
aa47305
 
c5ed47b
 
4722756
c5ed47b
4722756
aa47305
4722756
c5ed47b
aa47305
 
4722756
c5ed47b
aa47305
4722756
 
 
c5ed47b
4722756
c5ed47b
4722756
 
85e7894
4722756
 
 
ff92671
419a82a
4722756
 
419a82a
 
7a3a7c0
 
4722756
419a82a
7a3a7c0
 
4722756
419a82a
4722756
7a3a7c0
fac21be
419a82a
 
c5ed47b
 
4722756
c5ed47b
aa47305
 
 
3616b36
e51a349
128172f
e51a349
 
3616b36
 
e8b2eaf
0f3cb76
4722756
a07b06a
 
 
aa47305
 
 
4722756
 
a07b06a
 
 
 
 
aa47305
 
 
 
a07b06a
 
 
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
789c727
a07b06a
 
 
e51a349
a07b06a
 
 
 
789c727
a07b06a
 
 
3616b36
a07b06a
 
 
 
789c727
a07b06a
 
 
e51a349
a07b06a
 
 
 
789c727
a07b06a
 
 
e51a349
a07b06a
 
 
 
789c727
a07b06a
 
 
e51a349
a07b06a
 
 
 
789c727
a07b06a
 
 
 
 
 
 
 
789c727
a07b06a
 
 
 
 
 
 
 
3616b36
a07b06a
 
 
 
 
 
 
 
3616b36
a07b06a
 
 
 
 
 
 
 
3616b36
a07b06a
 
 
 
 
e51a349
a07b06a
 
 
 
789c727
a07b06a
 
 
e51a349
a07b06a
 
 
 
789c727
a07b06a
 
 
e51a349
a07b06a
 
 
 
789c727
a07b06a
 
 
e51a349
a07b06a
 
 
 
789c727
a07b06a
 
 
e51a349
a07b06a
 
 
 
789c727
a07b06a
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
789c727
a07b06a
 
 
 
4722756
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
 
419a82a
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
 
4722756
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
789c727
a07b06a
 
 
e51a349
a07b06a
 
 
 
789c727
a07b06a
 
 
e51a349
a07b06a
 
 
 
 
 
 
4722756
e51a349
a07b06a
 
 
 
 
 
 
3616b36
 
 
 
 
 
 
 
 
 
 
419a82a
3616b36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a07b06a
 
4722756
a07b06a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa47305
 
 
a07b06a
aa47305
419a82a
4722756
419a82a
4722756
 
7a3a7c0
419a82a
4722756
419a82a
4722756
 
 
 
c37df9e
4722756
 
419a82a
 
 
 
4722756
 
419a82a
aa47305
 
 
 
4722756
 
aa47305
 
 
 
4722756
 
419a82a
4722756
 
 
aa47305
 
 
 
 
 
0f3cb76
4722756
aa47305
 
a72e89b
0f3cb76
 
4722756
0f3cb76
4722756
 
 
 
 
 
aa47305
 
a72e89b
419a82a
4722756
419a82a
4722756
 
aa47305
419a82a
aa47305
 
 
 
4722756
 
 
aa47305
 
 
4722756
 
 
 
 
 
 
 
 
 
aa47305
4722756
 
 
aa47305
 
 
 
 
4722756
 
 
 
aa47305
 
 
4722756
aa47305
0f3cb76
4722756
 
 
 
 
aa47305
 
4722756
aa47305
0f3cb76
4722756
 
 
 
 
aa47305
 
419a82a
 
 
 
 
4722756
 
 
aa47305
 
4722756
 
 
 
 
 
 
 
 
0f3cb76
aa47305
a72e89b
aa47305
4722756
aa47305
419a82a
aa47305
4722756
 
 
 
 
 
 
0f3cb76
aa47305
4722756
 
 
 
 
aa47305
 
 
4722756
aa47305
 
419a82a
aa47305
 
 
4722756
 
419a82a
aa47305
4722756
 
 
 
 
aa47305
 
0f3cb76
4722756
aa47305
 
 
0f3cb76
aa47305
0f3cb76
 
aa47305
4722756
 
 
419a82a
aa47305
4722756
aa47305
 
 
4722756
0f3cb76
419a82a
aa47305
 
0f3cb76
 
4722756
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa47305
 
 
0f3cb76
4722756
 
aa47305
4722756
0f3cb76
4722756
0f3cb76
aa47305
 
 
 
4722756
0f3cb76
4722756
 
 
 
 
 
 
 
419a82a
aa47305
 
 
 
 
 
 
0f3cb76
419a82a
4722756
419a82a
aa47305
 
4722756
419a82a
 
aa47305
4722756
 
 
c5ed47b
419a82a
 
 
c5ed47b
 
 
419a82a
aa47305
 
419a82a
aa47305
419a82a
 
c5ed47b
 
419a82a
 
c5ed47b
 
59e12d2
 
 
 
 
 
 
 
 
 
 
 
 
 
39ef121
c5ed47b
419a82a
 
 
 
c5ed47b
 
39ef121
c5ed47b
 
 
419a82a
39ef121
c5ed47b
 
 
39ef121
c5ed47b
aa47305
c5ed47b
419a82a
 
c5ed47b
 
 
39ef121
c5ed47b
 
 
aa47305
419a82a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa47305
 
 
 
 
419a82a
 
4722756
 
 
 
 
 
 
419a82a
aa47305
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
---
pretty_name: Lucie Training Dataset
license: cc-by-nc-sa-4.0
language:
- en
- fr
- de
- es
- it
- code
multilinguality:
- multilingual
task_categories:
- text-generation
- text2text-generation
task_ids:
- language-modeling
tags:
- text-generation
- conditional-text-generation
size_categories:
- n>1T
viewer: true
configs:
- config_name: default
  data_files:
  - path: data/v*/*/*/*/*parquet
    split: train
- config_name: en
  data_files:
  - path: data/v*/natural/en/*/*parquet
    split: train
- config_name: fr
  data_files:
  - path: data/v*/natural/fr/*/*parquet
    split: train
- config_name: de
  data_files:
  - path: data/v*/natural/de/*/*parquet
    split: train
- config_name: es
  data_files:
  - path: data/v*/natural/es/*/*parquet
    split: train
- config_name: it
  data_files:
  - path: data/v*/natural/it/*/*parquet
    split: train
- config_name: de,fr
  data_files:
  - path: data/v*/natural/de-fr/*/*.parquet
    split: train
- config_name: es,en
  data_files:
  - path: data/v*/natural/es-en/*/*.parquet
    split: train
- config_name: fr,en
  data_files:
  - path: data/v*/natural/fr-en/*/*.parquet
    split: train
- config_name: it,en
  data_files:
  - path: data/v*/natural/it-en/*/*.parquet
    split: train
- config_name: natural
  data_files:
  - path: data/v*/natural/*/*/*.parquet
    split: train
- config_name: code
  data_files:
  - path: data/v*/code/*/*/*parquet
    split: train
- config_name: code-assembly
  data_files:
  - path: data/v*/code/assembly/*/*.parquet
    split: train
- config_name: code-c
  data_files:
  - path: data/v*/code/c/*/*.parquet
    split: train
- config_name: code-c#
  data_files:
  - path: data/v*/code/c#/*/*.parquet
    split: train
- config_name: code-c++
  data_files:
  - path: data/v*/code/c++/*/*.parquet
    split: train
- config_name: code-clojure
  data_files:
  - path: data/v*/code/clojure/*/*.parquet
    split: train
- config_name: code-dart
  data_files:
  - path: data/v*/code/dart/*/*.parquet
    split: train
- config_name: code-elixir
  data_files:
  - path: data/v*/code/elixir/*/*.parquet
    split: train
- config_name: code-erlang
  data_files:
  - path: data/v*/code/erlang/*/*.parquet
    split: train
- config_name: code-fortran
  data_files:
  - path: data/v*/code/fortran/*/*.parquet
    split: train
- config_name: code-go
  data_files:
  - path: data/v*/code/go/*/*.parquet
    split: train
- config_name: code-haskell
  data_files:
  - path: data/v*/code/haskell/*/*.parquet
    split: train
- config_name: code-java
  data_files:
  - path: data/v*/code/java/*/*.parquet
    split: train
- config_name: code-javascript
  data_files:
  - path: data/v*/code/javascript/*/*.parquet
    split: train
- config_name: code-julia
  data_files:
  - path: data/v*/code/julia/*/*.parquet
    split: train
- config_name: code-kotlin
  data_files:
  - path: data/v*/code/kotlin/*/*.parquet
    split: train
- config_name: code-lua
  data_files:
  - path: data/v*/code/lua/*/*.parquet
    split: train
- config_name: code-mathematica
  data_files:
  - path: data/v*/code/mathematica/*/*.parquet
    split: train
- config_name: code-matlab
  data_files:
  - path: data/v*/code/matlab/*/*.parquet
    split: train
- config_name: code-ocaml
  data_files:
  - path: data/v*/code/ocaml/*/*.parquet
    split: train
- config_name: code-perl
  data_files:
  - path: data/v*/code/perl/*/*.parquet
    split: train
- config_name: code-php
  data_files:
  - path: data/v*/code/php/*/*.parquet
    split: train
- config_name: code-python
  data_files:
  - path: data/v*/code/python/*/*.parquet
    split: train
- config_name: code-r
  data_files:
  - path: data/v*/code/r/*/*.parquet
    split: train
- config_name: code-racket
  data_files:
  - path: data/v*/code/racket/*/*.parquet
    split: train
- config_name: code-ruby
  data_files:
  - path: data/v*/code/ruby/*/*.parquet
    split: train
- config_name: code-rust
  data_files:
  - path: data/v*/code/rust/*/*.parquet
    split: train
- config_name: code-scala
  data_files:
  - path: data/v*/code/scala/*/*.parquet
    split: train
- config_name: code-swift
  data_files:
  - path: data/v*/code/swift/*/*.parquet
    split: train
- config_name: code-tex
  data_files:
  - path: data/v*/code/tex/*/*.parquet
    split: train
- config_name: code-typescript
  data_files:
  - path: data/v*/code/typescript/*/*.parquet
    split: train
- config_name: AmendementsParlement
  data_files:
  - path: data/v*/natural/*/AmendementsParlement/*.parquet
    split: train
- config_name: AmericanStories
  data_files:
  - path: data/v*/natural/*/AmericanStories/*.parquet
    split: train
- config_name: Claire
  data_files:
  - path: data/v*/natural/*/Claire/*.parquet
    split: train
- config_name: Claire-en
  data_files:
  - path: data/v*/natural/en/Claire/*.parquet
    split: train
- config_name: Claire-fr
  data_files:
  - path: data/v*/natural/fr/Claire/*.parquet
    split: train
- config_name: CroissantAligned
  data_files:
  - path: data/v*/natural/*/CroissantAligned/*.parquet
    split: train
- config_name: DiscoursPublics
  data_files:
  - path: data/v*/natural/*/DiscoursPublics/*.parquet
    split: train
- config_name: Europarl
  data_files:
  - path: data/v*/natural/*/Europarl/*.parquet
    split: train
- config_name: Europarl-de
  data_files:
  - path: data/v*/natural/de/Europarl/*.parquet
    split: train
- config_name: Europarl-en
  data_files:
  - path: data/v*/natural/en/Europarl/*.parquet
    split: train
- config_name: Europarl-es
  data_files:
  - path: data/v*/natural/es/Europarl/*.parquet
    split: train
- config_name: Europarl-fr
  data_files:
  - path: data/v*/natural/fr/Europarl/*.parquet
    split: train
- config_name: EuroparlAligned
  data_files:
  - path: data/v*/natural/*/EuroparlAligned/*.parquet
    split: train
- config_name: EuroparlAligned-de,fr
  data_files:
  - path: data/v*/natural/de-fr/EuroparlAligned/*.parquet
    split: train
- config_name: EuroparlAligned-es,en
  data_files:
  - path: data/v*/natural/es-en/EuroparlAligned/*.parquet
    split: train
- config_name: EuroparlAligned-fr,en
  data_files:
  - path: data/v*/natural/fr-en/EuroparlAligned/*.parquet
    split: train
- config_name: EuroparlAligned-it,en
  data_files:
  - path: data/v*/natural/it-en/EuroparlAligned/*.parquet
    split: train
- config_name: Eurovoc
  data_files:
  - path: data/v*/natural/*/Eurovoc/*.parquet
    split: train
- config_name: Eurovoc-de
  data_files:
  - path: data/v*/natural/de/Eurovoc/*.parquet
    split: train
- config_name: Eurovoc-en
  data_files:
  - path: data/v*/natural/en/Eurovoc/*.parquet
    split: train
- config_name: Eurovoc-es
  data_files:
  - path: data/v*/natural/es/Eurovoc/*.parquet
    split: train
- config_name: Eurovoc-it
  data_files:
  - path: data/v*/natural/it/Eurovoc/*.parquet
    split: train
- config_name: FineWebEdu
  data_files:
  - path: data/v*/natural/*/FineWebEdu/*.parquet
    split: train
- config_name: GallicaMonographies
  data_files:
  - path: data/v*/natural/*/GallicaMonographies/*.parquet
    split: train
- config_name: GallicaPress
  data_files:
  - path: data/v*/natural/*/GallicaPress/*.parquet
    split: train
- config_name: Gutenberg
  data_files:
  - path: data/v*/natural/*/Gutenberg/*.parquet
    split: train
- config_name: Gutenberg-de
  data_files:
  - path: data/v*/natural/de/Gutenberg/*.parquet
    split: train
- config_name: Gutenberg-en
  data_files:
  - path: data/v*/natural/en/Gutenberg/*.parquet
    split: train
- config_name: Gutenberg-es
  data_files:
  - path: data/v*/natural/es/Gutenberg/*.parquet
    split: train
- config_name: Gutenberg-fr
  data_files:
  - path: data/v*/natural/fr/Gutenberg/*.parquet
    split: train
- config_name: Gutenberg-it
  data_files:
  - path: data/v*/natural/it/Gutenberg/*.parquet
    split: train
- config_name: HAL
  data_files:
  - path: data/v*/natural/*/HAL/*.parquet
    split: train
- config_name: InterventionsParlement
  data_files:
  - path: data/v*/natural/*/InterventionsParlement/*.parquet
    split: train
- config_name: LEGI
  data_files:
  - path: data/v*/natural/*/LEGI/*.parquet
    split: train
- config_name: MathPile
  data_files:
  - path: data/v*/natural/*/MathPile/*.parquet
    split: train
- config_name: OpenData
  data_files:
  - path: data/v*/natural/*/OpenData/*.parquet
    split: train
- config_name: OpenEdition
  data_files:
  - path: data/v*/natural/*/OpenEdition/*.parquet
    split: train
- config_name: PeS2o
  data_files:
  - path: data/v*/natural/*/PeS2o/*.parquet
    split: train
- config_name: PeS2o-s2ag
  data_files:
  - path: data/v*/natural/*/PeS2o/*s2ag.parquet
    split: train
- config_name: PeS2o-s2orc
  data_files:
  - path: data/v*/natural/*/PeS2o/*s2orc.parquet
    split: train
- config_name: Pile
  data_files:
  - path: data/v*/natural/*/Pile/*.parquet
    split: train
- config_name: Pile-DM_Mathematics
  data_files:
  - path: data/v*/natural/*/Pile/*DM_Mathematics.parquet
    split: train
- config_name: Pile-FreeLaw
  data_files:
  - path: data/v*/natural/*/Pile/*FreeLaw.parquet
    split: train
- config_name: Pile-NIH_ExPorter
  data_files:
  - path: data/v*/natural/*/Pile/*NIH_ExPorter.parquet
    split: train
- config_name: Pile-PhilPapers
  data_files:
  - path: data/v*/natural/*/Pile/*PhilPapers.parquet
    split: train
- config_name: Pile-StackExchange
  data_files:
  - path: data/v*/natural/*/Pile/*StackExchange.parquet
    split: train
- config_name: Pile-USPTO_Backgrounds
  data_files:
  - path: data/v*/natural/*/Pile/*USPTO_Backgrounds.parquet
    split: train
- config_name: Pile-Ubuntu_IRC
  data_files:
  - path: data/v*/natural/*/Pile/*Ubuntu_IRC.parquet
    split: train
- config_name: QuestionsEcritesParlement
  data_files:
  - path: data/v*/natural/*/QuestionsEcritesParlement/*.parquet
    split: train
- config_name: RedPajama
  data_files:
  - path: data/v*/natural/*/RedPajama/*.parquet
    split: train
- config_name: RedPajama-de
  data_files:
  - path: data/v*/natural/de/RedPajama/*.parquet
    split: train
- config_name: RedPajama-es
  data_files:
  - path: data/v*/natural/es/RedPajama/*.parquet
    split: train
- config_name: RedPajama-fr
  data_files:
  - path: data/v*/natural/fr/RedPajama/*.parquet
    split: train
- config_name: RedPajama-it
  data_files:
  - path: data/v*/natural/it/RedPajama/*.parquet
    split: train
- config_name: Stac
  data_files:
  - path: data/v*/natural/*/Stac/*.parquet
    split: train
- config_name: TheStack
  data_files:
  - path: data/v*/code/*/TheStack/*.parquet
    split: train
- config_name: Theses
  data_files:
  - path: data/v*/natural/*/Theses/*.parquet
    split: train
- config_name: Wikipedia
  data_files:
  - path: data/v*/natural/*/Wikipedia/*.parquet
    split: train
- config_name: Wikipedia-de
  data_files:
  - path: data/v*/natural/de/Wikipedia/*.parquet
    split: train
- config_name: Wikipedia-en
  data_files:
  - path: data/v*/natural/en/Wikipedia/*.parquet
    split: train
- config_name: Wikipedia-es
  data_files:
  - path: data/v*/natural/es/Wikipedia/*.parquet
    split: train
- config_name: Wikipedia-fr
  data_files:
  - path: data/v*/natural/fr/Wikipedia/*.parquet
    split: train
- config_name: Wikipedia-it
  data_files:
  - path: data/v*/natural/it/Wikipedia/*.parquet
    split: train
- config_name: Wikisource
  data_files:
  - path: data/v*/natural/*/Wikisource/*.parquet
    split: train
- config_name: Wiktionary
  data_files:
  - path: data/v*/natural/*/Wiktionary/*.parquet
    split: train
- config_name: YouTube
  data_files:
  - path: data/v*/natural/*/YouTube/*.parquet
    split: train
---

# Lucie Training Dataset Card

The Lucie Training Dataset is a curated collection of text data
in English, French, German, Spanish and Italian culled from a variety of sources including: web data, video subtitles, academic papers,
digital books, newspapers, and magazines, some of which were processed by Optical Character Recognition (OCR). It also contains samples of diverse programming languages.

The Lucie Training Dataset was used to pretrain [Lucie-7B](https://huggingface.co/OpenLLM-France/Lucie-7B),
a foundation LLM with strong capabilities in French and English. Code for data preparation can be found in the [training respository](https://github.com/OpenLLM-France/Lucie-Training/tree/7f1f7efa1288f709662a9067bf2c3db856b850f8) for Lucie-7B. 

Table of Contents:
<ul>
  <li><a href="#dataset-description">Dataset Description</a>
    <ul>
        <li><a href="#sample-metadata">Sample Metadata</a></li>
        <li><a href="#dataset-composition">Dataset Composition</a>
          <table>
            <tr>
              <td style="vertical-align: top;">
                <ul>
                  <li><a href="#category-web">                      Web</a></li>
                  <li><a href="#category-newspaper">                Newspaper</a></li>
                  <li><a href="#category-technical">                Technical</a></li>
                  <li><a href="#category-book">                     Book</a></li>
                </ul>
              </td>
              <td style="vertical-align: top;">
                <ul>
                  <li><a href="#category-legislative-texts">        Legislative Texts</a></li>
                  <li><a href="#category-legislative-transcripts">  Legislative Transcripts</a></li>
                  <li><a href="#category-wiki">                     Wiki</a></li>
                  <li><a href="#category-math">                     Math</a></li>
                </ul>
              </td>
              <td style="vertical-align: top;">
                <ul>
                  <li><a href="#category-forum">                    Forum</a></li>
                  <li><a href="#category-dialogue">                 Dialogue</a></li>
                  <li><a href="#category-multilingual-parallel-corpora">Multilingual Parallel Corpora</a></li>
                  <li><a href="#category-programming">              Programming</a></li>
                </ul>
              </td>
            </tr>
          </table>
        </li>
        <li><a href="#configurable-subsets-and-versions">Configurable Subsets and Versions</a></li>
        <li><a href="#details-on-data-sources">Details on Data Sources</a>
          <table>
            <tr>
              <td style="vertical-align: top;">
                <ul>
                  <li><a href="#amendementsparlement">              AmendementsParlement</a></li>
                  <li><a href="#americanstories">                   AmericanStories</a></li>
                  <li><a href="#claire-french-and-english">         Claire (French and English)</a></li>
                  <li><a href="#croissantaligned">                  CroissantAligned</a></li>
                  <li><a href="#discourspublics">                   DiscoursPublics</a></li>
                  <li><a href="#europarl-and-europarlaligned">      Europarl and EuroparlAligned</a></li>
                  <li><a href="#eurovoc">                           Eurovoc</a></li>
                  <li><a href="#finewebedu">                        FineWebEdu</a></li>
                  <li><a href="#gallicamonographies">               GallicaMonographies</a></li>
                </ul>
              </td>
              <td style="vertical-align: top;">
                <ul>
                  <li><a href="#gallicapress">                      GallicaPress</a></li>
                  <li><a href="#gutenberg">                         Gutenberg</a></li>
                  <li><a href="#hal">                               HAL</a></li>
                  <li><a href="#interventionsparlement">            InterventionsParlement</a></li>
                  <li><a href="#legi">                              LEGI</a></li>
                  <li><a href="#mathpile-commercial">               MathPile (Commercial)</a></li>
                  <li><a href="#opendata">                          OpenData</a></li>
                  <li><a href="#openedition">                       OpenEdition</a></li>
                  <li><a href="#pes2o-v2">                          PeS2o (v2)</a></li>
                </ul>
              </td>
              <td style="vertical-align: top;">
                <ul>
                  <li><a href="#pile-uncopyrighted">                Pile (Uncopyrighted)</a></li>
                  <li><a href="#questionsecritesparlement">         QuestionsEcritesParlement</a></li>
                  <li><a href="#redpajama-v2">                      RedPajama (v2)</a></li>
                  <li><a href="#stac">                              Stac</a></li>
                  <li><a href="#thestack-v12">                      TheStack (v1.2)</a></li>
                  <li><a href="#theses">                            Theses</a></li>
                  <li><a href="#wikipedia-wikisource-wiktionary">   Wikipedia, Wikisource, Wiktionary</a></li>
                  <li><a href="#youtube">                           YouTube</a></li>
                </ul>
              </td>
            </tr>
          </table>
      </li>
    </ul>
  </li>
  <li><a href="#example-use-in-python">Example use in Python</a></li>
    <ul>
      <li><a href="#load-the-dataset">Load the dataset</a></li>
      <li><a href="#iterate-over-a-subset">Iterate over a subset</a></li>
      <li><a href="#load-a-specific-version">Load a specific version</a></li>
    </ul>
  </li>
  <li><a href="#citation">Citation</a></li>
  <li><a href="#acknowledgements">Acknowledgements</a></li>
  <li><a href="#contact">Contact</a></li>
</ul>


## Dataset Description

This dataset is intended to provide extensive and diverse multilingual data  for training Large Language Models (LLMs). Here are some of the principal features of the corpus:
* Data mix:
    * The dataset contains more French than English data -- it is in fact one of the biggest collections of French text data that has been preprocessed for LLM training -- with the aim of minimizing anglo-centric cultural biases.
    * German, Spanish and Italian are also represented in small amounts.
    * Code is included to boost the reasoning capabilities of LLMs.
* Data filtering and deduplication:
    * The dataset has been cleaned in an effort to remove very low-quality data.
    * Duplicate data samples have been removed to some extent, following best practices.
    * Web data has been filtered to minimize potentially toxic content and personally identifying information. 
* Ethics:
    * Special care has been taken to respect copyright laws and individual privacy.
      All newspapers, monographies, magazines and legislative documents, as well as most books, are in the public domain
  (which depends on the author's date of death and the country of publication). Other data are published with permissive licenses (e.g., CC BY or CC BY-SA).
    * All web data in the dataset come from sites with robots.txt files that do not forbid crawling.

### Sample Metadata

In addition to the `text` field, which provides the content of the sample, each training sample in the corpus contains the following metadata when available:
* [`language`](metadata/metadata_examples.json#L3): the language of the text sample (note that this information is taken from the original data source and may be incorrect).
  <br>Possible values:
  - the ISO 639-1 code for a given natural language ("en", "fr", "de", "es", or "it"),
  - the name of a programming language prefixed by "code:" ("code:python", "code:c++", …), or
  - a list of ISO 639-1 codes separated by commas for data containing parallel translations ("fr,en", "de,fr", "es,en", "it,en",
  or one of those pairs in the opposite order if the languages appear in the opposite order in the text).
* [`source`](metadata/metadata_examples.json#L4): an identifier for the source(s) of the text sample (Wikipedia, RedPajama, Gutenberg, …).
  All sources are described in detail [below](#details-on-data-sources).
* [`id`](metadata/metadata_examples.json#L13): an identifier that is unique among documents from the same source.
* [`url`](metadata/metadata_examples.json#L35) (optional): the URL of the original text sample on the web, if available.
* [`title`](metadata/metadata_examples.json#L36) (optional): the title of the original text sample, if available.
* [`author`](metadata/metadata_examples.json#L81) (optional): the author of the original text sample, if available.
  <details><summary>Note:</summary>
  The author name is given in plain text, except in the case of <a href="metadata/metadata_examples.json#L91">Gutenberg books</a>, where it is the JSON serialized object of the author metadata. 
  </details>
* [`date`](metadata/metadata_examples.json#L6) (optional): the publication date of the original text sample, if available.
  <details><summary>Note:</summary>
  The text format of the date depends on the source.
  </details>
* [`quality_signals`](metadata/metadata_examples.json#L17) (optional): a list of quality signals for the text sample in JSON format (which could be used for further filtering or sample weighting).
  <details><summary>Note:</summary>
  It can include indicators computed by `fasttext` and `CCNet`, statistics about occurrences of characters, words, special characters, etc.
  </details>
* [`extra`](metadata/metadata_examples.json#L16) (optional): extra information about the text sample, in JSON format.
  This can include metadata about the source subset, the rights, etc.

The list of metadata available for each source is provided (without the `text` field) in [metadata_examples.json](metadata/metadata_examples.json).


### Dataset Composition

The following figure shows the distribution of the dataset by language (colors) and category (hatch patterns).

![Dataset composition](figures/fig_dataset_composition.png)

The following table provides an overview of the dataset composition,
broken down by source and language.
Sources are grouped by category.
The table provides the numbers of documents, words, tokens, and characters for each subset.
All numbers in this table are available in the CSV file [dataset_composition.csv](metadata/dataset_composition.csv).
Token counts are computed using the tokenizer for [Lucie-7B](https://huggingface.co/OpenLLM-France/Lucie-7B).

<!-- The following is automatically generated. Do not update manually. -->
<!-- TABLE START -->
<table>
<thead>
<tr>
<th><strong>Subset</strong></th>
<th><strong>Language</strong></th>
<th><strong>M docs</strong></th>
<th><strong>B words</strong></th>
<th><strong>B tokens</strong></th>
<th><strong>B chars</strong></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="11" style="vertical-align: top;"><strong>TOTAL</strong></td>
<td></td>
<td>2186.562</td>
<td>1356.021</td>
<td>2314.862</td>
<td>8842.200</td>
<td></td>
</tr>
<tr>

<td><strong>French (fr)</strong></td>
<td>653.812</td>
<td>583.687</td>
<td>928.618</td>
<td>3619.672</td>
<td><a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_french_pie.png">composition details</a></td>
</tr>
<tr>

<td><strong>English (en)</strong></td>
<td>554.289</td>
<td>412.202</td>
<td>611.894</td>
<td>2553.541</td>
<td><a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_english_pie.png">composition details</a></td>
</tr>
<tr>

<td><strong>code</strong></td>
<td>125.769</td>
<td>51.306</td>
<td>228.954</td>
<td>630.749</td>
<td><a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_code_pie.png">composition details</a></td>
</tr>
<tr>

<td><strong>German (de)</strong></td>
<td>165.915</td>
<td>105.609</td>
<td>206.610</td>
<td>764.779</td>
<td><a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_german_pie.png">composition details</a></td>
</tr>
<tr>

<td><strong>Spanish (es)</strong></td>
<td>171.651</td>
<td>123.857</td>
<td>200.825</td>
<td>759.457</td>
<td><a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_spanish_pie.png">composition details</a></td>
</tr>
<tr>

<td><strong>Italian (it)</strong></td>
<td>99.440</td>
<td>62.051</td>
<td>112.031</td>
<td>404.454</td>
<td><a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_italian_pie.png">composition details</a></td>
</tr>
<tr>

<td><strong>fr-en</strong></td>
<td>410.032</td>
<td>17.016</td>
<td>25.494</td>
<td>107.658</td>
<td><a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_fr-en_pie.png">composition details</a></td>
</tr>
<tr>

<td><strong>it-en</strong></td>
<td>1.901</td>
<td>0.100</td>
<td>0.151</td>
<td>0.638</td>
<td></td>
</tr>
<tr>

<td><strong>es-en</strong></td>
<td>1.961</td>
<td>0.103</td>
<td>0.143</td>
<td>0.631</td>
<td></td>
</tr>
<tr>

<td><strong>de-fr</strong></td>
<td>1.792</td>
<td>0.0908</td>
<td>0.141</td>
<td>0.621</td>
<td></td>
</tr>
<tr>
<td colspan="7"><h4 id="category-web">Category: Web</h4></td></tr>
<tr>
<td rowspan="4" style="vertical-align: top;"><a href="#redpajama-v2"><strong>RedPajama</strong></a></td>
<td><strong>French (fr)</strong></td>
<td>640.770</td>
<td>477.758</td>
<td>741.023</td>
<td>2974.596</td>
<td><a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_redpajama-french_histogram.png">composition details</a></td>
</tr>
<tr>

<td><strong>German (de)</strong></td>
<td>162.779</td>
<td>103.078</td>
<td>201.371</td>
<td>747.631</td>
<td><a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_redpajama-german_histogram.png">composition details</a></td>
</tr>
<tr>

<td><strong>Spanish (es)</strong></td>
<td>169.447</td>
<td>121.751</td>
<td>197.125</td>
<td>746.984</td>
<td><a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_redpajama-spanish_histogram.png">composition details</a></td>
</tr>
<tr>

<td><strong>Italian (it)</strong></td>
<td>97.324</td>
<td>60.194</td>
<td>108.416</td>
<td>393.012</td>
<td><a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_redpajama-italian_histogram.png">composition details</a></td>
</tr>
<tr>
<td><a href="#finewebedu"><strong>FineWebEdu</strong></a></td>
<td><strong>English (en)</strong></td>
<td>421.209</td>
<td>327.453</td>
<td>467.837</td>
<td>2018.215</td>
<td><a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_finewebedu-english_histogram.png">composition details</a></td>
</tr>
<tr>
<td colspan="7"><h4 id="category-newspaper">Category: Newspaper</h4></td></tr>
<tr>
<td><a href="#gallicapress"><strong>GallicaPress</strong></a></td>
<td><strong>French (fr)</strong></td>
<td>3.205</td>
<td>67.496</td>
<td>121.606</td>
<td>408.882</td>
<td></td>
</tr>
<tr>
<td><a href="#americanstories"><strong>AmericanStories</strong></a></td>
<td><strong>English (en)</strong></td>
<td>59.420</td>
<td>8.902</td>
<td>14.313</td>
<td>50.844</td>
<td><a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_americanstories-english_histogram.png">composition details</a></td>
</tr>
<tr>
<td colspan="7"><h4 id="category-technical">Category: Technical</h4></td></tr>
<tr>
<td><a href="#pes2o-v2"><strong>PeS2o</strong></a></td>
<td><strong>English (en)</strong></td>
<td>38.972</td>
<td>42.296</td>
<td>65.365</td>
<td>268.963</td>
<td></td>
</tr>
<tr>
<td><a href="#hal"><strong>HAL</strong></a></td>
<td><strong>French (fr)</strong></td>
<td>0.349</td>
<td>9.356</td>
<td>16.224</td>
<td>58.308</td>
<td></td>
</tr>
<tr>
<td><a href="#theses"><strong>Theses</strong></a></td>
<td><strong>French (fr)</strong></td>
<td>0.102</td>
<td>7.547</td>
<td>14.060</td>
<td>47.758</td>
<td></td>
</tr>
<tr>
<td><a href="#pile-uncopyrighted"><strong>Pile (USPTO_Backgrounds)</strong></a></td>
<td><strong>English (en)</strong></td>
<td>5.139</td>
<td>3.492</td>
<td>5.105</td>
<td>22.309</td>
<td></td>
</tr>
<tr>
<td><a href="#openedition"><strong>OpenEdition</strong></a></td>
<td><strong>French (fr)</strong></td>
<td>0.939</td>
<td>2.225</td>
<td>3.604</td>
<td>14.459</td>
<td></td>
</tr>
<tr>
<td><a href="#pile-uncopyrighted"><strong>Pile (PhilPapers)</strong></a></td>
<td><strong>English (en)</strong></td>
<td>0.0308</td>
<td>0.363</td>
<td>0.618</td>
<td>2.304</td>
<td></td>
</tr>
<tr>
<td><a href="#pile-uncopyrighted"><strong>Pile (NIH_ExPorter)</strong></a></td>
<td><strong>English (en)</strong></td>
<td>0.914</td>
<td>0.288</td>
<td>0.431</td>
<td>1.979</td>
<td></td>
</tr>
<tr>
<td colspan="7"><h4 id="category-book">Category: Book</h4></td></tr>
<tr>
<td><a href="#gallicamonographies"><strong>GallicaMonographies</strong></a></td>
<td><strong>French (fr)</strong></td>
<td>0.278</td>
<td>15.106</td>
<td>25.169</td>
<td>90.456</td>
<td></td>
</tr>
<tr>
<td rowspan="5" style="vertical-align: top;"><a href="#gutenberg"><strong>Gutenberg</strong></a></td>
<td><strong>English (en)</strong></td>
<td>0.0563</td>
<td>3.544</td>
<td>5.516</td>
<td>20.579</td>
<td></td>
</tr>
<tr>

<td><strong>French (fr)</strong></td>
<td>0.00345</td>
<td>0.227</td>
<td>0.383</td>
<td>1.392</td>
<td></td>
</tr>
<tr>

<td><strong>German (de)</strong></td>
<td>0.00188</td>
<td>0.0987</td>
<td>0.193</td>
<td>0.654</td>
<td></td>
</tr>
<tr>

<td><strong>Italian (it)</strong></td>
<td>0.000958</td>
<td>0.0657</td>
<td>0.129</td>
<td>0.414</td>
<td></td>
</tr>
<tr>

<td><strong>Spanish (es)</strong></td>
<td>0.000735</td>
<td>0.0512</td>
<td>0.0920</td>
<td>0.303</td>
<td></td>
</tr>
<tr>
<td colspan="7"><h4 id="category-legislative-texts">Category: Legislative Texts</h4></td></tr>
<tr>
<td><a href="#pile-uncopyrighted"><strong>Pile (FreeLaw)</strong></a></td>
<td><strong>English (en)</strong></td>
<td>3.415</td>
<td>8.204</td>
<td>14.011</td>
<td>52.580</td>
<td></td>
</tr>
<tr>
<td rowspan="4" style="vertical-align: top;"><a href="#eurovoc"><strong>Eurovoc</strong></a></td>
<td><strong>English (en)</strong></td>
<td>0.272</td>
<td>1.523</td>
<td>2.571</td>
<td>9.468</td>
<td></td>
</tr>
<tr>

<td><strong>Italian (it)</strong></td>
<td>0.245</td>
<td>0.731</td>
<td>1.527</td>
<td>4.867</td>
<td></td>
</tr>
<tr>

<td><strong>German (de)</strong></td>
<td>0.247</td>
<td>0.678</td>
<td>1.497</td>
<td>4.915</td>
<td></td>
</tr>
<tr>

<td><strong>Spanish (es)</strong></td>
<td>0.246</td>
<td>0.757</td>
<td>1.411</td>
<td>4.684</td>
<td></td>
</tr>
<tr>
<td><a href="#opendata"><strong>OpenData</strong></a></td>
<td><strong>French (fr)</strong></td>
<td>1.169</td>
<td>0.755</td>
<td>1.209</td>
<td>4.638</td>
<td></td>
</tr>
<tr>
<td><a href="#questionsecritesparlement"><strong>QuestionsEcritesParlement</strong></a></td>
<td><strong>French (fr)</strong></td>
<td>0.189</td>
<td>0.108</td>
<td>0.156</td>
<td>0.705</td>
<td></td>
</tr>
<tr>
<td><a href="#legi"><strong>LEGI</strong></a></td>
<td><strong>French (fr)</strong></td>
<td>0.621</td>
<td>0.0878</td>
<td>0.145</td>
<td>0.563</td>
<td></td>
</tr>
<tr>
<td><a href="#amendementsparlement"><strong>AmendementsParlement</strong></a></td>
<td><strong>French (fr)</strong></td>
<td>0.673</td>
<td>0.0452</td>
<td>0.0738</td>
<td>0.274</td>
<td></td>
</tr>
<tr>
<td colspan="7"><h4 id="category-legislative-transcripts">Category: Legislative Transcripts</h4></td></tr>
<tr>
<td rowspan="4" style="vertical-align: top;"><a href="#europarl-and-europarlaligned"><strong>Europarl</strong></a></td>
<td><strong>German (de)</strong></td>
<td>0.0102</td>
<td>0.0451</td>
<td>0.0734</td>
<td>0.327</td>
<td></td>
</tr>
<tr>

<td><strong>Spanish (es)</strong></td>
<td>0.0103</td>
<td>0.0524</td>
<td>0.0733</td>
<td>0.325</td>
<td></td>
</tr>
<tr>

<td><strong>French (fr)</strong></td>
<td>0.0103</td>
<td>0.0528</td>
<td>0.0717</td>
<td>0.339</td>
<td></td>
</tr>
<tr>

<td><strong>English (en)</strong></td>
<td>0.0111</td>
<td>0.0563</td>
<td>0.0690</td>
<td>0.339</td>
<td></td>
</tr>
<tr>
<td><a href="#discourspublics"><strong>DiscoursPublics</strong></a></td>
<td><strong>French (fr)</strong></td>
<td>0.110</td>
<td>0.163</td>
<td>0.238</td>
<td>1.025</td>
<td></td>
</tr>
<tr>
<td><a href="#interventionsparlement"><strong>InterventionsParlement</strong></a></td>
<td><strong>French (fr)</strong></td>
<td>1.832</td>
<td>0.104</td>
<td>0.157</td>
<td>0.654</td>
<td></td>
</tr>
<tr>
<td colspan="7"><h4 id="category-wiki">Category: Wiki</h4></td></tr>
<tr>
<td rowspan="5" style="vertical-align: top;"><a href="#wikipedia-wikisource-wiktionary"><strong>Wikipedia</strong></a></td>
<td><strong>English (en)</strong></td>
<td>6.893</td>
<td>4.708</td>
<td>7.898</td>
<td>26.616</td>
<td></td>
</tr>
<tr>

<td><strong>German (de)</strong></td>
<td>2.877</td>
<td>1.709</td>
<td>3.476</td>
<td>11.252</td>
<td></td>
</tr>
<tr>

<td><strong>French (fr)</strong></td>
<td>2.648</td>
<td>1.726</td>
<td>2.940</td>
<td>9.879</td>
<td></td>
</tr>
<tr>

<td><strong>Spanish (es)</strong></td>
<td>1.947</td>
<td>1.245</td>
<td>2.124</td>
<td>7.161</td>
<td></td>
</tr>
<tr>

<td><strong>Italian (it)</strong></td>
<td>1.870</td>
<td>1.060</td>
<td>1.959</td>
<td>6.161</td>
<td></td>
</tr>
<tr>
<td><a href="#wikipedia-wikisource-wiktionary"><strong>wikisource</strong></a></td>
<td><strong>French (fr)</strong></td>
<td>0.186</td>
<td>0.523</td>
<td>0.795</td>
<td>3.080</td>
<td></td>
</tr>
<tr>
<td><a href="#wikipedia-wikisource-wiktionary"><strong>wiktionary</strong></a></td>
<td><strong>French (fr)</strong></td>
<td>0.650</td>
<td>0.0531</td>
<td>0.117</td>
<td>0.347</td>
<td></td>
</tr>
<tr>
<td colspan="7"><h4 id="category-math">Category: Math</h4></td></tr>
<tr>
<td><a href="#mathpile-commercial"><strong>MathPile</strong></a></td>
<td><strong>English (en)</strong></td>
<td>0.737</td>
<td>3.408</td>
<td>9.637</td>
<td>27.290</td>
<td></td>
</tr>
<tr>
<td><a href="#pile-uncopyrighted"><strong>Pile (DM_Mathematics)</strong></a></td>
<td><strong>English (en)</strong></td>
<td>0.992</td>
<td>1.746</td>
<td>4.928</td>
<td>8.127</td>
<td></td>
</tr>
<tr>
<td colspan="7"><h4 id="category-forum">Category: Forum</h4></td></tr>
<tr>
<td><a href="#pile-uncopyrighted"><strong>Pile (StackExchange)</strong></a></td>
<td><strong>English (en)</strong></td>
<td>15.269</td>
<td>4.534</td>
<td>10.275</td>
<td>33.609</td>
<td></td>
</tr>
<tr>
<td><a href="#pile-uncopyrighted"><strong>Pile (Ubuntu_IRC)</strong></a></td>
<td><strong>English (en)</strong></td>
<td>0.0104</td>
<td>0.867</td>
<td>2.159</td>
<td>5.610</td>
<td></td>
</tr>
<tr>
<td colspan="7"><h4 id="category-dialogue">Category: Dialogue</h4></td></tr>
<tr>
<td rowspan="2" style="vertical-align: top;"><a href="#claire-french-and-english"><strong>Claire</strong></a></td>
<td><strong>English (en)</strong></td>
<td>0.949</td>
<td>0.818</td>
<td>1.161</td>
<td>4.709</td>
<td><a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_claire-english_pie.png">composition details</a></td>
</tr>
<tr>

<td><strong>French (fr)</strong></td>
<td>0.0393</td>
<td>0.210</td>
<td>0.311</td>
<td>1.314</td>
<td><a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_claire-french_pie.png">composition details</a></td>
</tr>
<tr>
<td><a href="#youtube"><strong>YouTube</strong></a></td>
<td><strong>French (fr)</strong></td>
<td>0.0375</td>
<td>0.145</td>
<td>0.336</td>
<td>1.003</td>
<td></td>
</tr>
<tr>
<td><a href="#stac"><strong>STAC</strong></a></td>
<td><strong>English (en)</strong></td>
<td>0.0000450</td>
<td>0.0000529</td>
<td>0.000121</td>
<td>0.000327</td>
<td></td>
</tr>
<tr>
<td colspan="7"><h4 id="category-multilingual-parallel-corpora">Category: Multilingual Parallel Corpora</h4></td></tr>
<tr>
<td><a href="#croissantaligned"><strong>CroissantAligned</strong></a></td>
<td><strong>fr-en</strong></td>
<td>408.029</td>
<td>16.911</td>
<td>25.351</td>
<td>107.003</td>
<td></td>
</tr>
<tr>
<td rowspan="4" style="vertical-align: top;"><a href="#europarl-and-europarlaligned"><strong>EuroparlAligned</strong></a></td>
<td><strong>it-en</strong></td>
<td>1.901</td>
<td>0.100</td>
<td>0.151</td>
<td>0.638</td>
<td></td>
</tr>
<tr>

<td><strong>fr-en</strong></td>
<td>2.003</td>
<td>0.105</td>
<td>0.143</td>
<td>0.655</td>
<td></td>
</tr>
<tr>

<td><strong>es-en</strong></td>
<td>1.961</td>
<td>0.103</td>
<td>0.143</td>
<td>0.631</td>
<td></td>
</tr>
<tr>

<td><strong>de-fr</strong></td>
<td>1.792</td>
<td>0.0908</td>
<td>0.141</td>
<td>0.621</td>
<td></td>
</tr>
<tr>
<td colspan="7"><h4 id="category-programming">Category: Programming</h4></td></tr>
<tr>
<td rowspan="30" style="vertical-align: top;"><a href="#thestack-v12"><strong>TheStack</strong></a></td>
<td><strong>JAVASCRIPT</strong></td>
<td>21.109</td>
<td>8.526</td>
<td>58.609</td>
<td>141.647</td>
<td></td>
</tr>
<tr>

<td><strong>JAVA</strong></td>
<td>20.152</td>
<td>7.421</td>
<td>27.680</td>
<td>89.297</td>
<td></td>
</tr>
<tr>

<td><strong>C</strong></td>
<td>8.626</td>
<td>5.916</td>
<td>24.092</td>
<td>57.428</td>
<td></td>
</tr>
<tr>

<td><strong>PHP</strong></td>
<td>15.905</td>
<td>4.865</td>
<td>22.883</td>
<td>66.844</td>
<td></td>
</tr>
<tr>

<td><strong>PYTHON</strong></td>
<td>12.962</td>
<td>5.434</td>
<td>21.683</td>
<td>64.304</td>
<td></td>
</tr>
<tr>

<td><strong>C++</strong></td>
<td>6.378</td>
<td>4.584</td>
<td>18.835</td>
<td>50.892</td>
<td></td>
</tr>
<tr>

<td><strong>C#</strong></td>
<td>10.839</td>
<td>3.574</td>
<td>13.381</td>
<td>46.286</td>
<td></td>
</tr>
<tr>

<td><strong>GO</strong></td>
<td>4.730</td>
<td>2.735</td>
<td>10.262</td>
<td>25.738</td>
<td></td>
</tr>
<tr>

<td><strong>TYPESCRIPT</strong></td>
<td>10.637</td>
<td>2.617</td>
<td>9.836</td>
<td>28.815</td>
<td></td>
</tr>
<tr>

<td><strong>RUST</strong></td>
<td>1.387</td>
<td>0.872</td>
<td>3.241</td>
<td>9.529</td>
<td></td>
</tr>
<tr>

<td><strong>RUBY</strong></td>
<td>3.405</td>
<td>0.646</td>
<td>2.392</td>
<td>7.139</td>
<td></td>
</tr>
<tr>

<td><strong>SWIFT</strong></td>
<td>1.756</td>
<td>0.553</td>
<td>1.876</td>
<td>6.134</td>
<td></td>
</tr>
<tr>

<td><strong>KOTLIN</strong></td>
<td>2.243</td>
<td>0.454</td>
<td>1.758</td>
<td>5.769</td>
<td></td>
</tr>
<tr>

<td><strong>SCALA</strong></td>
<td>1.362</td>
<td>0.457</td>
<td>1.587</td>
<td>4.862</td>
<td></td>
</tr>
<tr>

<td><strong>TEX</strong></td>
<td>0.398</td>
<td>0.394</td>
<td>1.507</td>
<td>3.805</td>
<td></td>
</tr>
<tr>

<td><strong>LUA</strong></td>
<td>0.559</td>
<td>0.318</td>
<td>1.367</td>
<td>3.279</td>
<td></td>
</tr>
<tr>

<td><strong>DART</strong></td>
<td>0.933</td>
<td>0.308</td>
<td>1.242</td>
<td>3.864</td>
<td></td>
</tr>
<tr>

<td><strong>PERL</strong></td>
<td>0.392</td>
<td>0.297</td>
<td>1.149</td>
<td>2.634</td>
<td></td>
</tr>
<tr>

<td><strong>MATHEMATICA</strong></td>
<td>0.0269</td>
<td>0.120</td>
<td>1.117</td>
<td>1.720</td>
<td></td>
</tr>
<tr>

<td><strong>ASSEMBLY</strong></td>
<td>0.248</td>
<td>0.209</td>
<td>0.867</td>
<td>1.575</td>
<td></td>
</tr>
<tr>

<td><strong>HASKELL</strong></td>
<td>0.545</td>
<td>0.307</td>
<td>0.807</td>
<td>2.364</td>
<td></td>
</tr>
<tr>

<td><strong>FORTRAN</strong></td>
<td>0.165</td>
<td>0.192</td>
<td>0.780</td>
<td>1.843</td>
<td></td>
</tr>
<tr>

<td><strong>JULIA</strong></td>
<td>0.299</td>
<td>0.152</td>
<td>0.660</td>
<td>1.539</td>
<td></td>
</tr>
<tr>

<td><strong>OCAML</strong></td>
<td>0.160</td>
<td>0.130</td>
<td>0.430</td>
<td>1.107</td>
<td></td>
</tr>
<tr>

<td><strong>ERLANG</strong></td>
<td>0.0994</td>
<td>0.0657</td>
<td>0.260</td>
<td>0.726</td>
<td></td>
</tr>
<tr>

<td><strong>ELIXIR</strong></td>
<td>0.282</td>
<td>0.0731</td>
<td>0.258</td>
<td>0.737</td>
<td></td>
</tr>
<tr>

<td><strong>CLOJURE</strong></td>
<td>0.126</td>
<td>0.0448</td>
<td>0.179</td>
<td>0.492</td>
<td></td>
</tr>
<tr>

<td><strong>R</strong></td>
<td>0.0392</td>
<td>0.0278</td>
<td>0.158</td>
<td>0.305</td>
<td></td>
</tr>
<tr>

<td><strong>MATLAB</strong></td>
<td>0.000967</td>
<td>0.00865</td>
<td>0.0427</td>
<td>0.0372</td>
<td></td>
</tr>
<tr>

<td><strong>RACKET</strong></td>
<td>0.00420</td>
<td>0.00479</td>
<td>0.0153</td>
<td>0.0378</td>
<td></td>
</tr>
</tbody>
</table>
<!-- TABLE END -->


### Configurable Subsets and Versions

As the Lucie Training Dataset is a collection of multilingual corpora from different sources, it can be divided into subsets based on the source and language of its constituent corpora.
<br> The list of possible configurations is available [in the YAML header of this README file](https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/v1.2/README.md?code=true#L24).
Each configuration corresponds to a pathname pattern in the [data subdirectory](https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/tree/v1.2/data).

The dataset is also  available in the following versions:
- **v1.1** / [**main**](https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/tree/main/data) (default): 
  The data used for the first (main) pretraining phase of [Lucie-7B](https://huggingface.co/OpenLLM-France/Lucie-7B), which contains approximately 2.3T tokens. The statistics above apply to this version.
- [**v1.2**](https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/tree/v1.2/data): An improved version of the main dataset, where 
  - GallicaMonographies and GallicaPress have been fltered aggressively to remove documents with low OCR quality.
  - The `Ubuntu_IRC` and `PhilPapers` subsets of Pile have been refined by fixing encoding issues and removing documents in languages other than English, French, Spanish, German and Italian.
- [**v1.2-recent-web**](https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/tree/v1.2-recent-web/data) : The data used for the second pretraining phase (context extension) of [Lucie-7B](https://huggingface.co/OpenLLM-France/Lucie-7B#2-context-extension).
  This version is identical to `v1.2` with the exception that older snapshots of web data (before 2023 for RedPajama and before 2024 for FineWebEdu) have been excluded.
  All data from `v1.1` that were not filtered out remain unchanged in `v1.2` and `v1.2-recent-web`.

Except from **v1.1**, which is a git tag, all versions are git branches in the dataset repository
(e.g. [**v1.2**](https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/tree/v1.2/data)).

The <a href="#example-use-in-python">Example use in Python</a> section contains example Python code for loading and iterating over the dataset with different configurations, including source, language and version.


### Details on Data Sources

#### AmendementsParlement
* <u>Source</u>: Corpus contributed by OpenLLM partners.
* <u>Extracted from</u>:  [Regards citoyens](https://www.regardscitoyens.org/#&panel1-4). License: [CC BY-SA](https://www.regardscitoyens.org/mentions-legales/).
* <u>Description</u>: A collection of proposed amendments by the French parliament. Documents contain the text of the proposed amendment, the name of the associated law as well as information on who voted on the amendment and what was decided.

#### AmericanStories
* <u>Source</u>: [dell-research-harvard/AmericanStories](https://huggingface.co/datasets/dell-research-harvard/AmericanStories). License: [CC BY 4.0](https://huggingface.co/datasets/dell-research-harvard/AmericanStories).
* <u>Extracted from</u>: [Chronicling America](https://www.loc.gov/collections/chronicling-america/about-this-collection/). License: [Open](https://www.loc.gov/collections/chronicling-america/about-this-collection/rights-and-access/).
* <u>Description</u>: "The American Stories dataset is a collection of full article texts extracted from historical U.S. newspaper images. It includes nearly 20 million scans from the public domain Chronicling America collection maintained by the Library of Congress. The dataset is designed to address the challenges posed by complex layouts and low OCR quality in existing newspaper datasets" (from the [dataset card](https://huggingface.co/datasets/dell-research-harvard/AmericanStories)). See the dataset <a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_americanstories-english_histogram.png">composition details</a> for statistics on documents by year. Dataset containing text retrieved through OCR.
* <u>Pre-processing</u>:
  * <u>Filtering</u>:
  To filter out documents with excessive OCR errors, the dataset was refined by discarding texts with a perplexity higher than 2310,
  measured using a CCNET model in English (see [code details](https://github.com/OpenLLM-France/Lucie-Training/blob/7f1f7efa1288f709662a9067bf2c3db856b850f8/tokenization/data.py#L2106)).
  The code to compute CCNET perplexity, parallelizing on parquet files, is [available here](https://github.com/OpenLLM-France/Lucie-dataset-filtering).
* <u>Citation</u>: Melissa Dell, Jacob Carlson, Tom Bryan, Emily Silcock, Abhishek Arora, Zejiang Shen, Luca D'Amico-Wong, Quan Le, Pablo Querubin and Leander Heldring (2023). "American Stories: A Large-Scale Structured Text Dataset of Historical U.S. Newspapers," [arxiv:2308.12477](https://arxiv.org/abs/2308.12477v1).

#### Claire (French and English)
* <u>Sources</u>:
  * French dataset: [OpenLLM-France/Claire-Dialogue-French-0.1](https://huggingface.co/datasets/OpenLLM-France/Claire-Dialogue-French-0.1). License: [CC BY-NC-SA 4.0](https://huggingface.co/datasets/OpenLLM-France/Claire-Dialogue-French-0.1).
  * English dataset: [OpenLLM-France/Claire-Dialogue-English-0.1](https://huggingface.co/datasets/OpenLLM-France/Claire-Dialogue-English-0.1). License: [CC BY-NC-SA 4.0](https://huggingface.co/datasets/OpenLLM-France/Claire-Dialogue-English-0.1).
* <u>Extracted from</u>: see the datacards for the [French](https://huggingface.co/datasets/OpenLLM-France/Claire-Dialogue-French-0.1) and [English](https://huggingface.co/datasets/OpenLLM-France/Claire-Dialogue-English-0.1) datasets.
* <u>Description</u>: The Claire datasets are composed of transcripts of spoken conversations -- including parliamentary proceedings, interviews, debates, meetings, and free conversations -- as well as some written conversations from theater plays and written chats. The dataset is designed to help downstream performance of models fine-tuned for tasks requiring the comprehension of spontaneous spoken conversation, such as meeting summarization. Each dialogue is split into speech turns, and each speech turn is labeled with the name of the speaker or a unique identifier. See the composition details for the <a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_claire-french_pie.png">French dataset</a> and the <a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_claire-english_pie.png">English dataset</a> for a high-level view of the distribution of different types of documents in each dataset.
* <u>Citation</u>: Julie Hunter, Jérôme Louradour, Virgile Rennard, Ismaïl Harrando, Guokan Shang, Jean-Pierre Lorré (2023). The Claire French Dialogue Dataset. [arXiv:2311.16840](https://arxiv.org/abs/2311.16840).

#### CroissantAligned
* <u>Source</u>: [croissantllm/croissant_dataset_no_web_data](https://huggingface.co/datasets/croissantllm/croissant_dataset_no_web_data/tree/main/aligned_36b) (subset: `aligned_36b`). License: not specified.
* <u>Extracted from</u>: 
  * Translation pairs: [OPUS](https://opus.nlpl.eu/) (99.6% of the data in CroissantAligned). Pairs extracted from OPUS are labeled as "UnbabelFrEn". 
  * Thesis abstracts: French thesis abstract pairs. License: [ETALAB-Licence-Ouverte-v2.0](https://www.etalab.gouv.fr/wp-content/uploads/2017/04/ETALAB-Licence-Ouverte-v2.0.pdf).
  * Song lyrics: [lacoccinelle](https://www.lacoccinelle.net). 
* <u>Description</u>: CroissantAligned contains samples of parallel French/English (or English/French) data. Data extracted from OPUS takes the form of sentences pairs, where one sentence is in French and the other is in English. OPUS pairs were passed through a custom pipeline designed to select the highest quality translation examples. Selected pairs are labeled "UnbabelFrEn" in the CroissantAligned dataset. The thesis abstract subset contains thesis abstracts paired with translations written by the thesis authors. The song lyrics are translated by contributors to www.lacoccinelle.net. Parallel data are used to boost the multilingual capabilities of models trained on them ([Faysse et al.,2024](https://arxiv.org/pdf/2402.00786)).
* <u>Pre-processing</u>:
  * <u>Language separation and tagging</u>: The original text field of [the Croissant dataset](https://huggingface.co/datasets/croissantllm/croissant_dataset_no_web_data) contains a sentence or passage in French or English immediately followed by its translation without any indication of which passage is in which language. The first step was thus to split each text into separate, monolingual passages and tag each passage with the appropriate language code, identified automatically using the [langid library](https://pypi.org/project/langid/) (see [code details](https://github.com/OpenLLM-France/Lucie-Training/blob/cdec8fd6369385455829ab39c2f04bcb1a8a475a/tokenization/data.py#L1407)). In the Lucie Training Dataset, the `extra` metadata field for CroissantAligned contains separate keys, `text_fr` for French and `text_en` for English, that stores the texts separately.
  * <u>Random combination of texts prefixed by language</u>: To create the text values, each monolingual text was repaired with its translation, but random separators and various methods of prefixing the text with the language (name or code) were added.
  This was done as a precaution to prevent models trained on this data from switching languages when generating text and can be seen as a very basic instruction to translate the source (first) text into the target (second) text (see [code details](https://github.com/OpenLLM-France/Lucie-Training/blob/cdec8fd6369385455829ab39c2f04bcb1a8a475a/tokenization/data.py#L1458)).
* <u>Citation</u>: Manuel Faysse, Patrick Fernandes, Nuno M. Guerreiro, António Loison, Duarte M. Alves, Caio Corro, Nicolas Boizard, João Alves, Ricardo Rei, Pedro H. Martins, Antoni Bigata Casademunt, François Yvon, André F.T. Martins, Gautier Viaud, Céline Hudelot, Pierre Colombo (2024). "CroissantLLM: A Truly Bilingual French-English Language Model," [arXiv:2402.00786](https://arxiv.org/abs/2402.00786).

#### DiscoursPublics
* <u>Source</u>: Corpus contributed by OpenLLM partners.
* <u>Extracted from</u>: [Vie Publique](https://www.vie-publique.fr/collection-discours-publics). License: [ETALAB-Licence-Ouverte-v2.0](https://www.vie-publique.fr/mentions-legales).
* <u>Description</u>: A collection of public speeches from the principal public actors in France including speeches from the French President starting from 1974 and from the Prime Minister and members of the government starting from 1980.
* <u>Pre-processing</u>:
  * <u>Text cleaning</u>: the mention of the source url and the number of views were removed from the text.

#### Europarl and EuroparlAligned
* <u>Sources</u>: 
  * `fr-en`, `es-en`, `it-en` parallel data: [Europarl v7](https://www.statmt.org/europarl/v7/). License: [Open](https://www.statmt.org/europarl/).
  * `fr`, `en`, `de`, `es` monolingual data and `de-fr` parallel data: [Europarl v10](https://www.statmt.org/europarl/v10/training-monolingual/). License: [Open](https://www.statmt.org/europarl/).
* <u>Description</u>: "The Europarl parallel corpus is extracted from the proceedings of the European Parliament. It includes versions in 21 European languages: Romanic (French, Italian, Spanish, Portuguese, Romanian), Germanic (English, Dutch, German, Danish, Swedish), Slavik (Bulgarian, Czech, Polish, Slovak, Slovene), Finni-Ugric (Finnish, Hungarian, Estonian), Baltic (Latvian, Lithuanian), and Greek. The goal of the extraction and processing was to generate sentence aligned text for statistical machine translation systems" ([www.statmt.org](https://www.statmt.org/europarl/)).
* <u>Pre-processing</u>:
  * <u>Random combination of aligned texts prefixed by language</u>: The same process as used for the [CroissantAligned](#croissantaligned) dataset was applied to the EuroparlAligned dataset (see [code details](https://github.com/OpenLLM-France/Lucie-Training/blob/cdec8fd6369385455829ab39c2f04bcb1a8a475a/tokenization/data.py#L1350)).
  In the Lucie Training Dataset, the `extra` field in the metadata for EuroparlAligned provides texts in the two languages under the sub-fields `text_1` and `text_2`, and the corresponding language codes under `lang_1` and `lang_2`.
* <u>Citation</u>: Philipp Koehn (2005). "Europarl: A Parallel Corpus for Statistical Machine Translation," MT Summit. 

#### Eurovoc
* <u>Source</u>:   [EuropeanParliament/Eurovoc](https://huggingface.co/datasets/EuropeanParliament/Eurovoc). License: [EUPL 1.1](https://huggingface.co/datasets/EuropeanParliament/Eurovoc).
* <u>Extracted from</u>: [Cellar](https://op.europa.eu/en/web/cellar). License: [CC BY-4.0](https://op.europa.eu/en/web/about-us/legal-notices/publications-office-of-the-european-union-copyright).
* <u>Description</u>: A collection of mutlilingual documents from the data repository of the Publications Office of the European Union annotated with Eurovoc labels. The corpus contains legal, policy-related, historical and organizational information about the EU. Dataset containing text retrieved through OCR.
* <u>Pre-processing</u>:
  * <u>Filtering</u>:
  To filter out documents with excessive OCR errors, the dataset was refined by discarding texts with a perplexity higher than 1500,
  measured using a CCNET model in English (see [code details](https://github.com/OpenLLM-France/Lucie-Training/blob/7f1f7efa1288f709662a9067bf2c3db856b850f8/tokenization/data.py#L1590)).
  The code to compute CCNET perplexity, parallelizing on parquet files, is [available here](https://github.com/OpenLLM-France/Lucie-dataset-filtering).
  * <u>Text cleaning</u>:
  Mentions of Credit Institutions Directives (CID) that appears in the raw texts such as `(cid:146)` were removed.
* <u>Citations</u>:
  * Ilias Chalkidis, Emmanouil Fergadiotis, Prodromos Malakasiotis, Nikolaos Aletras, and Ion Androutsopoulos (2019). "[Extreme Multi-Label Legal Text Classification: A Case Study in EU Legislation](https://arxiv.org/pdf/1905.10892)," Proceedings of the Natural Legal Language Processing Workshop 2019, pages 78–87, Minneapolis, Minnesota. Association for Computational Linguistics.
  * Ilias Chalkidis,  Manos Fergadiotis, Prodromos Malakasiotis and Ion Androutsopoulos (2019). "[Large-Scale Multi-Label Text Classification on EU Legislation](https://arxiv.org/pdf/1906.02192)," Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (ACL 2019), Florence, Italy, (short papers).
  * Andrei-Marius Avram, Vasile Pais, and Dan Ioan Tufis (2021). "[PyEuroVoc: A Tool for Multilingual Legal Document Classification with EuroVoc Descriptors](https://arxiv.org/pdf/2108.01139)," Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021), pages 92–101, Held Online. INCOMA Ltd.
  * Zein Shaheen, Gerhard Wohlgenannt and Erwin Filtz (2020). "Large scale legal text classification using transformer models," [arXiv:2010.12871](https://arxiv.org/abs/2010.12871v1).

#### FineWebEdu
* <u>Source</u>: [HuggingFaceFW/fineweb-edu](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu). License: [ODC-BY](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu).
* <u>Extracted from</u>: [FineWeb](https://huggingface.co/datasets/HuggingFaceFW/fineweb). License: [ODC-BY](https://huggingface.co/datasets/HuggingFaceFW/fineweb).
* <u>Description</u>: A 1.3 trillion token selection from [FineWeb](https://huggingface.co/datasets/HuggingFaceFW/fineweb), which contains 15 trillion tokens of curated data from 96 Common Crawl dumps. Content in FineWebEdu has been selected by a custom designed classifier for its high-quality, educational content. Most recent crawl: 2024-10 (see <a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_finewebedu-english_histogram.png">composition details</a> for information about the crawls included in this dataset.)
* <u>Pre-processing</u>: 
  * <u>Removing duplicate urls</u>: urls were removed if their base domain overlapped with a dataset already in the Lucie Training Dataset (e.g., "philpapers.org") in order to increase diversity of content (see [code details](https://github.com/OpenLLM-France/Lucie-Training/blob/7f1f7efa1288f709662a9067bf2c3db856b850f8/tokenization/text.py#L843))
  * <u>Filtering by robots.txt files</u>: we collect robots.txt and remove all documents for which CCBot is disallowed or for which we failed to collect information as of July 2024 in an effort to select data free from opt-out evidence according to the 4th article of the copyright European directive (2019).
* <u>Citation</u>: Guilherme Penedo, Hynek Kydlíček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin Raffel, Leandro Von Werra, Thomas Wolf (2024). "The FineWeb Datasets: Decanting the Web for the Finest Text Data at Scale," [	arXiv:2406.17557](https://arxiv.org/abs/2406.17557).

#### GallicaMonographies
* <u>Source</u>: Corpus contributed by OpenLLM partners. A version is also published here: [PleIAs/French-PD-Books](https://huggingface.co/datasets/PleIAs/French-PD-Books). License: Public domain.
* <u>Extracted from</u>: [Gallicagram](https://shiny.ens-paris-saclay.fr/app/gallicagram).
* <u>Description</u>: A large collection of French monographies in the public domain made available through the French National Library ([Gallica](https://gallica.bnf.fr/accueil/fr/content/accueil-fr?mode=desktop)). Dataset containing text retrieved through OCR.
* <u>Pre-processing</u>:
  * <u>Text cleaning for v1.1</u>:
  To filter out documents with excessive OCR errors, the dataset was split into chunks and chunks were kept if the source language was detected as French by [FastText](https://github.com/facebookresearch/fastText) with a confidence score of 0.65 or above, and the perplexity score, as measured using a CCNET model in French, was between 10 and 1000.
  The code to compute CCNET perplexity, parallelizing on parquet files, is [available here](https://github.com/OpenLLM-France/Lucie-dataset-filtering).
  * <u>Filtering for v1.2</u>: Using OCR scores provided in the metadata of the source corpus, documents with an OCR score of less than 90 out of 100 were filtered out.

#### GallicaPress
* <u>Source</u>: Corpus contributed by OpenLLM partners. A version is also published here: [PleIAs/French-PD-Newspapers](https://huggingface.co/datasets/PleIAs/French-PD-Newspapers). License: Public domain.
* <u>Extracted from</u>: [Gallicagram](https://shiny.ens-paris-saclay.fr/app/gallicagram).
* <u>Description</u>: A large collection of French newspapers and periodicals in the public domain made available through the French National Library ([Gallica](https://gallica.bnf.fr/accueil/fr/content/accueil-fr?mode=desktop)). Dataset containing text retrieved through OCR.
* <u>Pre-processing</u>:
  * <u>Text cleaning for v1.1</u>:
  To filter out documents with excessive OCR errors, the dataset was split into chunks and chunks were kept if the source language was detected as French by [FastText](https://github.com/facebookresearch/fastText) with a confidence score of 0.65 or above, and the perplexity score, as measured using a CCNET model in French, was between 10 and 1000 (see [code details](https://github.com/OpenLLM-France/Lucie-Training/blob/7f1f7efa1288f709662a9067bf2c3db856b850f8/tokenization/data.py#L1840)).
  The code to compute CCNET perplexity, parallelizing on parquet files, is [available here](https://github.com/OpenLLM-France/Lucie-dataset-filtering).
  * <u>Filtering for v1.2</u>: Using OCR scores provided in the metadata of the source corpus, documents with an OCR score of less than 90 out of 100 were filtered out.

#### Gutenberg
* <u>Source</u>: Corpus compiled by OpenLLM partners.
* <u>Extracted from</u>: 
  * [aleph.gutenberg.org](http://aleph.gutenberg.org/) via [Project Gutenberg](https://www.gutenberg.org/). License: [Open](https://www.gutenberg.org/policy/terms_of_use.html).
  * [pgcorpus](https://github.com/pgcorpus/gutenberg). License: [CC BY-4.0](https://zenodo.org/records/2422561).
* <u>Description</u>: A collection of free eBooks, manually prepared by human annotators. 
* <u>Pre-processing</u>:
  * <u>Filtering</u>: The dataset was filtered based on the author date of death, so that only texts from authors who died more than 70 years ago are included (80 years for French authors). See [code details here](https://github.com/OpenLLM-France/Lucie-Training/blob/7f1f7efa1288f709662a9067bf2c3db856b850f8/tokenization/data.py#L1136). This filtering was done to ensure that the texts are in the public domain.
  * <u>Text cleaning</u>: Headers and footers containing information about Project Gutenberg were removed (see [code details](https://github.com/OpenLLM-France/Lucie-Training/blob/cdec8fd6369385455829ab39c2f04bcb1a8a475a/tokenization/text.py#L93)).

#### HAL
* <u>Source</u>: [bigscience-data/roots_fr_hal_archives_ouvertes](https://huggingface.co/datasets/bigscience-data/roots_fr_hal_archives_ouvertes). License: Roots dataset.
* <u>Extracted from</u>: [HAL](https://hal.science/) ([Open access](https://about.hal.science/)).
* <u>Description</u>: A collection of scientific papers and manuscripts distributed through the open science platform HAL. Dataset containing text retrieved through OCR.
* <u>Pre-processing</u>:
  * <u>Filtering</u>:
  To filter out documents with excessive OCR errors, the dataset was refined by discarding texts with a perplexity higher than 930,
  measured using a CCNET model in French (see [code details](https://github.com/OpenLLM-France/Lucie-Training/blob/7f1f7efa1288f709662a9067bf2c3db856b850f8/tokenization/data.py#L1929)).
  The code to compute CCNET perplexity, parallelizing on parquet files, is [available here](https://github.com/OpenLLM-France/Lucie-dataset-filtering).
* <u>Citation</u>: Hugo Laurençon, Lucile Saulnier, Thomas Wang, Christopher Akiki, Albert Villanova del Moral, Teven Le Scao, Leandro Von Werra, Chenghao Mou, Eduardo González Ponferrada, Huu Nguyen, Jörg Frohberg, Mario Šaško, Quentin Lhoest, Angelina McMillan-Major, Gerard Dupont, Stella Biderman, Anna Rogers, Loubna Ben allal, Francesco De Toni, Giada Pistilli, Olivier Nguyen, Somaieh Nikpoor, Maraim Masoud, Pierre Colombo, Javier de la Rosa, Paulo Villegas, Tristan Thrush, Shayne Longpre, Sebastian Nagel, Leon Weber, Manuel Muñoz, Jian Zhu, Daniel Van Strien, Zaid Alyafeai, Khalid Almubarak, Minh Chien Vu, Itziar Gonzalez-Dios, Aitor Soroa, Kyle Lo, Manan Dey, Pedro Ortiz Suarez, Aaron Gokaslan, Shamik Bose, David Adelani, Long Phan, Hieu Tran, Ian Yu, Suhas Pai, Jenny Chim, Violette Lepercq, Suzana Ilic, Margaret Mitchell, Sasha Alexandra Luccioni, Yacine Jernite (2022). "[The BigScience ROOTS Corpus: A 1.6TB Composite Multilingual Dataset](https://proceedings.neurips.cc/paper_files/paper/2022/hash/ce9e92e3de2372a4b93353eb7f3dc0bd-Abstract-Datasets_and_Benchmarks.html)," Advances in Neural Information Processing Systems (NeurIPS), 35, 31809-31826.


#### InterventionsParlement
* <u>Source</u>: Corpus contributed by OpenLLM partners.
* <u>Extracted from</u>:  [Regards citoyens](https://www.regardscitoyens.org/#&panel1-4). License: [CC BY-SA](https://www.regardscitoyens.org/mentions-legales/). 
* <u>Description</u>: Transcripts of speeches made during French parlementary debates.  
<!-- * <u>Citation</u>: No paper found. -->

#### LEGI
* <u>Source</u>: Corpus contributed by OpenLLM partners. A version is also published here: [Nicolas-BZRD/DILA_OPENDATA_FR_2023](https://huggingface.co/datasets/Nicolas-BZRD/DILA_OPENDATA_FR_2023/tree/main).
* <u>Extracted from</u>: [OpenData](https://echanges.dila.gouv.fr/OPENDATA/) (Data collection date: October, 2023).
* <u>Description</u>: "The French Government Open Data (DILA) Dataset is a collection of text data extracted from various sources provided by the French government, specifically the Direction de l'information légale et administrative (DILA). This dataset contains a wide range of legal, administrative, and legislative documents. The data has been organized into several categories for easy access and analysis" (from the [dataset card](https://huggingface.co/datasets/Nicolas-BZRD/DILA_OPENDATA_FR_2023/tree/main)).

#### MathPile (Commercial)
* <u>Source</u>: [GAIR/MathPile_Commercial](https://huggingface.co/datasets/GAIR/MathPile_Commercial). License: [CC BY-SA 4.0](https://huggingface.co/datasets/GAIR/MathPile_Commercial).
* <u>Extracted from</u>: [MathPile](https://huggingface.co/datasets/GAIR/MathPile). License: [CC BY-SA-NC 4.0](https://huggingface.co/datasets/GAIR/MathPile).
* <u>Description</u>: A preprocessed collection of documents focused on math, including Textbooks, arXiv, Wikipedia, ProofWiki, StackExchange, and web pages from Common Crawl. The content targets a range of levels, from kindergarten through postgraduate level. MathPile_Commercial was obtained by removing documents from MathPile that do not allow commercial use.
* <u>Pre-processing</u>:
  * <u>Formatting</u>: Converted the content of StackExchange questions and answers to match the {"text": value} format, using the following formula:
  ```python
  text = sample["question"]["Body"] + "\n\n".join([answer["Body"] for answer in sample["answers"]])
  ```
* <u>Citation</u>: Zengzhi Wang, Rui Xia and Pengfei Liu (2023). "Generative AI for Math: Part I -- MathPile: A Billion-Token-Scale Pretraining Corpus for Math," [	arXiv:2312.17120](https://export.arxiv.org/abs/2312.17120).

#### OpenData
* <u>Source</u>: [Nicolas-BZRD/DILA_OPENDATA_FR_2023](https://huggingface.co/datasets/Nicolas-BZRD/DILA_OPENDATA_FR_2023/tree/main) (balo, dole, inca, kali, and sarde subsets). License: [ODC-BY](https://huggingface.co/datasets/Nicolas-BZRD/DILA_OPENDATA_FR_2023/tree/main).
* <u>Extracted from</u>: [OpenData](https://echanges.dila.gouv.fr/OPENDATA/) (Data collection date: October, 2023).
* <u>Description</u>: "The French Government Open Data (DILA) Dataset is a collection of text data extracted from various sources provided by the French government, specifically the Direction de l'information légale et administrative (DILA). This dataset contains a wide range of legal, administrative, and legislative documents. The data has been organized into several categories for easy access and analysis" (from the [dataset card](https://huggingface.co/datasets/Nicolas-BZRD/DILA_OPENDATA_FR_2023/tree/main)).
<!-- * <u>Citation</u>: No paper found. -->

#### OpenEdition
* <u>Source</u>: Corpus contributed by OpenLLM partners.
* <u>Extracted from</u>: [Open Edition](https://www.openedition.org/). License: [Open Edition Books](https://www.openedition.org/12554).
* <u>Description</u>: A collection of scientific books, journal articles, blog entries and event descriptions. 
<!-- * <u>Citation</u>: No paper found. -->

#### PeS2o (v2)
* <u>Source</u>: [allenai/peS2o](https://huggingface.co/datasets/allenai/peS2o) version [v2](https://huggingface.co/datasets/allenai/peS2o/tree/main/data/v2). License: 	[ODC BY-v1.0](https://github.com/allenai/s2orc/).
* <u>Extracted from</u>: [S2ORC](https://github.com/allenai/s2orc) (see [aclanthology](https://aclanthology.org/2020.acl-main.447/)). License: [ODC BY-v1.0](https://github.com/allenai/s2orc/). 
* <u>Description</u>: A preprocessed collection of academic papers designed for pre-training of language models. PeS2o is composed of two subsets: one containing full papers and one containing only paper titles and abstracts. Dataset containing (some) text retrieved through OCR. Knowledge cutoff: 2023-01-03.
* <u>Citation</u>: Luca Soldaini and Kyle Lo (2023). "peS2o (Pretraining Efficiently on S2ORC) Dataset," Allen Institute for AI. [GitHub](https://github.com/allenai/pes2o).

#### Pile (Uncopyrighted)
* <u>Source</u>: [monology/pile-uncopyrighted](https://huggingface.co/datasets/monology/pile-uncopyrighted). License: [Other](https://huggingface.co/datasets/monology/pile-uncopyrighted).
* <u>Extracted from</u>: [FreeLaw](https://free.law/), [StackExchange](https://stackexchange.com/), [USPTO Backgrounds](https://bulkdata.uspto.gov/), [DM Mathematics](https://github.com/google-deepmind/mathematics_dataset), [Ubuntu IRC](https://irclogs.ubuntu.com/), [PhilPapers](https://philpapers.org/), NIH ExPorter from [The Pile](https://huggingface.co/datasets/EleutherAI/pile). License: [MIT](https://arxiv.org/pdf/2201.07311).
* <u>Description</u> (from the [Datasheet](https://arxiv.org/abs/2201.07311)):
  * FreeLaw: "The Free Law Project is US registered non-profit that provide access to millions of legal opinions and analytical tools for academic studies in the legal realm."
  * StackExchange: "The StackExchange dataset is a dump of anonymized user-contributed content on the Stack Exchange network, a popular collection of websites centered around user-contributed questions and answers."
  * USPTO Backgrounds: "The USPTO Backgrounds dataset is a set of background sections from patents granted by the United States Patent and Trademark Office, derived from its published bulk archives."
  * DM Mathematics: "The DeepMind Mathematics dataset consists of a collection of mathematical problems such as algebra, arithmetic, calculus, number theory, and probability, formatted as natural language prompts [Saxton et al., 2019](https://arxiv.org/abs/1904.01557)."
  * Ubuntu IRC: "The Ubuntu IRC dataset is derived from the publicly available chatlogs of all Ubunturelated channels on the Freenode IRC chat server."
  * PhilPapers: a dataset of open access philosophy publications from an international database maintained by the Center for Digital Philosophy at the University of Western Ontario.
  * NIH ExPORTER: "The NIH Grant abstracts provides a bulk-data repository for awarded applications through the ExPORTER4 service covering the fiscal years 1985-present."
* <u>Pre-processing (v1.2 only)</u>:
  * <u>Filtering of PhilPapers</u>: Papers were removed if their language, detected using [Stanza](https://github.com/stanfordnlp/stanza), was not classified as English, French, German, Spanish or Italian.
  * <u>Filtering and text cleaning of Ubuntu IRC</u>: Texts from some channels were excluded to avoid data from languages other than English, French, German, Spanish or Italian and certain encoding errors were fixed (see [code details here](https://github.com/OpenLLM-France/Lucie-Training/blob/cdec8fd6369385455829ab39c2f04bcb1a8a475a/tokenization/text.py#L190)).
* <u>Citations</u>:
  * Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, Connor Leahy (2020). "The Pile: An 800GB Dataset of Diverse Text for Language Modeling," [	arXiv:2101.00027](https://arxiv.org/abs/2101.00027).
  * Stella Biderman, Kieran Bicheno, Leo Gao (2022). "Datasheet for the Pile," [arXiv:2201.07311](https://arxiv.org/abs/2201.07311).

#### QuestionsEcritesParlement
* <u>Source</u>: Corpus contributed by OpenLLM partners.
* <u>Extracted from</u>:  [Regards citoyens](https://www.regardscitoyens.org/#&panel1-4). License: [CC BY-SA](https://www.regardscitoyens.org/mentions-legales/).
* <u>Description</u>: Collection of long written questions, read during a session at the French National Assembly. Questions are asked by a member of the French parliament and addressed to a minister (who is given two months to respond). 
<!-- * <u>Citation</u>: No paper found. -->

#### RedPajama (v2)
* <u>Source</u>: [togethercomputer/RedPajama-Data-V2](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-V2). License: [Apache 2.0](https://github.com/togethercomputer/RedPajama-Data) (data preparation code), Not specified (data) but see [Common Crawl terms of use](https://commoncrawl.org/terms-of-use).
* <u>Extracted from</u>: [Common Crawl](https://commoncrawl.org/).
* <u>Description</u>: "RedPajama-V2 is an open dataset for training large language models. The dataset includes over 100B text documents coming from 84 CommonCrawl snapshots and processed using the [CCNet](https://github.com/facebookresearch/cc_net) pipeline. Out of these, there are 30B documents in the corpus that additionally come with quality signals, and 20B documents that are deduplicated" (from [GitHub](https://github.com/togethercomputer/RedPajama-Data)). Most recent crawl for French data in the Lucie Training Dataset v1.1: 2023-14. (For more details on the time periods covered by crawls in this dataset see the composition details for <a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_redpajama-french_histogram.png">French</a>, <a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_redpajama-german_histogram.png">German</a>, <a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_redpajama-italian_histogram.png">Italian</a> and <a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_redpajama-spanish_histogram.png">Spanish</a>.)
* <u>Pre-processing and deduplication</u>: 
  * <u> Url filtering: </u>
    * <u>Removing duplicate urls</u>: urls were removed if their base domain overlapped with a dataset already in the Lucie Training Dataset (e.g., "theses.fr") in order to increase diversity of content (see [code details](https://github.com/OpenLLM-France/Lucie-Training/blob/7f1f7efa1288f709662a9067bf2c3db856b850f8/webdata_processing/base.py#L154)).
    * <u>Filtering certain toxic content</u>: urls from a list of blacklisted content were removed (see [code details](https://github.com/OpenLLM-France/Lucie-Training/blob/7f1f7efa1288f709662a9067bf2c3db856b850f8/webdata_processing/base.py#L177)).
    * <u>Filtering by robots.txt files</u>: we collect robots.txt and remove all documents for which CCBot is disallowed or for which we failed to collect information as of July 2024 in an effort to select data free from opt-out evidence according to the 4th article of the copyright European directive (2019).
  * <u>Filtering</u>: A series of filters were applied using [quality signals](https://github.com/togethercomputer/RedPajama-Data?tab=readme-ov-file#quality-annotations)  already available in the dataset. This includes (see [code details](https://github.com/OpenLLM-France/Lucie-Training/blob/d9cccb7bfac37b8c8285f9c04aa67d907ce475f0/webdata_processing/base.py#L36)):
    * CCnet perplexity below 10 or above 1000 
    * C4 filtering (including removal of documents that contain toxic words)
    * Gopher filtering and repetition removal
    * Redpajama document deduplication
  * <u>Removal of personally identifying information (PII)</u>: email addresses and ip addresses were replaced with random addresses (see [code details](https://github.com/OpenLLM-France/Lucie-Training/blob/7f1f7efa1288f709662a9067bf2c3db856b850f8/webdata_processing/base.py#L301)).
  * <u>MinHash deduplication</u> was performed on each snapshot and language independantly as proposed in FineWeb. For minhash configuration [see code details](https://github.com/OpenLLM-France/Lucie-Training/blob/7f1f7efa1288f709662a9067bf2c3db856b850f8/webdata_processing/minhash.py#L63). 

  The [Datatrove](https://github.com/huggingface/datatrove) library was used to perform both filtering and deduplication stages.

* <u>Citation</u>: Together Computer (2023). "RedPajama-Data-v2: an Open Dataset with 30 Trillion Tokens for Training Large Language Models," [GitHub](https://github.com/togethercomputer/RedPajama-Data).

#### STAC
* <u>Source</u>: [STAC](https://www.irit.fr/STAC/corpus.html). License: [CC BY-SA-NC 4.0](https://www.irit.fr/STAC/corpus.html).
* <u>Description</u>: A collection of multiparty chats from an online version of the game Settlers of Catan. The full STAC corpus contains annotations for discourse structure. We use only the text of the chats.
* <u>Citation</u>: Nicholas Asher, Julie Hunter, Mathieu Morey, Farah Benamara and Stergos Afantenos (2016). "[Discourse structure and dialogue acts in multiparty dialogue: the STAC corpus](https://hal.science/hal-02124399/file/asher_22646.pdf)," The Tenth International Conference on Language Resources and Evaluation (LREC 2016). European Language Resources Association, pp. 2721-2727.

#### TheStack (v1.2)
* <u>Source</u>: [bigcode/the-stack-dedup](https://huggingface.co/datasets/bigcode/the-stack-dedup). License: [Other](https://huggingface.co/datasets/bigcode/the-stack-dedup) (mixture of copyleft licenses).
* <u>Extracted from</u>: [GitHub](https://github.com/) via [GHarchive](https://www.gharchive.org/). Mixed licenses for source.
* <u>Description</u>: "The Stack contains over 6TB of permissively-licensed source code files covering 358 programming languages. The dataset was created as part of the [BigCode Project](https://www.bigcode-project.org/), an open scientific collaboration working on the responsible development of Large Language Models for Code (Code LLMs). The Stack serves as a pre-training dataset for Code LLMs, i.e., code-generating AI systems which enable the synthesis of programs from natural language descriptions as well as other from code snippets. This is the near-deduplicated version with 3TB data" (from the [dataset card](https://huggingface.co/datasets/bigcode/the-stack-dedup)).
* <u>Citation</u>: Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou, Carlos Muñoz Ferrandis, Yacine Jernite, Margaret Mitchell, Sean Hughes, Thomas Wolf, Dzmitry Bahdanau, Leandro von Werra and Harm de Vries (2022). "The Stack: 3 TB of permissively licensed source code," [arxiv:2211.15533](https://arxiv.org/abs/2211.15533).

#### Theses
* <u>Source</u>: Corpus contributed by OpenLLM partners.
* <u>Extracted from</u>: [theses.fr](https://theses.fr/?domaine=theses) (License: [Licence Ouverte / Open Licence version 2.0](https://www.data.gouv.fr/fr/datasets/theses-soutenues-en-france-depuis-1985/)) and  [HAL](https://hal.science/) ([Open access](https://about.hal.science/)).
* <u>Description</u>: A collection of doctoral theses published in France. Dataset containing text retrieved through OCR.
* <u>Pre-processing</u>:
  * <u>Text cleaning</u>:
    * Title pages about HAL, pages containing a significant fraction of control characters, and duplicate lines were removed (see [code details](https://github.com/OpenLLM-France/Lucie-Training/blob/cdec8fd6369385455829ab39c2f04bcb1a8a475a/tokenization/text.py#L277)).
    * Because the results of OCR on tables and graphics can give rise to garbage text, the text was cleaned by removing the most suspicious chunks.
    In particular, a chunk was removed if it was not detected as being written in French, English, Spanish, German or Italian, or if the perplexity of a CCNet Language Model on the chunk was higher than 2000 (see [code details](https://github.com/OpenLLM-France/Lucie-Training/blob/7f1f7efa1288f709662a9067bf2c3db856b850f8/tokenization/data.py#L1946)).
    The code to compute CCNET perplexity, parallelizing on parquet files, is [available here](https://github.com/OpenLLM-France/Lucie-dataset-filtering).
  * <u>Filtering</u>: Texts with fewer than 1000 words or 10000 characters were removed (see [code details](https://github.com/OpenLLM-France/Lucie-Training/blob/7f1f7efa1288f709662a9067bf2c3db856b850f8/tokenization/data.py#L1975)).

<!-- * <u>Citation</u>: No paper found. -->

#### Wikipedia, Wikisource, Wiktionary
* <u>Source</u>: Corpus contributed by LINAGORA Labs (OpenLLM-France).
  Also published here:
  * [OpenLLM-France/wikipedia](https://huggingface.co/datasets/OpenLLM-France/wikipedia)
  * [OpenLLM-France/wikisource](https://huggingface.co/datasets/OpenLLM-France/wikisource)
  * [OpenLLM-France/wiktionary](https://huggingface.co/datasets/OpenLLM-France/wiktionary)
* <u>Extracted from</u>: [Wikimedia dumps](https://dumps.wikimedia.org/other/enterprise_html/runs/). License: [GFDL/CC BY-SA](https://dumps.wikimedia.org/legal.html).
<!-- * <u>Description</u>: TODO -->
<!-- * <u>Pre-processing</u>: TODO -->
<!-- * <u>Citation</u>: No paper found. -->

#### YouTube
* <u>Source</u>: Corpus contributed by LINAGORA Labs (OpenLLM-France) and [LeVoiceLab](https://www.levoicelab.org/).
* <u>Extracted from</u>: [YouTube](https://www.youtube.com/). <!-- License: TODO? -->
* <u>Description</u>: French subtitles from videos published with permissive licenses on YouTube. <!-- TODO -->



## Example use in Python

### Load the dataset

Load and iterate over the full dataset using the `datasets` library:
```python
from datasets import load_dataset

dataset = load_dataset("OpenLLM-France/Lucie-Training-Dataset", split="train", streaming=True)

for sample in dataset:
   
   text = sample["text"]

   # … do something with the text
```

### Iterate over a subset

Several configurations are available to select a language, a source, or both, illustrated in the following examples.

The list of possible configurations can be obtained programmatically:
```python
from datasets import load_dataset_builder

config_names = list(load_dataset_builder("OpenLLM-France/Lucie-Training-Dataset").builder_configs)

print(config_names)
```
```plaintext
['default', 'en', 'fr', 'de', 'es', 'it', 'de,fr', 'es,en', 'fr,en', 'it,en', 'natural', 'code', 'code-assembly', 'code-c', 'code-c#', 'code-c++', 'code-clojure', 'code-dart', 'code-elixir', 'code-erlang', 'code-fortran', 'code-go', 'code-haskell', 'code-java', 'code-javascript', 'code-julia', 'code-kotlin', 'code-lua', 'code-mathematica', 'code-matlab', 'code-ocaml', 'code-perl', 'code-php', 'code-python', 'code-r', 'code-racket', 'code-ruby', 'code-rust', 'code-scala', 'code-swift', 'code-tex', 'code-typescript', 'AmendementsParlement', 'AmericanStories', 'Claire', 'Claire-en', 'Claire-fr', 'CroissantAligned', 'DiscoursPublics', 'Europarl', 'Europarl-de', 'Europarl-en', 'Europarl-es', 'Europarl-fr', 'EuroparlAligned', 'EuroparlAligned-de,fr', 'EuroparlAligned-es,en', 'EuroparlAligned-fr,en', 'EuroparlAligned-it,en', 'Eurovoc', 'Eurovoc-de', 'Eurovoc-en', 'Eurovoc-es', 'Eurovoc-it', 'FineWebEdu', 'GallicaMonographies', 'GallicaPress', 'Gutenberg', 'Gutenberg-de', 'Gutenberg-en', 'Gutenberg-es', 'Gutenberg-fr', 'Gutenberg-it', 'HAL', 'InterventionsParlement', 'LEGI', 'MathPile', 'OpenData', 'OpenEdition', 'PeS2o', 'PeS2o-s2ag', 'PeS2o-s2orc', 'Pile', 'Pile-DM_Mathematics', 'Pile-FreeLaw', 'Pile-NIH_ExPorter', 'Pile-PhilPapers', 'Pile-StackExchange', 'Pile-USPTO_Backgrounds', 'Pile-Ubuntu_IRC', 'QuestionsEcritesParlement', 'RedPajama', 'RedPajama-de', 'RedPajama-es', 'RedPajama-fr', 'RedPajama-it', 'Stac', 'TheStack', 'Theses', 'Wikipedia', 'Wikipedia-de', 'Wikipedia-en', 'Wikipedia-es', 'Wikipedia-fr', 'Wikipedia-it', 'Wikisource', 'Wiktionary', 'YouTube']
```

Below are some examples of how to load data from different sources and in different languages.

Load data in French:
```python
from datasets import load_dataset

kwargs = dict(split="train", streaming=True)

dataset = load_dataset("OpenLLM-France/Lucie-Training-Dataset", "fr", **kwargs)
```
Load data where French and English are aligned:
```python
dataset = load_dataset("OpenLLM-France/Lucie-Training-Dataset", "fr,en", **kwargs)
```

Load data corresponding to files with programming languages:
```python
dataset = load_dataset("OpenLLM-France/Lucie-Training-Dataset", "code", **kwargs)
```
Load data in Python:
```python
dataset = load_dataset("OpenLLM-France/Lucie-Training-Dataset", "code-python", **kwargs)
```

Load data from Wikipedia (in all available languages):
```python
dataset = load_dataset("OpenLLM-France/Lucie-Training-Dataset", "Wikipedia", **kwargs)
```
Load data from French pages of Wikipedia ([wikipedia.fr](https://www.wikipedia.fr/)):
```python
dataset = load_dataset("OpenLLM-France/Lucie-Training-Dataset", "Wikipedia-fr", **kwargs)
```

Load the Pile dataset:
```python
dataset = load_dataset("OpenLLM-France/Lucie-Training-Dataset", "Pile", **kwargs)
```
Load the subset "`PhilPapers`" from the Pile dataset:
```python
dataset = load_dataset("OpenLLM-France/Lucie-Training-Dataset", "Pile-PhilPapers", **kwargs)
```

### Load a specific version


You can load a specific version with the `datasets` Python package using the `revision` parameter of `load_dataset(…)`:
```python
from datasets import load_dataset

kwargs = dict(split="train", streaming=True)

name = None # or a configuration (e.g. "fr", "code-python", "Wikipedia-fr", "Pile-PhilPapers")

dataset = load_dataset("OpenLLM-France/Lucie-Training-Dataset", name, revision="v1.2", **kwargs)
```

## Citation

TODO

## Acknowledgements

The Lucie Training Dataset was created by members of LINAGORA and OpenLLM-France community, including in alphabetical order: Evan Dufraisse (CEA), Olivier Gouvert (LINAGORA), Julie Hunter (LINAGORA), Pierre-Carl Langlais (OpSci/Pleias), Jean-Pierre Lorré (LINAGORA), Jérôme Louradour (LINAGORA), Michel-Marie Maudet (LINAGORA), Laura Rivière (LINAGORA), and Anastasia Stasenko (OpSci/Pleias).

We thank Rachel Bawden (INRIA), Clément Bénesse (Opsci), Christophe Cérisara (LORIA), Olivier Ferret (CEA), Joöl Gombin (Opsci), Ismaïl Harrando (LINAGORA), Jordan Ricker (Opsci), Guokan Shang (MBZUAI), and Yaya Sy (LORIA) for their helpful input.

Data storage and significant parts of the data processing were made possible through the HPC resources from GENCI–IDRIS (Grant 2024-GC011015444).



## Contact

<pre>[email protected]</pre>