Datasets:
File size: 86,304 Bytes
3c40969 5913619 3c40969 5913619 3c40969 5913619 3c40969 5913619 3c40969 5913619 3c40969 5913619 3c40969 df3d1cd 5913619 df3d1cd e497f10 5913619 e497f10 71269d8 5bd858a 5913619 5bd858a 71269d8 5bd858a 5913619 5bd858a c5ed47b 5913619 c5ed47b 3c40969 5913619 3c40969 0b874a4 3c40969 5913619 3c40969 0b874a4 3c40969 5913619 3c40969 0b874a4 3c40969 5913619 3c40969 0b874a4 3c40969 5913619 3c40969 0b874a4 3c40969 5913619 3c40969 0b874a4 3c40969 5913619 3c40969 0b874a4 3c40969 5913619 3c40969 0b874a4 3c40969 5913619 3c40969 0b874a4 3c40969 5913619 3c40969 0b874a4 3c40969 5913619 3c40969 0b874a4 3c40969 5913619 3c40969 0b874a4 3c40969 5913619 3c40969 0b874a4 3c40969 5913619 3c40969 0b874a4 3c40969 5913619 3c40969 0b874a4 3c40969 5913619 3c40969 0b874a4 3c40969 5913619 3c40969 0b874a4 3c40969 5913619 3c40969 0b874a4 3c40969 5913619 3c40969 0b874a4 3c40969 5913619 3c40969 0b874a4 3c40969 5913619 3c40969 0b874a4 3c40969 5913619 3c40969 0b874a4 3c40969 5913619 3c40969 0b874a4 3c40969 5913619 3c40969 0b874a4 3c40969 5913619 3c40969 0b874a4 3c40969 5913619 3c40969 0b874a4 3c40969 5913619 3c40969 0b874a4 3c40969 5913619 3c40969 0b874a4 3c40969 5913619 3c40969 0b874a4 3c40969 5913619 3c40969 0b874a4 3c40969 5913619 3c40969 fe24391 5913619 fe24391 5913619 fe24391 5913619 fe24391 2c64667 fe24391 5913619 fe24391 2c64667 fe24391 5913619 fe24391 5913619 fe24391 5913619 fe24391 5913619 fe24391 2c64667 fe24391 5913619 fe24391 2c64667 fe24391 5913619 fe24391 2c64667 fe24391 5913619 fe24391 2c64667 fe24391 5913619 fe24391 5913619 fe24391 5bd858a fe24391 5913619 fe24391 5bd858a fe24391 5913619 fe24391 5bd858a fe24391 5913619 fe24391 5bd858a fe24391 5913619 fe24391 5913619 fe24391 63adc8e fe24391 5913619 fe24391 2c64667 fe24391 5913619 fe24391 2c64667 fe24391 5913619 fe24391 2c64667 fe24391 5913619 fe24391 5913619 fe24391 5913619 fe24391 5913619 fe24391 5913619 fe24391 2c64667 fe24391 5913619 fe24391 2c64667 fe24391 5913619 fe24391 2c64667 fe24391 5913619 fe24391 2c64667 fe24391 5913619 fe24391 2c64667 fe24391 5913619 fe24391 5913619 fe24391 64d0cc9 5913619 64d0cc9 5913619 64d0cc9 fe24391 5913619 fe24391 5913619 fe24391 5913619 fe24391 5913619 fe24391 1945339 5913619 1945339 5913619 1945339 ebc4412 5913619 ebc4412 5913619 ebc4412 5913619 ebc4412 5913619 ebc4412 5913619 ebc4412 5913619 ebc4412 5913619 ebc4412 5913619 ebc4412 64d0cc9 5913619 64d0cc9 fe24391 5913619 fe24391 2c64667 fe24391 5913619 fe24391 2c64667 fe24391 5913619 fe24391 2c64667 fe24391 5913619 fe24391 2c64667 fe24391 5913619 fe24391 5913619 fe24391 3c40969 5913619 3c40969 fe24391 5913619 fe24391 5913619 fe24391 2c64667 fe24391 5913619 fe24391 2c64667 fe24391 5913619 fe24391 2c64667 fe24391 5913619 fe24391 2c64667 fe24391 5913619 fe24391 2c64667 fe24391 5913619 fe24391 5913619 fe24391 5913619 fe24391 5913619 fe24391 3c40969 c5ed47b 419a82a c5ed47b aa47305 c5ed47b aa47305 4722756 c5ed47b aa47305 f28164b 4722756 cdf9460 f28164b 27f929c f28164b 419a82a f28164b 27f929c f28164b 419a82a f28164b 27f929c f28164b 419a82a 27f929c 419a82a f28164b 4722756 419a82a 27f929c 419a82a 27f929c 419a82a 4722756 419a82a 4722756 27f929c 419a82a 4722756 419a82a 27f929c f28164b 4722756 419a82a f28164b 419a82a f28164b aa47305 c5ed47b 4722756 c5ed47b 4722756 aa47305 4722756 c5ed47b aa47305 4722756 c5ed47b aa47305 4722756 c5ed47b 4722756 c5ed47b 4722756 85e7894 4722756 ff92671 419a82a 4722756 419a82a 7a3a7c0 4722756 419a82a 7a3a7c0 4722756 419a82a 4722756 7a3a7c0 fac21be 419a82a c5ed47b 4722756 c5ed47b aa47305 3616b36 e51a349 128172f e51a349 3616b36 e8b2eaf 0f3cb76 4722756 a07b06a aa47305 4722756 a07b06a aa47305 a07b06a e51a349 a07b06a 789c727 a07b06a e51a349 a07b06a 789c727 a07b06a 3616b36 a07b06a 789c727 a07b06a e51a349 a07b06a 789c727 a07b06a e51a349 a07b06a 789c727 a07b06a e51a349 a07b06a 789c727 a07b06a 789c727 a07b06a 3616b36 a07b06a 3616b36 a07b06a 3616b36 a07b06a e51a349 a07b06a 789c727 a07b06a e51a349 a07b06a 789c727 a07b06a e51a349 a07b06a 789c727 a07b06a e51a349 a07b06a 789c727 a07b06a e51a349 a07b06a 789c727 a07b06a e51a349 a07b06a e51a349 a07b06a 789c727 a07b06a 4722756 e51a349 a07b06a e51a349 a07b06a e51a349 a07b06a e51a349 a07b06a e51a349 a07b06a e51a349 a07b06a e51a349 a07b06a e51a349 a07b06a e51a349 a07b06a e51a349 a07b06a e51a349 a07b06a e51a349 a07b06a e51a349 a07b06a e51a349 a07b06a e51a349 a07b06a e51a349 a07b06a e51a349 a07b06a e51a349 a07b06a e51a349 a07b06a e51a349 a07b06a e51a349 a07b06a e51a349 a07b06a 419a82a e51a349 a07b06a e51a349 a07b06a e51a349 a07b06a e51a349 a07b06a e51a349 a07b06a e51a349 a07b06a e51a349 a07b06a e51a349 a07b06a e51a349 a07b06a e51a349 a07b06a e51a349 a07b06a e51a349 a07b06a e51a349 a07b06a 4722756 e51a349 a07b06a e51a349 a07b06a e51a349 a07b06a e51a349 a07b06a e51a349 a07b06a 789c727 a07b06a e51a349 a07b06a 789c727 a07b06a e51a349 a07b06a 4722756 e51a349 a07b06a 3616b36 419a82a 3616b36 a07b06a 4722756 a07b06a aa47305 a07b06a aa47305 419a82a 4722756 419a82a 4722756 7a3a7c0 419a82a 4722756 419a82a 4722756 c37df9e 4722756 419a82a 4722756 419a82a aa47305 4722756 aa47305 4722756 419a82a 4722756 aa47305 0f3cb76 4722756 aa47305 a72e89b 0f3cb76 4722756 0f3cb76 4722756 aa47305 a72e89b 419a82a 4722756 419a82a 4722756 aa47305 419a82a aa47305 4722756 aa47305 4722756 aa47305 4722756 aa47305 4722756 aa47305 4722756 aa47305 0f3cb76 4722756 aa47305 4722756 aa47305 0f3cb76 4722756 aa47305 419a82a 4722756 aa47305 4722756 0f3cb76 aa47305 a72e89b aa47305 4722756 aa47305 419a82a aa47305 4722756 0f3cb76 aa47305 4722756 aa47305 4722756 aa47305 419a82a aa47305 4722756 419a82a aa47305 4722756 aa47305 0f3cb76 4722756 aa47305 0f3cb76 aa47305 0f3cb76 aa47305 4722756 419a82a aa47305 4722756 aa47305 4722756 0f3cb76 419a82a aa47305 0f3cb76 4722756 aa47305 0f3cb76 4722756 aa47305 4722756 0f3cb76 4722756 0f3cb76 aa47305 4722756 0f3cb76 4722756 419a82a aa47305 0f3cb76 419a82a 4722756 419a82a aa47305 4722756 419a82a aa47305 4722756 c5ed47b 419a82a c5ed47b 419a82a aa47305 419a82a aa47305 419a82a c5ed47b 419a82a c5ed47b 59e12d2 39ef121 c5ed47b 419a82a c5ed47b 39ef121 c5ed47b 419a82a 39ef121 c5ed47b 39ef121 c5ed47b aa47305 c5ed47b 419a82a c5ed47b 39ef121 c5ed47b aa47305 419a82a aa47305 419a82a 4722756 419a82a aa47305 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 |
---
pretty_name: Lucie Training Dataset
license: cc-by-nc-sa-4.0
language:
- en
- fr
- de
- es
- it
- code
multilinguality:
- multilingual
task_categories:
- text-generation
- text2text-generation
task_ids:
- language-modeling
tags:
- text-generation
- conditional-text-generation
size_categories:
- n>1T
viewer: true
configs:
- config_name: default
data_files:
- path: data/v*/*/*/*/*parquet
split: train
- config_name: en
data_files:
- path: data/v*/natural/en/*/*parquet
split: train
- config_name: fr
data_files:
- path: data/v*/natural/fr/*/*parquet
split: train
- config_name: de
data_files:
- path: data/v*/natural/de/*/*parquet
split: train
- config_name: es
data_files:
- path: data/v*/natural/es/*/*parquet
split: train
- config_name: it
data_files:
- path: data/v*/natural/it/*/*parquet
split: train
- config_name: de,fr
data_files:
- path: data/v*/natural/de-fr/*/*.parquet
split: train
- config_name: es,en
data_files:
- path: data/v*/natural/es-en/*/*.parquet
split: train
- config_name: fr,en
data_files:
- path: data/v*/natural/fr-en/*/*.parquet
split: train
- config_name: it,en
data_files:
- path: data/v*/natural/it-en/*/*.parquet
split: train
- config_name: natural
data_files:
- path: data/v*/natural/*/*/*.parquet
split: train
- config_name: code
data_files:
- path: data/v*/code/*/*/*parquet
split: train
- config_name: code-assembly
data_files:
- path: data/v*/code/assembly/*/*.parquet
split: train
- config_name: code-c
data_files:
- path: data/v*/code/c/*/*.parquet
split: train
- config_name: code-c#
data_files:
- path: data/v*/code/c#/*/*.parquet
split: train
- config_name: code-c++
data_files:
- path: data/v*/code/c++/*/*.parquet
split: train
- config_name: code-clojure
data_files:
- path: data/v*/code/clojure/*/*.parquet
split: train
- config_name: code-dart
data_files:
- path: data/v*/code/dart/*/*.parquet
split: train
- config_name: code-elixir
data_files:
- path: data/v*/code/elixir/*/*.parquet
split: train
- config_name: code-erlang
data_files:
- path: data/v*/code/erlang/*/*.parquet
split: train
- config_name: code-fortran
data_files:
- path: data/v*/code/fortran/*/*.parquet
split: train
- config_name: code-go
data_files:
- path: data/v*/code/go/*/*.parquet
split: train
- config_name: code-haskell
data_files:
- path: data/v*/code/haskell/*/*.parquet
split: train
- config_name: code-java
data_files:
- path: data/v*/code/java/*/*.parquet
split: train
- config_name: code-javascript
data_files:
- path: data/v*/code/javascript/*/*.parquet
split: train
- config_name: code-julia
data_files:
- path: data/v*/code/julia/*/*.parquet
split: train
- config_name: code-kotlin
data_files:
- path: data/v*/code/kotlin/*/*.parquet
split: train
- config_name: code-lua
data_files:
- path: data/v*/code/lua/*/*.parquet
split: train
- config_name: code-mathematica
data_files:
- path: data/v*/code/mathematica/*/*.parquet
split: train
- config_name: code-matlab
data_files:
- path: data/v*/code/matlab/*/*.parquet
split: train
- config_name: code-ocaml
data_files:
- path: data/v*/code/ocaml/*/*.parquet
split: train
- config_name: code-perl
data_files:
- path: data/v*/code/perl/*/*.parquet
split: train
- config_name: code-php
data_files:
- path: data/v*/code/php/*/*.parquet
split: train
- config_name: code-python
data_files:
- path: data/v*/code/python/*/*.parquet
split: train
- config_name: code-r
data_files:
- path: data/v*/code/r/*/*.parquet
split: train
- config_name: code-racket
data_files:
- path: data/v*/code/racket/*/*.parquet
split: train
- config_name: code-ruby
data_files:
- path: data/v*/code/ruby/*/*.parquet
split: train
- config_name: code-rust
data_files:
- path: data/v*/code/rust/*/*.parquet
split: train
- config_name: code-scala
data_files:
- path: data/v*/code/scala/*/*.parquet
split: train
- config_name: code-swift
data_files:
- path: data/v*/code/swift/*/*.parquet
split: train
- config_name: code-tex
data_files:
- path: data/v*/code/tex/*/*.parquet
split: train
- config_name: code-typescript
data_files:
- path: data/v*/code/typescript/*/*.parquet
split: train
- config_name: AmendementsParlement
data_files:
- path: data/v*/natural/*/AmendementsParlement/*.parquet
split: train
- config_name: AmericanStories
data_files:
- path: data/v*/natural/*/AmericanStories/*.parquet
split: train
- config_name: Claire
data_files:
- path: data/v*/natural/*/Claire/*.parquet
split: train
- config_name: Claire-en
data_files:
- path: data/v*/natural/en/Claire/*.parquet
split: train
- config_name: Claire-fr
data_files:
- path: data/v*/natural/fr/Claire/*.parquet
split: train
- config_name: CroissantAligned
data_files:
- path: data/v*/natural/*/CroissantAligned/*.parquet
split: train
- config_name: DiscoursPublics
data_files:
- path: data/v*/natural/*/DiscoursPublics/*.parquet
split: train
- config_name: Europarl
data_files:
- path: data/v*/natural/*/Europarl/*.parquet
split: train
- config_name: Europarl-de
data_files:
- path: data/v*/natural/de/Europarl/*.parquet
split: train
- config_name: Europarl-en
data_files:
- path: data/v*/natural/en/Europarl/*.parquet
split: train
- config_name: Europarl-es
data_files:
- path: data/v*/natural/es/Europarl/*.parquet
split: train
- config_name: Europarl-fr
data_files:
- path: data/v*/natural/fr/Europarl/*.parquet
split: train
- config_name: EuroparlAligned
data_files:
- path: data/v*/natural/*/EuroparlAligned/*.parquet
split: train
- config_name: EuroparlAligned-de,fr
data_files:
- path: data/v*/natural/de-fr/EuroparlAligned/*.parquet
split: train
- config_name: EuroparlAligned-es,en
data_files:
- path: data/v*/natural/es-en/EuroparlAligned/*.parquet
split: train
- config_name: EuroparlAligned-fr,en
data_files:
- path: data/v*/natural/fr-en/EuroparlAligned/*.parquet
split: train
- config_name: EuroparlAligned-it,en
data_files:
- path: data/v*/natural/it-en/EuroparlAligned/*.parquet
split: train
- config_name: Eurovoc
data_files:
- path: data/v*/natural/*/Eurovoc/*.parquet
split: train
- config_name: Eurovoc-de
data_files:
- path: data/v*/natural/de/Eurovoc/*.parquet
split: train
- config_name: Eurovoc-en
data_files:
- path: data/v*/natural/en/Eurovoc/*.parquet
split: train
- config_name: Eurovoc-es
data_files:
- path: data/v*/natural/es/Eurovoc/*.parquet
split: train
- config_name: Eurovoc-it
data_files:
- path: data/v*/natural/it/Eurovoc/*.parquet
split: train
- config_name: FineWebEdu
data_files:
- path: data/v*/natural/*/FineWebEdu/*.parquet
split: train
- config_name: GallicaMonographies
data_files:
- path: data/v*/natural/*/GallicaMonographies/*.parquet
split: train
- config_name: GallicaPress
data_files:
- path: data/v*/natural/*/GallicaPress/*.parquet
split: train
- config_name: Gutenberg
data_files:
- path: data/v*/natural/*/Gutenberg/*.parquet
split: train
- config_name: Gutenberg-de
data_files:
- path: data/v*/natural/de/Gutenberg/*.parquet
split: train
- config_name: Gutenberg-en
data_files:
- path: data/v*/natural/en/Gutenberg/*.parquet
split: train
- config_name: Gutenberg-es
data_files:
- path: data/v*/natural/es/Gutenberg/*.parquet
split: train
- config_name: Gutenberg-fr
data_files:
- path: data/v*/natural/fr/Gutenberg/*.parquet
split: train
- config_name: Gutenberg-it
data_files:
- path: data/v*/natural/it/Gutenberg/*.parquet
split: train
- config_name: HAL
data_files:
- path: data/v*/natural/*/HAL/*.parquet
split: train
- config_name: InterventionsParlement
data_files:
- path: data/v*/natural/*/InterventionsParlement/*.parquet
split: train
- config_name: LEGI
data_files:
- path: data/v*/natural/*/LEGI/*.parquet
split: train
- config_name: MathPile
data_files:
- path: data/v*/natural/*/MathPile/*.parquet
split: train
- config_name: OpenData
data_files:
- path: data/v*/natural/*/OpenData/*.parquet
split: train
- config_name: OpenEdition
data_files:
- path: data/v*/natural/*/OpenEdition/*.parquet
split: train
- config_name: PeS2o
data_files:
- path: data/v*/natural/*/PeS2o/*.parquet
split: train
- config_name: PeS2o-s2ag
data_files:
- path: data/v*/natural/*/PeS2o/*s2ag.parquet
split: train
- config_name: PeS2o-s2orc
data_files:
- path: data/v*/natural/*/PeS2o/*s2orc.parquet
split: train
- config_name: Pile
data_files:
- path: data/v*/natural/*/Pile/*.parquet
split: train
- config_name: Pile-DM_Mathematics
data_files:
- path: data/v*/natural/*/Pile/*DM_Mathematics.parquet
split: train
- config_name: Pile-FreeLaw
data_files:
- path: data/v*/natural/*/Pile/*FreeLaw.parquet
split: train
- config_name: Pile-NIH_ExPorter
data_files:
- path: data/v*/natural/*/Pile/*NIH_ExPorter.parquet
split: train
- config_name: Pile-PhilPapers
data_files:
- path: data/v*/natural/*/Pile/*PhilPapers.parquet
split: train
- config_name: Pile-StackExchange
data_files:
- path: data/v*/natural/*/Pile/*StackExchange.parquet
split: train
- config_name: Pile-USPTO_Backgrounds
data_files:
- path: data/v*/natural/*/Pile/*USPTO_Backgrounds.parquet
split: train
- config_name: Pile-Ubuntu_IRC
data_files:
- path: data/v*/natural/*/Pile/*Ubuntu_IRC.parquet
split: train
- config_name: QuestionsEcritesParlement
data_files:
- path: data/v*/natural/*/QuestionsEcritesParlement/*.parquet
split: train
- config_name: RedPajama
data_files:
- path: data/v*/natural/*/RedPajama/*.parquet
split: train
- config_name: RedPajama-de
data_files:
- path: data/v*/natural/de/RedPajama/*.parquet
split: train
- config_name: RedPajama-es
data_files:
- path: data/v*/natural/es/RedPajama/*.parquet
split: train
- config_name: RedPajama-fr
data_files:
- path: data/v*/natural/fr/RedPajama/*.parquet
split: train
- config_name: RedPajama-it
data_files:
- path: data/v*/natural/it/RedPajama/*.parquet
split: train
- config_name: Stac
data_files:
- path: data/v*/natural/*/Stac/*.parquet
split: train
- config_name: TheStack
data_files:
- path: data/v*/code/*/TheStack/*.parquet
split: train
- config_name: Theses
data_files:
- path: data/v*/natural/*/Theses/*.parquet
split: train
- config_name: Wikipedia
data_files:
- path: data/v*/natural/*/Wikipedia/*.parquet
split: train
- config_name: Wikipedia-de
data_files:
- path: data/v*/natural/de/Wikipedia/*.parquet
split: train
- config_name: Wikipedia-en
data_files:
- path: data/v*/natural/en/Wikipedia/*.parquet
split: train
- config_name: Wikipedia-es
data_files:
- path: data/v*/natural/es/Wikipedia/*.parquet
split: train
- config_name: Wikipedia-fr
data_files:
- path: data/v*/natural/fr/Wikipedia/*.parquet
split: train
- config_name: Wikipedia-it
data_files:
- path: data/v*/natural/it/Wikipedia/*.parquet
split: train
- config_name: Wikisource
data_files:
- path: data/v*/natural/*/Wikisource/*.parquet
split: train
- config_name: Wiktionary
data_files:
- path: data/v*/natural/*/Wiktionary/*.parquet
split: train
- config_name: YouTube
data_files:
- path: data/v*/natural/*/YouTube/*.parquet
split: train
---
# Lucie Training Dataset Card
The Lucie Training Dataset is a curated collection of text data
in English, French, German, Spanish and Italian culled from a variety of sources including: web data, video subtitles, academic papers,
digital books, newspapers, and magazines, some of which were processed by Optical Character Recognition (OCR). It also contains samples of diverse programming languages.
The Lucie Training Dataset was used to pretrain [Lucie-7B](https://huggingface.co/OpenLLM-France/Lucie-7B),
a foundation LLM with strong capabilities in French and English. Code for data preparation can be found in the [training respository](https://github.com/OpenLLM-France/Lucie-Training/tree/7f1f7efa1288f709662a9067bf2c3db856b850f8) for Lucie-7B.
Table of Contents:
<ul>
<li><a href="#dataset-description">Dataset Description</a>
<ul>
<li><a href="#sample-metadata">Sample Metadata</a></li>
<li><a href="#dataset-composition">Dataset Composition</a>
<table>
<tr>
<td style="vertical-align: top;">
<ul>
<li><a href="#category-web"> Web</a></li>
<li><a href="#category-newspaper"> Newspaper</a></li>
<li><a href="#category-technical"> Technical</a></li>
<li><a href="#category-book"> Book</a></li>
</ul>
</td>
<td style="vertical-align: top;">
<ul>
<li><a href="#category-legislative-texts"> Legislative Texts</a></li>
<li><a href="#category-legislative-transcripts"> Legislative Transcripts</a></li>
<li><a href="#category-wiki"> Wiki</a></li>
<li><a href="#category-math"> Math</a></li>
</ul>
</td>
<td style="vertical-align: top;">
<ul>
<li><a href="#category-forum"> Forum</a></li>
<li><a href="#category-dialogue"> Dialogue</a></li>
<li><a href="#category-multilingual-parallel-corpora">Multilingual Parallel Corpora</a></li>
<li><a href="#category-programming"> Programming</a></li>
</ul>
</td>
</tr>
</table>
</li>
<li><a href="#configurable-subsets-and-versions">Configurable Subsets and Versions</a></li>
<li><a href="#details-on-data-sources">Details on Data Sources</a>
<table>
<tr>
<td style="vertical-align: top;">
<ul>
<li><a href="#amendementsparlement"> AmendementsParlement</a></li>
<li><a href="#americanstories"> AmericanStories</a></li>
<li><a href="#claire-french-and-english"> Claire (French and English)</a></li>
<li><a href="#croissantaligned"> CroissantAligned</a></li>
<li><a href="#discourspublics"> DiscoursPublics</a></li>
<li><a href="#europarl-and-europarlaligned"> Europarl and EuroparlAligned</a></li>
<li><a href="#eurovoc"> Eurovoc</a></li>
<li><a href="#finewebedu"> FineWebEdu</a></li>
<li><a href="#gallicamonographies"> GallicaMonographies</a></li>
</ul>
</td>
<td style="vertical-align: top;">
<ul>
<li><a href="#gallicapress"> GallicaPress</a></li>
<li><a href="#gutenberg"> Gutenberg</a></li>
<li><a href="#hal"> HAL</a></li>
<li><a href="#interventionsparlement"> InterventionsParlement</a></li>
<li><a href="#legi"> LEGI</a></li>
<li><a href="#mathpile-commercial"> MathPile (Commercial)</a></li>
<li><a href="#opendata"> OpenData</a></li>
<li><a href="#openedition"> OpenEdition</a></li>
<li><a href="#pes2o-v2"> PeS2o (v2)</a></li>
</ul>
</td>
<td style="vertical-align: top;">
<ul>
<li><a href="#pile-uncopyrighted"> Pile (Uncopyrighted)</a></li>
<li><a href="#questionsecritesparlement"> QuestionsEcritesParlement</a></li>
<li><a href="#redpajama-v2"> RedPajama (v2)</a></li>
<li><a href="#stac"> Stac</a></li>
<li><a href="#thestack-v12"> TheStack (v1.2)</a></li>
<li><a href="#theses"> Theses</a></li>
<li><a href="#wikipedia-wikisource-wiktionary"> Wikipedia, Wikisource, Wiktionary</a></li>
<li><a href="#youtube"> YouTube</a></li>
</ul>
</td>
</tr>
</table>
</li>
</ul>
</li>
<li><a href="#example-use-in-python">Example use in Python</a></li>
<ul>
<li><a href="#load-the-dataset">Load the dataset</a></li>
<li><a href="#iterate-over-a-subset">Iterate over a subset</a></li>
<li><a href="#load-a-specific-version">Load a specific version</a></li>
</ul>
</li>
<li><a href="#citation">Citation</a></li>
<li><a href="#acknowledgements">Acknowledgements</a></li>
<li><a href="#contact">Contact</a></li>
</ul>
## Dataset Description
This dataset is intended to provide extensive and diverse multilingual data for training Large Language Models (LLMs). Here are some of the principal features of the corpus:
* Data mix:
* The dataset contains more French than English data -- it is in fact one of the biggest collections of French text data that has been preprocessed for LLM training -- with the aim of minimizing anglo-centric cultural biases.
* German, Spanish and Italian are also represented in small amounts.
* Code is included to boost the reasoning capabilities of LLMs.
* Data filtering and deduplication:
* The dataset has been cleaned in an effort to remove very low-quality data.
* Duplicate data samples have been removed to some extent, following best practices.
* Web data has been filtered to minimize potentially toxic content and personally identifying information.
* Ethics:
* Special care has been taken to respect copyright laws and individual privacy.
All newspapers, monographies, magazines and legislative documents, as well as most books, are in the public domain
(which depends on the author's date of death and the country of publication). Other data are published with permissive licenses (e.g., CC BY or CC BY-SA).
* All web data in the dataset come from sites with robots.txt files that do not forbid crawling.
### Sample Metadata
In addition to the `text` field, which provides the content of the sample, each training sample in the corpus contains the following metadata when available:
* [`language`](metadata/metadata_examples.json#L3): the language of the text sample (note that this information is taken from the original data source and may be incorrect).
<br>Possible values:
- the ISO 639-1 code for a given natural language ("en", "fr", "de", "es", or "it"),
- the name of a programming language prefixed by "code:" ("code:python", "code:c++", …), or
- a list of ISO 639-1 codes separated by commas for data containing parallel translations ("fr,en", "de,fr", "es,en", "it,en",
or one of those pairs in the opposite order if the languages appear in the opposite order in the text).
* [`source`](metadata/metadata_examples.json#L4): an identifier for the source(s) of the text sample (Wikipedia, RedPajama, Gutenberg, …).
All sources are described in detail [below](#details-on-data-sources).
* [`id`](metadata/metadata_examples.json#L13): an identifier that is unique among documents from the same source.
* [`url`](metadata/metadata_examples.json#L35) (optional): the URL of the original text sample on the web, if available.
* [`title`](metadata/metadata_examples.json#L36) (optional): the title of the original text sample, if available.
* [`author`](metadata/metadata_examples.json#L81) (optional): the author of the original text sample, if available.
<details><summary>Note:</summary>
The author name is given in plain text, except in the case of <a href="metadata/metadata_examples.json#L91">Gutenberg books</a>, where it is the JSON serialized object of the author metadata.
</details>
* [`date`](metadata/metadata_examples.json#L6) (optional): the publication date of the original text sample, if available.
<details><summary>Note:</summary>
The text format of the date depends on the source.
</details>
* [`quality_signals`](metadata/metadata_examples.json#L17) (optional): a list of quality signals for the text sample in JSON format (which could be used for further filtering or sample weighting).
<details><summary>Note:</summary>
It can include indicators computed by `fasttext` and `CCNet`, statistics about occurrences of characters, words, special characters, etc.
</details>
* [`extra`](metadata/metadata_examples.json#L16) (optional): extra information about the text sample, in JSON format.
This can include metadata about the source subset, the rights, etc.
The list of metadata available for each source is provided (without the `text` field) in [metadata_examples.json](metadata/metadata_examples.json).
### Dataset Composition
The following figure shows the distribution of the dataset by language (colors) and category (hatch patterns).
![Dataset composition](figures/fig_dataset_composition.png)
The following table provides an overview of the dataset composition,
broken down by source and language.
Sources are grouped by category.
The table provides the numbers of documents, words, tokens, and characters for each subset.
All numbers in this table are available in the CSV file [dataset_composition.csv](metadata/dataset_composition.csv).
Token counts are computed using the tokenizer for [Lucie-7B](https://huggingface.co/OpenLLM-France/Lucie-7B).
<!-- The following is automatically generated. Do not update manually. -->
<!-- TABLE START -->
<table>
<thead>
<tr>
<th><strong>Subset</strong></th>
<th><strong>Language</strong></th>
<th><strong>M docs</strong></th>
<th><strong>B words</strong></th>
<th><strong>B tokens</strong></th>
<th><strong>B chars</strong></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="11" style="vertical-align: top;"><strong>TOTAL</strong></td>
<td></td>
<td>2186.562</td>
<td>1356.021</td>
<td>2314.862</td>
<td>8842.200</td>
<td></td>
</tr>
<tr>
<td><strong>French (fr)</strong></td>
<td>653.812</td>
<td>583.687</td>
<td>928.618</td>
<td>3619.672</td>
<td><a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_french_pie.png">composition details</a></td>
</tr>
<tr>
<td><strong>English (en)</strong></td>
<td>554.289</td>
<td>412.202</td>
<td>611.894</td>
<td>2553.541</td>
<td><a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_english_pie.png">composition details</a></td>
</tr>
<tr>
<td><strong>code</strong></td>
<td>125.769</td>
<td>51.306</td>
<td>228.954</td>
<td>630.749</td>
<td><a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_code_pie.png">composition details</a></td>
</tr>
<tr>
<td><strong>German (de)</strong></td>
<td>165.915</td>
<td>105.609</td>
<td>206.610</td>
<td>764.779</td>
<td><a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_german_pie.png">composition details</a></td>
</tr>
<tr>
<td><strong>Spanish (es)</strong></td>
<td>171.651</td>
<td>123.857</td>
<td>200.825</td>
<td>759.457</td>
<td><a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_spanish_pie.png">composition details</a></td>
</tr>
<tr>
<td><strong>Italian (it)</strong></td>
<td>99.440</td>
<td>62.051</td>
<td>112.031</td>
<td>404.454</td>
<td><a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_italian_pie.png">composition details</a></td>
</tr>
<tr>
<td><strong>fr-en</strong></td>
<td>410.032</td>
<td>17.016</td>
<td>25.494</td>
<td>107.658</td>
<td><a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_fr-en_pie.png">composition details</a></td>
</tr>
<tr>
<td><strong>it-en</strong></td>
<td>1.901</td>
<td>0.100</td>
<td>0.151</td>
<td>0.638</td>
<td></td>
</tr>
<tr>
<td><strong>es-en</strong></td>
<td>1.961</td>
<td>0.103</td>
<td>0.143</td>
<td>0.631</td>
<td></td>
</tr>
<tr>
<td><strong>de-fr</strong></td>
<td>1.792</td>
<td>0.0908</td>
<td>0.141</td>
<td>0.621</td>
<td></td>
</tr>
<tr>
<td colspan="7"><h4 id="category-web">Category: Web</h4></td></tr>
<tr>
<td rowspan="4" style="vertical-align: top;"><a href="#redpajama-v2"><strong>RedPajama</strong></a></td>
<td><strong>French (fr)</strong></td>
<td>640.770</td>
<td>477.758</td>
<td>741.023</td>
<td>2974.596</td>
<td><a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_redpajama-french_histogram.png">composition details</a></td>
</tr>
<tr>
<td><strong>German (de)</strong></td>
<td>162.779</td>
<td>103.078</td>
<td>201.371</td>
<td>747.631</td>
<td><a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_redpajama-german_histogram.png">composition details</a></td>
</tr>
<tr>
<td><strong>Spanish (es)</strong></td>
<td>169.447</td>
<td>121.751</td>
<td>197.125</td>
<td>746.984</td>
<td><a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_redpajama-spanish_histogram.png">composition details</a></td>
</tr>
<tr>
<td><strong>Italian (it)</strong></td>
<td>97.324</td>
<td>60.194</td>
<td>108.416</td>
<td>393.012</td>
<td><a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_redpajama-italian_histogram.png">composition details</a></td>
</tr>
<tr>
<td><a href="#finewebedu"><strong>FineWebEdu</strong></a></td>
<td><strong>English (en)</strong></td>
<td>421.209</td>
<td>327.453</td>
<td>467.837</td>
<td>2018.215</td>
<td><a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_finewebedu-english_histogram.png">composition details</a></td>
</tr>
<tr>
<td colspan="7"><h4 id="category-newspaper">Category: Newspaper</h4></td></tr>
<tr>
<td><a href="#gallicapress"><strong>GallicaPress</strong></a></td>
<td><strong>French (fr)</strong></td>
<td>3.205</td>
<td>67.496</td>
<td>121.606</td>
<td>408.882</td>
<td></td>
</tr>
<tr>
<td><a href="#americanstories"><strong>AmericanStories</strong></a></td>
<td><strong>English (en)</strong></td>
<td>59.420</td>
<td>8.902</td>
<td>14.313</td>
<td>50.844</td>
<td><a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_americanstories-english_histogram.png">composition details</a></td>
</tr>
<tr>
<td colspan="7"><h4 id="category-technical">Category: Technical</h4></td></tr>
<tr>
<td><a href="#pes2o-v2"><strong>PeS2o</strong></a></td>
<td><strong>English (en)</strong></td>
<td>38.972</td>
<td>42.296</td>
<td>65.365</td>
<td>268.963</td>
<td></td>
</tr>
<tr>
<td><a href="#hal"><strong>HAL</strong></a></td>
<td><strong>French (fr)</strong></td>
<td>0.349</td>
<td>9.356</td>
<td>16.224</td>
<td>58.308</td>
<td></td>
</tr>
<tr>
<td><a href="#theses"><strong>Theses</strong></a></td>
<td><strong>French (fr)</strong></td>
<td>0.102</td>
<td>7.547</td>
<td>14.060</td>
<td>47.758</td>
<td></td>
</tr>
<tr>
<td><a href="#pile-uncopyrighted"><strong>Pile (USPTO_Backgrounds)</strong></a></td>
<td><strong>English (en)</strong></td>
<td>5.139</td>
<td>3.492</td>
<td>5.105</td>
<td>22.309</td>
<td></td>
</tr>
<tr>
<td><a href="#openedition"><strong>OpenEdition</strong></a></td>
<td><strong>French (fr)</strong></td>
<td>0.939</td>
<td>2.225</td>
<td>3.604</td>
<td>14.459</td>
<td></td>
</tr>
<tr>
<td><a href="#pile-uncopyrighted"><strong>Pile (PhilPapers)</strong></a></td>
<td><strong>English (en)</strong></td>
<td>0.0308</td>
<td>0.363</td>
<td>0.618</td>
<td>2.304</td>
<td></td>
</tr>
<tr>
<td><a href="#pile-uncopyrighted"><strong>Pile (NIH_ExPorter)</strong></a></td>
<td><strong>English (en)</strong></td>
<td>0.914</td>
<td>0.288</td>
<td>0.431</td>
<td>1.979</td>
<td></td>
</tr>
<tr>
<td colspan="7"><h4 id="category-book">Category: Book</h4></td></tr>
<tr>
<td><a href="#gallicamonographies"><strong>GallicaMonographies</strong></a></td>
<td><strong>French (fr)</strong></td>
<td>0.278</td>
<td>15.106</td>
<td>25.169</td>
<td>90.456</td>
<td></td>
</tr>
<tr>
<td rowspan="5" style="vertical-align: top;"><a href="#gutenberg"><strong>Gutenberg</strong></a></td>
<td><strong>English (en)</strong></td>
<td>0.0563</td>
<td>3.544</td>
<td>5.516</td>
<td>20.579</td>
<td></td>
</tr>
<tr>
<td><strong>French (fr)</strong></td>
<td>0.00345</td>
<td>0.227</td>
<td>0.383</td>
<td>1.392</td>
<td></td>
</tr>
<tr>
<td><strong>German (de)</strong></td>
<td>0.00188</td>
<td>0.0987</td>
<td>0.193</td>
<td>0.654</td>
<td></td>
</tr>
<tr>
<td><strong>Italian (it)</strong></td>
<td>0.000958</td>
<td>0.0657</td>
<td>0.129</td>
<td>0.414</td>
<td></td>
</tr>
<tr>
<td><strong>Spanish (es)</strong></td>
<td>0.000735</td>
<td>0.0512</td>
<td>0.0920</td>
<td>0.303</td>
<td></td>
</tr>
<tr>
<td colspan="7"><h4 id="category-legislative-texts">Category: Legislative Texts</h4></td></tr>
<tr>
<td><a href="#pile-uncopyrighted"><strong>Pile (FreeLaw)</strong></a></td>
<td><strong>English (en)</strong></td>
<td>3.415</td>
<td>8.204</td>
<td>14.011</td>
<td>52.580</td>
<td></td>
</tr>
<tr>
<td rowspan="4" style="vertical-align: top;"><a href="#eurovoc"><strong>Eurovoc</strong></a></td>
<td><strong>English (en)</strong></td>
<td>0.272</td>
<td>1.523</td>
<td>2.571</td>
<td>9.468</td>
<td></td>
</tr>
<tr>
<td><strong>Italian (it)</strong></td>
<td>0.245</td>
<td>0.731</td>
<td>1.527</td>
<td>4.867</td>
<td></td>
</tr>
<tr>
<td><strong>German (de)</strong></td>
<td>0.247</td>
<td>0.678</td>
<td>1.497</td>
<td>4.915</td>
<td></td>
</tr>
<tr>
<td><strong>Spanish (es)</strong></td>
<td>0.246</td>
<td>0.757</td>
<td>1.411</td>
<td>4.684</td>
<td></td>
</tr>
<tr>
<td><a href="#opendata"><strong>OpenData</strong></a></td>
<td><strong>French (fr)</strong></td>
<td>1.169</td>
<td>0.755</td>
<td>1.209</td>
<td>4.638</td>
<td></td>
</tr>
<tr>
<td><a href="#questionsecritesparlement"><strong>QuestionsEcritesParlement</strong></a></td>
<td><strong>French (fr)</strong></td>
<td>0.189</td>
<td>0.108</td>
<td>0.156</td>
<td>0.705</td>
<td></td>
</tr>
<tr>
<td><a href="#legi"><strong>LEGI</strong></a></td>
<td><strong>French (fr)</strong></td>
<td>0.621</td>
<td>0.0878</td>
<td>0.145</td>
<td>0.563</td>
<td></td>
</tr>
<tr>
<td><a href="#amendementsparlement"><strong>AmendementsParlement</strong></a></td>
<td><strong>French (fr)</strong></td>
<td>0.673</td>
<td>0.0452</td>
<td>0.0738</td>
<td>0.274</td>
<td></td>
</tr>
<tr>
<td colspan="7"><h4 id="category-legislative-transcripts">Category: Legislative Transcripts</h4></td></tr>
<tr>
<td rowspan="4" style="vertical-align: top;"><a href="#europarl-and-europarlaligned"><strong>Europarl</strong></a></td>
<td><strong>German (de)</strong></td>
<td>0.0102</td>
<td>0.0451</td>
<td>0.0734</td>
<td>0.327</td>
<td></td>
</tr>
<tr>
<td><strong>Spanish (es)</strong></td>
<td>0.0103</td>
<td>0.0524</td>
<td>0.0733</td>
<td>0.325</td>
<td></td>
</tr>
<tr>
<td><strong>French (fr)</strong></td>
<td>0.0103</td>
<td>0.0528</td>
<td>0.0717</td>
<td>0.339</td>
<td></td>
</tr>
<tr>
<td><strong>English (en)</strong></td>
<td>0.0111</td>
<td>0.0563</td>
<td>0.0690</td>
<td>0.339</td>
<td></td>
</tr>
<tr>
<td><a href="#discourspublics"><strong>DiscoursPublics</strong></a></td>
<td><strong>French (fr)</strong></td>
<td>0.110</td>
<td>0.163</td>
<td>0.238</td>
<td>1.025</td>
<td></td>
</tr>
<tr>
<td><a href="#interventionsparlement"><strong>InterventionsParlement</strong></a></td>
<td><strong>French (fr)</strong></td>
<td>1.832</td>
<td>0.104</td>
<td>0.157</td>
<td>0.654</td>
<td></td>
</tr>
<tr>
<td colspan="7"><h4 id="category-wiki">Category: Wiki</h4></td></tr>
<tr>
<td rowspan="5" style="vertical-align: top;"><a href="#wikipedia-wikisource-wiktionary"><strong>Wikipedia</strong></a></td>
<td><strong>English (en)</strong></td>
<td>6.893</td>
<td>4.708</td>
<td>7.898</td>
<td>26.616</td>
<td></td>
</tr>
<tr>
<td><strong>German (de)</strong></td>
<td>2.877</td>
<td>1.709</td>
<td>3.476</td>
<td>11.252</td>
<td></td>
</tr>
<tr>
<td><strong>French (fr)</strong></td>
<td>2.648</td>
<td>1.726</td>
<td>2.940</td>
<td>9.879</td>
<td></td>
</tr>
<tr>
<td><strong>Spanish (es)</strong></td>
<td>1.947</td>
<td>1.245</td>
<td>2.124</td>
<td>7.161</td>
<td></td>
</tr>
<tr>
<td><strong>Italian (it)</strong></td>
<td>1.870</td>
<td>1.060</td>
<td>1.959</td>
<td>6.161</td>
<td></td>
</tr>
<tr>
<td><a href="#wikipedia-wikisource-wiktionary"><strong>wikisource</strong></a></td>
<td><strong>French (fr)</strong></td>
<td>0.186</td>
<td>0.523</td>
<td>0.795</td>
<td>3.080</td>
<td></td>
</tr>
<tr>
<td><a href="#wikipedia-wikisource-wiktionary"><strong>wiktionary</strong></a></td>
<td><strong>French (fr)</strong></td>
<td>0.650</td>
<td>0.0531</td>
<td>0.117</td>
<td>0.347</td>
<td></td>
</tr>
<tr>
<td colspan="7"><h4 id="category-math">Category: Math</h4></td></tr>
<tr>
<td><a href="#mathpile-commercial"><strong>MathPile</strong></a></td>
<td><strong>English (en)</strong></td>
<td>0.737</td>
<td>3.408</td>
<td>9.637</td>
<td>27.290</td>
<td></td>
</tr>
<tr>
<td><a href="#pile-uncopyrighted"><strong>Pile (DM_Mathematics)</strong></a></td>
<td><strong>English (en)</strong></td>
<td>0.992</td>
<td>1.746</td>
<td>4.928</td>
<td>8.127</td>
<td></td>
</tr>
<tr>
<td colspan="7"><h4 id="category-forum">Category: Forum</h4></td></tr>
<tr>
<td><a href="#pile-uncopyrighted"><strong>Pile (StackExchange)</strong></a></td>
<td><strong>English (en)</strong></td>
<td>15.269</td>
<td>4.534</td>
<td>10.275</td>
<td>33.609</td>
<td></td>
</tr>
<tr>
<td><a href="#pile-uncopyrighted"><strong>Pile (Ubuntu_IRC)</strong></a></td>
<td><strong>English (en)</strong></td>
<td>0.0104</td>
<td>0.867</td>
<td>2.159</td>
<td>5.610</td>
<td></td>
</tr>
<tr>
<td colspan="7"><h4 id="category-dialogue">Category: Dialogue</h4></td></tr>
<tr>
<td rowspan="2" style="vertical-align: top;"><a href="#claire-french-and-english"><strong>Claire</strong></a></td>
<td><strong>English (en)</strong></td>
<td>0.949</td>
<td>0.818</td>
<td>1.161</td>
<td>4.709</td>
<td><a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_claire-english_pie.png">composition details</a></td>
</tr>
<tr>
<td><strong>French (fr)</strong></td>
<td>0.0393</td>
<td>0.210</td>
<td>0.311</td>
<td>1.314</td>
<td><a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_claire-french_pie.png">composition details</a></td>
</tr>
<tr>
<td><a href="#youtube"><strong>YouTube</strong></a></td>
<td><strong>French (fr)</strong></td>
<td>0.0375</td>
<td>0.145</td>
<td>0.336</td>
<td>1.003</td>
<td></td>
</tr>
<tr>
<td><a href="#stac"><strong>STAC</strong></a></td>
<td><strong>English (en)</strong></td>
<td>0.0000450</td>
<td>0.0000529</td>
<td>0.000121</td>
<td>0.000327</td>
<td></td>
</tr>
<tr>
<td colspan="7"><h4 id="category-multilingual-parallel-corpora">Category: Multilingual Parallel Corpora</h4></td></tr>
<tr>
<td><a href="#croissantaligned"><strong>CroissantAligned</strong></a></td>
<td><strong>fr-en</strong></td>
<td>408.029</td>
<td>16.911</td>
<td>25.351</td>
<td>107.003</td>
<td></td>
</tr>
<tr>
<td rowspan="4" style="vertical-align: top;"><a href="#europarl-and-europarlaligned"><strong>EuroparlAligned</strong></a></td>
<td><strong>it-en</strong></td>
<td>1.901</td>
<td>0.100</td>
<td>0.151</td>
<td>0.638</td>
<td></td>
</tr>
<tr>
<td><strong>fr-en</strong></td>
<td>2.003</td>
<td>0.105</td>
<td>0.143</td>
<td>0.655</td>
<td></td>
</tr>
<tr>
<td><strong>es-en</strong></td>
<td>1.961</td>
<td>0.103</td>
<td>0.143</td>
<td>0.631</td>
<td></td>
</tr>
<tr>
<td><strong>de-fr</strong></td>
<td>1.792</td>
<td>0.0908</td>
<td>0.141</td>
<td>0.621</td>
<td></td>
</tr>
<tr>
<td colspan="7"><h4 id="category-programming">Category: Programming</h4></td></tr>
<tr>
<td rowspan="30" style="vertical-align: top;"><a href="#thestack-v12"><strong>TheStack</strong></a></td>
<td><strong>JAVASCRIPT</strong></td>
<td>21.109</td>
<td>8.526</td>
<td>58.609</td>
<td>141.647</td>
<td></td>
</tr>
<tr>
<td><strong>JAVA</strong></td>
<td>20.152</td>
<td>7.421</td>
<td>27.680</td>
<td>89.297</td>
<td></td>
</tr>
<tr>
<td><strong>C</strong></td>
<td>8.626</td>
<td>5.916</td>
<td>24.092</td>
<td>57.428</td>
<td></td>
</tr>
<tr>
<td><strong>PHP</strong></td>
<td>15.905</td>
<td>4.865</td>
<td>22.883</td>
<td>66.844</td>
<td></td>
</tr>
<tr>
<td><strong>PYTHON</strong></td>
<td>12.962</td>
<td>5.434</td>
<td>21.683</td>
<td>64.304</td>
<td></td>
</tr>
<tr>
<td><strong>C++</strong></td>
<td>6.378</td>
<td>4.584</td>
<td>18.835</td>
<td>50.892</td>
<td></td>
</tr>
<tr>
<td><strong>C#</strong></td>
<td>10.839</td>
<td>3.574</td>
<td>13.381</td>
<td>46.286</td>
<td></td>
</tr>
<tr>
<td><strong>GO</strong></td>
<td>4.730</td>
<td>2.735</td>
<td>10.262</td>
<td>25.738</td>
<td></td>
</tr>
<tr>
<td><strong>TYPESCRIPT</strong></td>
<td>10.637</td>
<td>2.617</td>
<td>9.836</td>
<td>28.815</td>
<td></td>
</tr>
<tr>
<td><strong>RUST</strong></td>
<td>1.387</td>
<td>0.872</td>
<td>3.241</td>
<td>9.529</td>
<td></td>
</tr>
<tr>
<td><strong>RUBY</strong></td>
<td>3.405</td>
<td>0.646</td>
<td>2.392</td>
<td>7.139</td>
<td></td>
</tr>
<tr>
<td><strong>SWIFT</strong></td>
<td>1.756</td>
<td>0.553</td>
<td>1.876</td>
<td>6.134</td>
<td></td>
</tr>
<tr>
<td><strong>KOTLIN</strong></td>
<td>2.243</td>
<td>0.454</td>
<td>1.758</td>
<td>5.769</td>
<td></td>
</tr>
<tr>
<td><strong>SCALA</strong></td>
<td>1.362</td>
<td>0.457</td>
<td>1.587</td>
<td>4.862</td>
<td></td>
</tr>
<tr>
<td><strong>TEX</strong></td>
<td>0.398</td>
<td>0.394</td>
<td>1.507</td>
<td>3.805</td>
<td></td>
</tr>
<tr>
<td><strong>LUA</strong></td>
<td>0.559</td>
<td>0.318</td>
<td>1.367</td>
<td>3.279</td>
<td></td>
</tr>
<tr>
<td><strong>DART</strong></td>
<td>0.933</td>
<td>0.308</td>
<td>1.242</td>
<td>3.864</td>
<td></td>
</tr>
<tr>
<td><strong>PERL</strong></td>
<td>0.392</td>
<td>0.297</td>
<td>1.149</td>
<td>2.634</td>
<td></td>
</tr>
<tr>
<td><strong>MATHEMATICA</strong></td>
<td>0.0269</td>
<td>0.120</td>
<td>1.117</td>
<td>1.720</td>
<td></td>
</tr>
<tr>
<td><strong>ASSEMBLY</strong></td>
<td>0.248</td>
<td>0.209</td>
<td>0.867</td>
<td>1.575</td>
<td></td>
</tr>
<tr>
<td><strong>HASKELL</strong></td>
<td>0.545</td>
<td>0.307</td>
<td>0.807</td>
<td>2.364</td>
<td></td>
</tr>
<tr>
<td><strong>FORTRAN</strong></td>
<td>0.165</td>
<td>0.192</td>
<td>0.780</td>
<td>1.843</td>
<td></td>
</tr>
<tr>
<td><strong>JULIA</strong></td>
<td>0.299</td>
<td>0.152</td>
<td>0.660</td>
<td>1.539</td>
<td></td>
</tr>
<tr>
<td><strong>OCAML</strong></td>
<td>0.160</td>
<td>0.130</td>
<td>0.430</td>
<td>1.107</td>
<td></td>
</tr>
<tr>
<td><strong>ERLANG</strong></td>
<td>0.0994</td>
<td>0.0657</td>
<td>0.260</td>
<td>0.726</td>
<td></td>
</tr>
<tr>
<td><strong>ELIXIR</strong></td>
<td>0.282</td>
<td>0.0731</td>
<td>0.258</td>
<td>0.737</td>
<td></td>
</tr>
<tr>
<td><strong>CLOJURE</strong></td>
<td>0.126</td>
<td>0.0448</td>
<td>0.179</td>
<td>0.492</td>
<td></td>
</tr>
<tr>
<td><strong>R</strong></td>
<td>0.0392</td>
<td>0.0278</td>
<td>0.158</td>
<td>0.305</td>
<td></td>
</tr>
<tr>
<td><strong>MATLAB</strong></td>
<td>0.000967</td>
<td>0.00865</td>
<td>0.0427</td>
<td>0.0372</td>
<td></td>
</tr>
<tr>
<td><strong>RACKET</strong></td>
<td>0.00420</td>
<td>0.00479</td>
<td>0.0153</td>
<td>0.0378</td>
<td></td>
</tr>
</tbody>
</table>
<!-- TABLE END -->
### Configurable Subsets and Versions
As the Lucie Training Dataset is a collection of multilingual corpora from different sources, it can be divided into subsets based on the source and language of its constituent corpora.
<br> The list of possible configurations is available [in the YAML header of this README file](https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/v1.2/README.md?code=true#L24).
Each configuration corresponds to a pathname pattern in the [data subdirectory](https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/tree/v1.2/data).
The dataset is also available in the following versions:
- **v1.1** / [**main**](https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/tree/main/data) (default):
The data used for the first (main) pretraining phase of [Lucie-7B](https://huggingface.co/OpenLLM-France/Lucie-7B), which contains approximately 2.3T tokens. The statistics above apply to this version.
- [**v1.2**](https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/tree/v1.2/data): An improved version of the main dataset, where
- GallicaMonographies and GallicaPress have been fltered aggressively to remove documents with low OCR quality.
- The `Ubuntu_IRC` and `PhilPapers` subsets of Pile have been refined by fixing encoding issues and removing documents in languages other than English, French, Spanish, German and Italian.
- [**v1.2-recent-web**](https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/tree/v1.2-recent-web/data) : The data used for the second pretraining phase (context extension) of [Lucie-7B](https://huggingface.co/OpenLLM-France/Lucie-7B#2-context-extension).
This version is identical to `v1.2` with the exception that older snapshots of web data (before 2023 for RedPajama and before 2024 for FineWebEdu) have been excluded.
All data from `v1.1` that were not filtered out remain unchanged in `v1.2` and `v1.2-recent-web`.
Except from **v1.1**, which is a git tag, all versions are git branches in the dataset repository
(e.g. [**v1.2**](https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/tree/v1.2/data)).
The <a href="#example-use-in-python">Example use in Python</a> section contains example Python code for loading and iterating over the dataset with different configurations, including source, language and version.
### Details on Data Sources
#### AmendementsParlement
* <u>Source</u>: Corpus contributed by OpenLLM partners.
* <u>Extracted from</u>: [Regards citoyens](https://www.regardscitoyens.org/#&panel1-4). License: [CC BY-SA](https://www.regardscitoyens.org/mentions-legales/).
* <u>Description</u>: A collection of proposed amendments by the French parliament. Documents contain the text of the proposed amendment, the name of the associated law as well as information on who voted on the amendment and what was decided.
#### AmericanStories
* <u>Source</u>: [dell-research-harvard/AmericanStories](https://huggingface.co/datasets/dell-research-harvard/AmericanStories). License: [CC BY 4.0](https://huggingface.co/datasets/dell-research-harvard/AmericanStories).
* <u>Extracted from</u>: [Chronicling America](https://www.loc.gov/collections/chronicling-america/about-this-collection/). License: [Open](https://www.loc.gov/collections/chronicling-america/about-this-collection/rights-and-access/).
* <u>Description</u>: "The American Stories dataset is a collection of full article texts extracted from historical U.S. newspaper images. It includes nearly 20 million scans from the public domain Chronicling America collection maintained by the Library of Congress. The dataset is designed to address the challenges posed by complex layouts and low OCR quality in existing newspaper datasets" (from the [dataset card](https://huggingface.co/datasets/dell-research-harvard/AmericanStories)). See the dataset <a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_americanstories-english_histogram.png">composition details</a> for statistics on documents by year. Dataset containing text retrieved through OCR.
* <u>Pre-processing</u>:
* <u>Filtering</u>:
To filter out documents with excessive OCR errors, the dataset was refined by discarding texts with a perplexity higher than 2310,
measured using a CCNET model in English (see [code details](https://github.com/OpenLLM-France/Lucie-Training/blob/7f1f7efa1288f709662a9067bf2c3db856b850f8/tokenization/data.py#L2106)).
The code to compute CCNET perplexity, parallelizing on parquet files, is [available here](https://github.com/OpenLLM-France/Lucie-dataset-filtering).
* <u>Citation</u>: Melissa Dell, Jacob Carlson, Tom Bryan, Emily Silcock, Abhishek Arora, Zejiang Shen, Luca D'Amico-Wong, Quan Le, Pablo Querubin and Leander Heldring (2023). "American Stories: A Large-Scale Structured Text Dataset of Historical U.S. Newspapers," [arxiv:2308.12477](https://arxiv.org/abs/2308.12477v1).
#### Claire (French and English)
* <u>Sources</u>:
* French dataset: [OpenLLM-France/Claire-Dialogue-French-0.1](https://huggingface.co/datasets/OpenLLM-France/Claire-Dialogue-French-0.1). License: [CC BY-NC-SA 4.0](https://huggingface.co/datasets/OpenLLM-France/Claire-Dialogue-French-0.1).
* English dataset: [OpenLLM-France/Claire-Dialogue-English-0.1](https://huggingface.co/datasets/OpenLLM-France/Claire-Dialogue-English-0.1). License: [CC BY-NC-SA 4.0](https://huggingface.co/datasets/OpenLLM-France/Claire-Dialogue-English-0.1).
* <u>Extracted from</u>: see the datacards for the [French](https://huggingface.co/datasets/OpenLLM-France/Claire-Dialogue-French-0.1) and [English](https://huggingface.co/datasets/OpenLLM-France/Claire-Dialogue-English-0.1) datasets.
* <u>Description</u>: The Claire datasets are composed of transcripts of spoken conversations -- including parliamentary proceedings, interviews, debates, meetings, and free conversations -- as well as some written conversations from theater plays and written chats. The dataset is designed to help downstream performance of models fine-tuned for tasks requiring the comprehension of spontaneous spoken conversation, such as meeting summarization. Each dialogue is split into speech turns, and each speech turn is labeled with the name of the speaker or a unique identifier. See the composition details for the <a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_claire-french_pie.png">French dataset</a> and the <a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_claire-english_pie.png">English dataset</a> for a high-level view of the distribution of different types of documents in each dataset.
* <u>Citation</u>: Julie Hunter, Jérôme Louradour, Virgile Rennard, Ismaïl Harrando, Guokan Shang, Jean-Pierre Lorré (2023). The Claire French Dialogue Dataset. [arXiv:2311.16840](https://arxiv.org/abs/2311.16840).
#### CroissantAligned
* <u>Source</u>: [croissantllm/croissant_dataset_no_web_data](https://huggingface.co/datasets/croissantllm/croissant_dataset_no_web_data/tree/main/aligned_36b) (subset: `aligned_36b`). License: not specified.
* <u>Extracted from</u>:
* Translation pairs: [OPUS](https://opus.nlpl.eu/) (99.6% of the data in CroissantAligned). Pairs extracted from OPUS are labeled as "UnbabelFrEn".
* Thesis abstracts: French thesis abstract pairs. License: [ETALAB-Licence-Ouverte-v2.0](https://www.etalab.gouv.fr/wp-content/uploads/2017/04/ETALAB-Licence-Ouverte-v2.0.pdf).
* Song lyrics: [lacoccinelle](https://www.lacoccinelle.net).
* <u>Description</u>: CroissantAligned contains samples of parallel French/English (or English/French) data. Data extracted from OPUS takes the form of sentences pairs, where one sentence is in French and the other is in English. OPUS pairs were passed through a custom pipeline designed to select the highest quality translation examples. Selected pairs are labeled "UnbabelFrEn" in the CroissantAligned dataset. The thesis abstract subset contains thesis abstracts paired with translations written by the thesis authors. The song lyrics are translated by contributors to www.lacoccinelle.net. Parallel data are used to boost the multilingual capabilities of models trained on them ([Faysse et al.,2024](https://arxiv.org/pdf/2402.00786)).
* <u>Pre-processing</u>:
* <u>Language separation and tagging</u>: The original text field of [the Croissant dataset](https://huggingface.co/datasets/croissantllm/croissant_dataset_no_web_data) contains a sentence or passage in French or English immediately followed by its translation without any indication of which passage is in which language. The first step was thus to split each text into separate, monolingual passages and tag each passage with the appropriate language code, identified automatically using the [langid library](https://pypi.org/project/langid/) (see [code details](https://github.com/OpenLLM-France/Lucie-Training/blob/cdec8fd6369385455829ab39c2f04bcb1a8a475a/tokenization/data.py#L1407)). In the Lucie Training Dataset, the `extra` metadata field for CroissantAligned contains separate keys, `text_fr` for French and `text_en` for English, that stores the texts separately.
* <u>Random combination of texts prefixed by language</u>: To create the text values, each monolingual text was repaired with its translation, but random separators and various methods of prefixing the text with the language (name or code) were added.
This was done as a precaution to prevent models trained on this data from switching languages when generating text and can be seen as a very basic instruction to translate the source (first) text into the target (second) text (see [code details](https://github.com/OpenLLM-France/Lucie-Training/blob/cdec8fd6369385455829ab39c2f04bcb1a8a475a/tokenization/data.py#L1458)).
* <u>Citation</u>: Manuel Faysse, Patrick Fernandes, Nuno M. Guerreiro, António Loison, Duarte M. Alves, Caio Corro, Nicolas Boizard, João Alves, Ricardo Rei, Pedro H. Martins, Antoni Bigata Casademunt, François Yvon, André F.T. Martins, Gautier Viaud, Céline Hudelot, Pierre Colombo (2024). "CroissantLLM: A Truly Bilingual French-English Language Model," [arXiv:2402.00786](https://arxiv.org/abs/2402.00786).
#### DiscoursPublics
* <u>Source</u>: Corpus contributed by OpenLLM partners.
* <u>Extracted from</u>: [Vie Publique](https://www.vie-publique.fr/collection-discours-publics). License: [ETALAB-Licence-Ouverte-v2.0](https://www.vie-publique.fr/mentions-legales).
* <u>Description</u>: A collection of public speeches from the principal public actors in France including speeches from the French President starting from 1974 and from the Prime Minister and members of the government starting from 1980.
* <u>Pre-processing</u>:
* <u>Text cleaning</u>: the mention of the source url and the number of views were removed from the text.
#### Europarl and EuroparlAligned
* <u>Sources</u>:
* `fr-en`, `es-en`, `it-en` parallel data: [Europarl v7](https://www.statmt.org/europarl/v7/). License: [Open](https://www.statmt.org/europarl/).
* `fr`, `en`, `de`, `es` monolingual data and `de-fr` parallel data: [Europarl v10](https://www.statmt.org/europarl/v10/training-monolingual/). License: [Open](https://www.statmt.org/europarl/).
* <u>Description</u>: "The Europarl parallel corpus is extracted from the proceedings of the European Parliament. It includes versions in 21 European languages: Romanic (French, Italian, Spanish, Portuguese, Romanian), Germanic (English, Dutch, German, Danish, Swedish), Slavik (Bulgarian, Czech, Polish, Slovak, Slovene), Finni-Ugric (Finnish, Hungarian, Estonian), Baltic (Latvian, Lithuanian), and Greek. The goal of the extraction and processing was to generate sentence aligned text for statistical machine translation systems" ([www.statmt.org](https://www.statmt.org/europarl/)).
* <u>Pre-processing</u>:
* <u>Random combination of aligned texts prefixed by language</u>: The same process as used for the [CroissantAligned](#croissantaligned) dataset was applied to the EuroparlAligned dataset (see [code details](https://github.com/OpenLLM-France/Lucie-Training/blob/cdec8fd6369385455829ab39c2f04bcb1a8a475a/tokenization/data.py#L1350)).
In the Lucie Training Dataset, the `extra` field in the metadata for EuroparlAligned provides texts in the two languages under the sub-fields `text_1` and `text_2`, and the corresponding language codes under `lang_1` and `lang_2`.
* <u>Citation</u>: Philipp Koehn (2005). "Europarl: A Parallel Corpus for Statistical Machine Translation," MT Summit.
#### Eurovoc
* <u>Source</u>: [EuropeanParliament/Eurovoc](https://huggingface.co/datasets/EuropeanParliament/Eurovoc). License: [EUPL 1.1](https://huggingface.co/datasets/EuropeanParliament/Eurovoc).
* <u>Extracted from</u>: [Cellar](https://op.europa.eu/en/web/cellar). License: [CC BY-4.0](https://op.europa.eu/en/web/about-us/legal-notices/publications-office-of-the-european-union-copyright).
* <u>Description</u>: A collection of mutlilingual documents from the data repository of the Publications Office of the European Union annotated with Eurovoc labels. The corpus contains legal, policy-related, historical and organizational information about the EU. Dataset containing text retrieved through OCR.
* <u>Pre-processing</u>:
* <u>Filtering</u>:
To filter out documents with excessive OCR errors, the dataset was refined by discarding texts with a perplexity higher than 1500,
measured using a CCNET model in English (see [code details](https://github.com/OpenLLM-France/Lucie-Training/blob/7f1f7efa1288f709662a9067bf2c3db856b850f8/tokenization/data.py#L1590)).
The code to compute CCNET perplexity, parallelizing on parquet files, is [available here](https://github.com/OpenLLM-France/Lucie-dataset-filtering).
* <u>Text cleaning</u>:
Mentions of Credit Institutions Directives (CID) that appears in the raw texts such as `(cid:146)` were removed.
* <u>Citations</u>:
* Ilias Chalkidis, Emmanouil Fergadiotis, Prodromos Malakasiotis, Nikolaos Aletras, and Ion Androutsopoulos (2019). "[Extreme Multi-Label Legal Text Classification: A Case Study in EU Legislation](https://arxiv.org/pdf/1905.10892)," Proceedings of the Natural Legal Language Processing Workshop 2019, pages 78–87, Minneapolis, Minnesota. Association for Computational Linguistics.
* Ilias Chalkidis, Manos Fergadiotis, Prodromos Malakasiotis and Ion Androutsopoulos (2019). "[Large-Scale Multi-Label Text Classification on EU Legislation](https://arxiv.org/pdf/1906.02192)," Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (ACL 2019), Florence, Italy, (short papers).
* Andrei-Marius Avram, Vasile Pais, and Dan Ioan Tufis (2021). "[PyEuroVoc: A Tool for Multilingual Legal Document Classification with EuroVoc Descriptors](https://arxiv.org/pdf/2108.01139)," Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021), pages 92–101, Held Online. INCOMA Ltd.
* Zein Shaheen, Gerhard Wohlgenannt and Erwin Filtz (2020). "Large scale legal text classification using transformer models," [arXiv:2010.12871](https://arxiv.org/abs/2010.12871v1).
#### FineWebEdu
* <u>Source</u>: [HuggingFaceFW/fineweb-edu](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu). License: [ODC-BY](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu).
* <u>Extracted from</u>: [FineWeb](https://huggingface.co/datasets/HuggingFaceFW/fineweb). License: [ODC-BY](https://huggingface.co/datasets/HuggingFaceFW/fineweb).
* <u>Description</u>: A 1.3 trillion token selection from [FineWeb](https://huggingface.co/datasets/HuggingFaceFW/fineweb), which contains 15 trillion tokens of curated data from 96 Common Crawl dumps. Content in FineWebEdu has been selected by a custom designed classifier for its high-quality, educational content. Most recent crawl: 2024-10 (see <a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_finewebedu-english_histogram.png">composition details</a> for information about the crawls included in this dataset.)
* <u>Pre-processing</u>:
* <u>Removing duplicate urls</u>: urls were removed if their base domain overlapped with a dataset already in the Lucie Training Dataset (e.g., "philpapers.org") in order to increase diversity of content (see [code details](https://github.com/OpenLLM-France/Lucie-Training/blob/7f1f7efa1288f709662a9067bf2c3db856b850f8/tokenization/text.py#L843))
* <u>Filtering by robots.txt files</u>: we collect robots.txt and remove all documents for which CCBot is disallowed or for which we failed to collect information as of July 2024 in an effort to select data free from opt-out evidence according to the 4th article of the copyright European directive (2019).
* <u>Citation</u>: Guilherme Penedo, Hynek Kydlíček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin Raffel, Leandro Von Werra, Thomas Wolf (2024). "The FineWeb Datasets: Decanting the Web for the Finest Text Data at Scale," [ arXiv:2406.17557](https://arxiv.org/abs/2406.17557).
#### GallicaMonographies
* <u>Source</u>: Corpus contributed by OpenLLM partners. A version is also published here: [PleIAs/French-PD-Books](https://huggingface.co/datasets/PleIAs/French-PD-Books). License: Public domain.
* <u>Extracted from</u>: [Gallicagram](https://shiny.ens-paris-saclay.fr/app/gallicagram).
* <u>Description</u>: A large collection of French monographies in the public domain made available through the French National Library ([Gallica](https://gallica.bnf.fr/accueil/fr/content/accueil-fr?mode=desktop)). Dataset containing text retrieved through OCR.
* <u>Pre-processing</u>:
* <u>Text cleaning for v1.1</u>:
To filter out documents with excessive OCR errors, the dataset was split into chunks and chunks were kept if the source language was detected as French by [FastText](https://github.com/facebookresearch/fastText) with a confidence score of 0.65 or above, and the perplexity score, as measured using a CCNET model in French, was between 10 and 1000.
The code to compute CCNET perplexity, parallelizing on parquet files, is [available here](https://github.com/OpenLLM-France/Lucie-dataset-filtering).
* <u>Filtering for v1.2</u>: Using OCR scores provided in the metadata of the source corpus, documents with an OCR score of less than 90 out of 100 were filtered out.
#### GallicaPress
* <u>Source</u>: Corpus contributed by OpenLLM partners. A version is also published here: [PleIAs/French-PD-Newspapers](https://huggingface.co/datasets/PleIAs/French-PD-Newspapers). License: Public domain.
* <u>Extracted from</u>: [Gallicagram](https://shiny.ens-paris-saclay.fr/app/gallicagram).
* <u>Description</u>: A large collection of French newspapers and periodicals in the public domain made available through the French National Library ([Gallica](https://gallica.bnf.fr/accueil/fr/content/accueil-fr?mode=desktop)). Dataset containing text retrieved through OCR.
* <u>Pre-processing</u>:
* <u>Text cleaning for v1.1</u>:
To filter out documents with excessive OCR errors, the dataset was split into chunks and chunks were kept if the source language was detected as French by [FastText](https://github.com/facebookresearch/fastText) with a confidence score of 0.65 or above, and the perplexity score, as measured using a CCNET model in French, was between 10 and 1000 (see [code details](https://github.com/OpenLLM-France/Lucie-Training/blob/7f1f7efa1288f709662a9067bf2c3db856b850f8/tokenization/data.py#L1840)).
The code to compute CCNET perplexity, parallelizing on parquet files, is [available here](https://github.com/OpenLLM-France/Lucie-dataset-filtering).
* <u>Filtering for v1.2</u>: Using OCR scores provided in the metadata of the source corpus, documents with an OCR score of less than 90 out of 100 were filtered out.
#### Gutenberg
* <u>Source</u>: Corpus compiled by OpenLLM partners.
* <u>Extracted from</u>:
* [aleph.gutenberg.org](http://aleph.gutenberg.org/) via [Project Gutenberg](https://www.gutenberg.org/). License: [Open](https://www.gutenberg.org/policy/terms_of_use.html).
* [pgcorpus](https://github.com/pgcorpus/gutenberg). License: [CC BY-4.0](https://zenodo.org/records/2422561).
* <u>Description</u>: A collection of free eBooks, manually prepared by human annotators.
* <u>Pre-processing</u>:
* <u>Filtering</u>: The dataset was filtered based on the author date of death, so that only texts from authors who died more than 70 years ago are included (80 years for French authors). See [code details here](https://github.com/OpenLLM-France/Lucie-Training/blob/7f1f7efa1288f709662a9067bf2c3db856b850f8/tokenization/data.py#L1136). This filtering was done to ensure that the texts are in the public domain.
* <u>Text cleaning</u>: Headers and footers containing information about Project Gutenberg were removed (see [code details](https://github.com/OpenLLM-France/Lucie-Training/blob/cdec8fd6369385455829ab39c2f04bcb1a8a475a/tokenization/text.py#L93)).
#### HAL
* <u>Source</u>: [bigscience-data/roots_fr_hal_archives_ouvertes](https://huggingface.co/datasets/bigscience-data/roots_fr_hal_archives_ouvertes). License: Roots dataset.
* <u>Extracted from</u>: [HAL](https://hal.science/) ([Open access](https://about.hal.science/)).
* <u>Description</u>: A collection of scientific papers and manuscripts distributed through the open science platform HAL. Dataset containing text retrieved through OCR.
* <u>Pre-processing</u>:
* <u>Filtering</u>:
To filter out documents with excessive OCR errors, the dataset was refined by discarding texts with a perplexity higher than 930,
measured using a CCNET model in French (see [code details](https://github.com/OpenLLM-France/Lucie-Training/blob/7f1f7efa1288f709662a9067bf2c3db856b850f8/tokenization/data.py#L1929)).
The code to compute CCNET perplexity, parallelizing on parquet files, is [available here](https://github.com/OpenLLM-France/Lucie-dataset-filtering).
* <u>Citation</u>: Hugo Laurençon, Lucile Saulnier, Thomas Wang, Christopher Akiki, Albert Villanova del Moral, Teven Le Scao, Leandro Von Werra, Chenghao Mou, Eduardo González Ponferrada, Huu Nguyen, Jörg Frohberg, Mario Šaško, Quentin Lhoest, Angelina McMillan-Major, Gerard Dupont, Stella Biderman, Anna Rogers, Loubna Ben allal, Francesco De Toni, Giada Pistilli, Olivier Nguyen, Somaieh Nikpoor, Maraim Masoud, Pierre Colombo, Javier de la Rosa, Paulo Villegas, Tristan Thrush, Shayne Longpre, Sebastian Nagel, Leon Weber, Manuel Muñoz, Jian Zhu, Daniel Van Strien, Zaid Alyafeai, Khalid Almubarak, Minh Chien Vu, Itziar Gonzalez-Dios, Aitor Soroa, Kyle Lo, Manan Dey, Pedro Ortiz Suarez, Aaron Gokaslan, Shamik Bose, David Adelani, Long Phan, Hieu Tran, Ian Yu, Suhas Pai, Jenny Chim, Violette Lepercq, Suzana Ilic, Margaret Mitchell, Sasha Alexandra Luccioni, Yacine Jernite (2022). "[The BigScience ROOTS Corpus: A 1.6TB Composite Multilingual Dataset](https://proceedings.neurips.cc/paper_files/paper/2022/hash/ce9e92e3de2372a4b93353eb7f3dc0bd-Abstract-Datasets_and_Benchmarks.html)," Advances in Neural Information Processing Systems (NeurIPS), 35, 31809-31826.
#### InterventionsParlement
* <u>Source</u>: Corpus contributed by OpenLLM partners.
* <u>Extracted from</u>: [Regards citoyens](https://www.regardscitoyens.org/#&panel1-4). License: [CC BY-SA](https://www.regardscitoyens.org/mentions-legales/).
* <u>Description</u>: Transcripts of speeches made during French parlementary debates.
<!-- * <u>Citation</u>: No paper found. -->
#### LEGI
* <u>Source</u>: Corpus contributed by OpenLLM partners. A version is also published here: [Nicolas-BZRD/DILA_OPENDATA_FR_2023](https://huggingface.co/datasets/Nicolas-BZRD/DILA_OPENDATA_FR_2023/tree/main).
* <u>Extracted from</u>: [OpenData](https://echanges.dila.gouv.fr/OPENDATA/) (Data collection date: October, 2023).
* <u>Description</u>: "The French Government Open Data (DILA) Dataset is a collection of text data extracted from various sources provided by the French government, specifically the Direction de l'information légale et administrative (DILA). This dataset contains a wide range of legal, administrative, and legislative documents. The data has been organized into several categories for easy access and analysis" (from the [dataset card](https://huggingface.co/datasets/Nicolas-BZRD/DILA_OPENDATA_FR_2023/tree/main)).
#### MathPile (Commercial)
* <u>Source</u>: [GAIR/MathPile_Commercial](https://huggingface.co/datasets/GAIR/MathPile_Commercial). License: [CC BY-SA 4.0](https://huggingface.co/datasets/GAIR/MathPile_Commercial).
* <u>Extracted from</u>: [MathPile](https://huggingface.co/datasets/GAIR/MathPile). License: [CC BY-SA-NC 4.0](https://huggingface.co/datasets/GAIR/MathPile).
* <u>Description</u>: A preprocessed collection of documents focused on math, including Textbooks, arXiv, Wikipedia, ProofWiki, StackExchange, and web pages from Common Crawl. The content targets a range of levels, from kindergarten through postgraduate level. MathPile_Commercial was obtained by removing documents from MathPile that do not allow commercial use.
* <u>Pre-processing</u>:
* <u>Formatting</u>: Converted the content of StackExchange questions and answers to match the {"text": value} format, using the following formula:
```python
text = sample["question"]["Body"] + "\n\n".join([answer["Body"] for answer in sample["answers"]])
```
* <u>Citation</u>: Zengzhi Wang, Rui Xia and Pengfei Liu (2023). "Generative AI for Math: Part I -- MathPile: A Billion-Token-Scale Pretraining Corpus for Math," [ arXiv:2312.17120](https://export.arxiv.org/abs/2312.17120).
#### OpenData
* <u>Source</u>: [Nicolas-BZRD/DILA_OPENDATA_FR_2023](https://huggingface.co/datasets/Nicolas-BZRD/DILA_OPENDATA_FR_2023/tree/main) (balo, dole, inca, kali, and sarde subsets). License: [ODC-BY](https://huggingface.co/datasets/Nicolas-BZRD/DILA_OPENDATA_FR_2023/tree/main).
* <u>Extracted from</u>: [OpenData](https://echanges.dila.gouv.fr/OPENDATA/) (Data collection date: October, 2023).
* <u>Description</u>: "The French Government Open Data (DILA) Dataset is a collection of text data extracted from various sources provided by the French government, specifically the Direction de l'information légale et administrative (DILA). This dataset contains a wide range of legal, administrative, and legislative documents. The data has been organized into several categories for easy access and analysis" (from the [dataset card](https://huggingface.co/datasets/Nicolas-BZRD/DILA_OPENDATA_FR_2023/tree/main)).
<!-- * <u>Citation</u>: No paper found. -->
#### OpenEdition
* <u>Source</u>: Corpus contributed by OpenLLM partners.
* <u>Extracted from</u>: [Open Edition](https://www.openedition.org/). License: [Open Edition Books](https://www.openedition.org/12554).
* <u>Description</u>: A collection of scientific books, journal articles, blog entries and event descriptions.
<!-- * <u>Citation</u>: No paper found. -->
#### PeS2o (v2)
* <u>Source</u>: [allenai/peS2o](https://huggingface.co/datasets/allenai/peS2o) version [v2](https://huggingface.co/datasets/allenai/peS2o/tree/main/data/v2). License: [ODC BY-v1.0](https://github.com/allenai/s2orc/).
* <u>Extracted from</u>: [S2ORC](https://github.com/allenai/s2orc) (see [aclanthology](https://aclanthology.org/2020.acl-main.447/)). License: [ODC BY-v1.0](https://github.com/allenai/s2orc/).
* <u>Description</u>: A preprocessed collection of academic papers designed for pre-training of language models. PeS2o is composed of two subsets: one containing full papers and one containing only paper titles and abstracts. Dataset containing (some) text retrieved through OCR. Knowledge cutoff: 2023-01-03.
* <u>Citation</u>: Luca Soldaini and Kyle Lo (2023). "peS2o (Pretraining Efficiently on S2ORC) Dataset," Allen Institute for AI. [GitHub](https://github.com/allenai/pes2o).
#### Pile (Uncopyrighted)
* <u>Source</u>: [monology/pile-uncopyrighted](https://huggingface.co/datasets/monology/pile-uncopyrighted). License: [Other](https://huggingface.co/datasets/monology/pile-uncopyrighted).
* <u>Extracted from</u>: [FreeLaw](https://free.law/), [StackExchange](https://stackexchange.com/), [USPTO Backgrounds](https://bulkdata.uspto.gov/), [DM Mathematics](https://github.com/google-deepmind/mathematics_dataset), [Ubuntu IRC](https://irclogs.ubuntu.com/), [PhilPapers](https://philpapers.org/), NIH ExPorter from [The Pile](https://huggingface.co/datasets/EleutherAI/pile). License: [MIT](https://arxiv.org/pdf/2201.07311).
* <u>Description</u> (from the [Datasheet](https://arxiv.org/abs/2201.07311)):
* FreeLaw: "The Free Law Project is US registered non-profit that provide access to millions of legal opinions and analytical tools for academic studies in the legal realm."
* StackExchange: "The StackExchange dataset is a dump of anonymized user-contributed content on the Stack Exchange network, a popular collection of websites centered around user-contributed questions and answers."
* USPTO Backgrounds: "The USPTO Backgrounds dataset is a set of background sections from patents granted by the United States Patent and Trademark Office, derived from its published bulk archives."
* DM Mathematics: "The DeepMind Mathematics dataset consists of a collection of mathematical problems such as algebra, arithmetic, calculus, number theory, and probability, formatted as natural language prompts [Saxton et al., 2019](https://arxiv.org/abs/1904.01557)."
* Ubuntu IRC: "The Ubuntu IRC dataset is derived from the publicly available chatlogs of all Ubunturelated channels on the Freenode IRC chat server."
* PhilPapers: a dataset of open access philosophy publications from an international database maintained by the Center for Digital Philosophy at the University of Western Ontario.
* NIH ExPORTER: "The NIH Grant abstracts provides a bulk-data repository for awarded applications through the ExPORTER4 service covering the fiscal years 1985-present."
* <u>Pre-processing (v1.2 only)</u>:
* <u>Filtering of PhilPapers</u>: Papers were removed if their language, detected using [Stanza](https://github.com/stanfordnlp/stanza), was not classified as English, French, German, Spanish or Italian.
* <u>Filtering and text cleaning of Ubuntu IRC</u>: Texts from some channels were excluded to avoid data from languages other than English, French, German, Spanish or Italian and certain encoding errors were fixed (see [code details here](https://github.com/OpenLLM-France/Lucie-Training/blob/cdec8fd6369385455829ab39c2f04bcb1a8a475a/tokenization/text.py#L190)).
* <u>Citations</u>:
* Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, Connor Leahy (2020). "The Pile: An 800GB Dataset of Diverse Text for Language Modeling," [ arXiv:2101.00027](https://arxiv.org/abs/2101.00027).
* Stella Biderman, Kieran Bicheno, Leo Gao (2022). "Datasheet for the Pile," [arXiv:2201.07311](https://arxiv.org/abs/2201.07311).
#### QuestionsEcritesParlement
* <u>Source</u>: Corpus contributed by OpenLLM partners.
* <u>Extracted from</u>: [Regards citoyens](https://www.regardscitoyens.org/#&panel1-4). License: [CC BY-SA](https://www.regardscitoyens.org/mentions-legales/).
* <u>Description</u>: Collection of long written questions, read during a session at the French National Assembly. Questions are asked by a member of the French parliament and addressed to a minister (who is given two months to respond).
<!-- * <u>Citation</u>: No paper found. -->
#### RedPajama (v2)
* <u>Source</u>: [togethercomputer/RedPajama-Data-V2](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-V2). License: [Apache 2.0](https://github.com/togethercomputer/RedPajama-Data) (data preparation code), Not specified (data) but see [Common Crawl terms of use](https://commoncrawl.org/terms-of-use).
* <u>Extracted from</u>: [Common Crawl](https://commoncrawl.org/).
* <u>Description</u>: "RedPajama-V2 is an open dataset for training large language models. The dataset includes over 100B text documents coming from 84 CommonCrawl snapshots and processed using the [CCNet](https://github.com/facebookresearch/cc_net) pipeline. Out of these, there are 30B documents in the corpus that additionally come with quality signals, and 20B documents that are deduplicated" (from [GitHub](https://github.com/togethercomputer/RedPajama-Data)). Most recent crawl for French data in the Lucie Training Dataset v1.1: 2023-14. (For more details on the time periods covered by crawls in this dataset see the composition details for <a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_redpajama-french_histogram.png">French</a>, <a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_redpajama-german_histogram.png">German</a>, <a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_redpajama-italian_histogram.png">Italian</a> and <a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_redpajama-spanish_histogram.png">Spanish</a>.)
* <u>Pre-processing and deduplication</u>:
* <u> Url filtering: </u>
* <u>Removing duplicate urls</u>: urls were removed if their base domain overlapped with a dataset already in the Lucie Training Dataset (e.g., "theses.fr") in order to increase diversity of content (see [code details](https://github.com/OpenLLM-France/Lucie-Training/blob/7f1f7efa1288f709662a9067bf2c3db856b850f8/webdata_processing/base.py#L154)).
* <u>Filtering certain toxic content</u>: urls from a list of blacklisted content were removed (see [code details](https://github.com/OpenLLM-France/Lucie-Training/blob/7f1f7efa1288f709662a9067bf2c3db856b850f8/webdata_processing/base.py#L177)).
* <u>Filtering by robots.txt files</u>: we collect robots.txt and remove all documents for which CCBot is disallowed or for which we failed to collect information as of July 2024 in an effort to select data free from opt-out evidence according to the 4th article of the copyright European directive (2019).
* <u>Filtering</u>: A series of filters were applied using [quality signals](https://github.com/togethercomputer/RedPajama-Data?tab=readme-ov-file#quality-annotations) already available in the dataset. This includes (see [code details](https://github.com/OpenLLM-France/Lucie-Training/blob/d9cccb7bfac37b8c8285f9c04aa67d907ce475f0/webdata_processing/base.py#L36)):
* CCnet perplexity below 10 or above 1000
* C4 filtering (including removal of documents that contain toxic words)
* Gopher filtering and repetition removal
* Redpajama document deduplication
* <u>Removal of personally identifying information (PII)</u>: email addresses and ip addresses were replaced with random addresses (see [code details](https://github.com/OpenLLM-France/Lucie-Training/blob/7f1f7efa1288f709662a9067bf2c3db856b850f8/webdata_processing/base.py#L301)).
* <u>MinHash deduplication</u> was performed on each snapshot and language independantly as proposed in FineWeb. For minhash configuration [see code details](https://github.com/OpenLLM-France/Lucie-Training/blob/7f1f7efa1288f709662a9067bf2c3db856b850f8/webdata_processing/minhash.py#L63).
The [Datatrove](https://github.com/huggingface/datatrove) library was used to perform both filtering and deduplication stages.
* <u>Citation</u>: Together Computer (2023). "RedPajama-Data-v2: an Open Dataset with 30 Trillion Tokens for Training Large Language Models," [GitHub](https://github.com/togethercomputer/RedPajama-Data).
#### STAC
* <u>Source</u>: [STAC](https://www.irit.fr/STAC/corpus.html). License: [CC BY-SA-NC 4.0](https://www.irit.fr/STAC/corpus.html).
* <u>Description</u>: A collection of multiparty chats from an online version of the game Settlers of Catan. The full STAC corpus contains annotations for discourse structure. We use only the text of the chats.
* <u>Citation</u>: Nicholas Asher, Julie Hunter, Mathieu Morey, Farah Benamara and Stergos Afantenos (2016). "[Discourse structure and dialogue acts in multiparty dialogue: the STAC corpus](https://hal.science/hal-02124399/file/asher_22646.pdf)," The Tenth International Conference on Language Resources and Evaluation (LREC 2016). European Language Resources Association, pp. 2721-2727.
#### TheStack (v1.2)
* <u>Source</u>: [bigcode/the-stack-dedup](https://huggingface.co/datasets/bigcode/the-stack-dedup). License: [Other](https://huggingface.co/datasets/bigcode/the-stack-dedup) (mixture of copyleft licenses).
* <u>Extracted from</u>: [GitHub](https://github.com/) via [GHarchive](https://www.gharchive.org/). Mixed licenses for source.
* <u>Description</u>: "The Stack contains over 6TB of permissively-licensed source code files covering 358 programming languages. The dataset was created as part of the [BigCode Project](https://www.bigcode-project.org/), an open scientific collaboration working on the responsible development of Large Language Models for Code (Code LLMs). The Stack serves as a pre-training dataset for Code LLMs, i.e., code-generating AI systems which enable the synthesis of programs from natural language descriptions as well as other from code snippets. This is the near-deduplicated version with 3TB data" (from the [dataset card](https://huggingface.co/datasets/bigcode/the-stack-dedup)).
* <u>Citation</u>: Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou, Carlos Muñoz Ferrandis, Yacine Jernite, Margaret Mitchell, Sean Hughes, Thomas Wolf, Dzmitry Bahdanau, Leandro von Werra and Harm de Vries (2022). "The Stack: 3 TB of permissively licensed source code," [arxiv:2211.15533](https://arxiv.org/abs/2211.15533).
#### Theses
* <u>Source</u>: Corpus contributed by OpenLLM partners.
* <u>Extracted from</u>: [theses.fr](https://theses.fr/?domaine=theses) (License: [Licence Ouverte / Open Licence version 2.0](https://www.data.gouv.fr/fr/datasets/theses-soutenues-en-france-depuis-1985/)) and [HAL](https://hal.science/) ([Open access](https://about.hal.science/)).
* <u>Description</u>: A collection of doctoral theses published in France. Dataset containing text retrieved through OCR.
* <u>Pre-processing</u>:
* <u>Text cleaning</u>:
* Title pages about HAL, pages containing a significant fraction of control characters, and duplicate lines were removed (see [code details](https://github.com/OpenLLM-France/Lucie-Training/blob/cdec8fd6369385455829ab39c2f04bcb1a8a475a/tokenization/text.py#L277)).
* Because the results of OCR on tables and graphics can give rise to garbage text, the text was cleaned by removing the most suspicious chunks.
In particular, a chunk was removed if it was not detected as being written in French, English, Spanish, German or Italian, or if the perplexity of a CCNet Language Model on the chunk was higher than 2000 (see [code details](https://github.com/OpenLLM-France/Lucie-Training/blob/7f1f7efa1288f709662a9067bf2c3db856b850f8/tokenization/data.py#L1946)).
The code to compute CCNET perplexity, parallelizing on parquet files, is [available here](https://github.com/OpenLLM-France/Lucie-dataset-filtering).
* <u>Filtering</u>: Texts with fewer than 1000 words or 10000 characters were removed (see [code details](https://github.com/OpenLLM-France/Lucie-Training/blob/7f1f7efa1288f709662a9067bf2c3db856b850f8/tokenization/data.py#L1975)).
<!-- * <u>Citation</u>: No paper found. -->
#### Wikipedia, Wikisource, Wiktionary
* <u>Source</u>: Corpus contributed by LINAGORA Labs (OpenLLM-France).
Also published here:
* [OpenLLM-France/wikipedia](https://huggingface.co/datasets/OpenLLM-France/wikipedia)
* [OpenLLM-France/wikisource](https://huggingface.co/datasets/OpenLLM-France/wikisource)
* [OpenLLM-France/wiktionary](https://huggingface.co/datasets/OpenLLM-France/wiktionary)
* <u>Extracted from</u>: [Wikimedia dumps](https://dumps.wikimedia.org/other/enterprise_html/runs/). License: [GFDL/CC BY-SA](https://dumps.wikimedia.org/legal.html).
<!-- * <u>Description</u>: TODO -->
<!-- * <u>Pre-processing</u>: TODO -->
<!-- * <u>Citation</u>: No paper found. -->
#### YouTube
* <u>Source</u>: Corpus contributed by LINAGORA Labs (OpenLLM-France) and [LeVoiceLab](https://www.levoicelab.org/).
* <u>Extracted from</u>: [YouTube](https://www.youtube.com/). <!-- License: TODO? -->
* <u>Description</u>: French subtitles from videos published with permissive licenses on YouTube. <!-- TODO -->
## Example use in Python
### Load the dataset
Load and iterate over the full dataset using the `datasets` library:
```python
from datasets import load_dataset
dataset = load_dataset("OpenLLM-France/Lucie-Training-Dataset", split="train", streaming=True)
for sample in dataset:
text = sample["text"]
# … do something with the text
```
### Iterate over a subset
Several configurations are available to select a language, a source, or both, illustrated in the following examples.
The list of possible configurations can be obtained programmatically:
```python
from datasets import load_dataset_builder
config_names = list(load_dataset_builder("OpenLLM-France/Lucie-Training-Dataset").builder_configs)
print(config_names)
```
```plaintext
['default', 'en', 'fr', 'de', 'es', 'it', 'de,fr', 'es,en', 'fr,en', 'it,en', 'natural', 'code', 'code-assembly', 'code-c', 'code-c#', 'code-c++', 'code-clojure', 'code-dart', 'code-elixir', 'code-erlang', 'code-fortran', 'code-go', 'code-haskell', 'code-java', 'code-javascript', 'code-julia', 'code-kotlin', 'code-lua', 'code-mathematica', 'code-matlab', 'code-ocaml', 'code-perl', 'code-php', 'code-python', 'code-r', 'code-racket', 'code-ruby', 'code-rust', 'code-scala', 'code-swift', 'code-tex', 'code-typescript', 'AmendementsParlement', 'AmericanStories', 'Claire', 'Claire-en', 'Claire-fr', 'CroissantAligned', 'DiscoursPublics', 'Europarl', 'Europarl-de', 'Europarl-en', 'Europarl-es', 'Europarl-fr', 'EuroparlAligned', 'EuroparlAligned-de,fr', 'EuroparlAligned-es,en', 'EuroparlAligned-fr,en', 'EuroparlAligned-it,en', 'Eurovoc', 'Eurovoc-de', 'Eurovoc-en', 'Eurovoc-es', 'Eurovoc-it', 'FineWebEdu', 'GallicaMonographies', 'GallicaPress', 'Gutenberg', 'Gutenberg-de', 'Gutenberg-en', 'Gutenberg-es', 'Gutenberg-fr', 'Gutenberg-it', 'HAL', 'InterventionsParlement', 'LEGI', 'MathPile', 'OpenData', 'OpenEdition', 'PeS2o', 'PeS2o-s2ag', 'PeS2o-s2orc', 'Pile', 'Pile-DM_Mathematics', 'Pile-FreeLaw', 'Pile-NIH_ExPorter', 'Pile-PhilPapers', 'Pile-StackExchange', 'Pile-USPTO_Backgrounds', 'Pile-Ubuntu_IRC', 'QuestionsEcritesParlement', 'RedPajama', 'RedPajama-de', 'RedPajama-es', 'RedPajama-fr', 'RedPajama-it', 'Stac', 'TheStack', 'Theses', 'Wikipedia', 'Wikipedia-de', 'Wikipedia-en', 'Wikipedia-es', 'Wikipedia-fr', 'Wikipedia-it', 'Wikisource', 'Wiktionary', 'YouTube']
```
Below are some examples of how to load data from different sources and in different languages.
Load data in French:
```python
from datasets import load_dataset
kwargs = dict(split="train", streaming=True)
dataset = load_dataset("OpenLLM-France/Lucie-Training-Dataset", "fr", **kwargs)
```
Load data where French and English are aligned:
```python
dataset = load_dataset("OpenLLM-France/Lucie-Training-Dataset", "fr,en", **kwargs)
```
Load data corresponding to files with programming languages:
```python
dataset = load_dataset("OpenLLM-France/Lucie-Training-Dataset", "code", **kwargs)
```
Load data in Python:
```python
dataset = load_dataset("OpenLLM-France/Lucie-Training-Dataset", "code-python", **kwargs)
```
Load data from Wikipedia (in all available languages):
```python
dataset = load_dataset("OpenLLM-France/Lucie-Training-Dataset", "Wikipedia", **kwargs)
```
Load data from French pages of Wikipedia ([wikipedia.fr](https://www.wikipedia.fr/)):
```python
dataset = load_dataset("OpenLLM-France/Lucie-Training-Dataset", "Wikipedia-fr", **kwargs)
```
Load the Pile dataset:
```python
dataset = load_dataset("OpenLLM-France/Lucie-Training-Dataset", "Pile", **kwargs)
```
Load the subset "`PhilPapers`" from the Pile dataset:
```python
dataset = load_dataset("OpenLLM-France/Lucie-Training-Dataset", "Pile-PhilPapers", **kwargs)
```
### Load a specific version
You can load a specific version with the `datasets` Python package using the `revision` parameter of `load_dataset(…)`:
```python
from datasets import load_dataset
kwargs = dict(split="train", streaming=True)
name = None # or a configuration (e.g. "fr", "code-python", "Wikipedia-fr", "Pile-PhilPapers")
dataset = load_dataset("OpenLLM-France/Lucie-Training-Dataset", name, revision="v1.2", **kwargs)
```
## Citation
TODO
## Acknowledgements
The Lucie Training Dataset was created by members of LINAGORA and OpenLLM-France community, including in alphabetical order: Evan Dufraisse (CEA), Olivier Gouvert (LINAGORA), Julie Hunter (LINAGORA), Pierre-Carl Langlais (OpSci/Pleias), Jean-Pierre Lorré (LINAGORA), Jérôme Louradour (LINAGORA), Michel-Marie Maudet (LINAGORA), Laura Rivière (LINAGORA), and Anastasia Stasenko (OpSci/Pleias).
We thank Rachel Bawden (INRIA), Clément Bénesse (Opsci), Christophe Cérisara (LORIA), Olivier Ferret (CEA), Joöl Gombin (Opsci), Ismaïl Harrando (LINAGORA), Jordan Ricker (Opsci), Guokan Shang (MBZUAI), and Yaya Sy (LORIA) for their helpful input.
Data storage and significant parts of the data processing were made possible through the HPC resources from GENCI–IDRIS (Grant 2024-GC011015444).
## Contact
<pre>[email protected]</pre> |