Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
Jeronymous commited on
Commit
0f3cb76
·
1 Parent(s): 789c727

Update dataset details. Add numbers about dataset composition in a CSV file

Browse files
Files changed (2) hide show
  1. README.md +46 -37
  2. metadata/dataset_composition.csv +97 -0
README.md CHANGED
@@ -504,11 +504,11 @@ The corpus contains the following information for each text sample:
504
  * `source`: an identifier for the source(s) of the text sample (`Wikipedia`, `RedPajama`, `Gutenberg`, …).
505
  The list of all sources is described in this document.
506
  * `id`: an identifier that is unique among the source.
507
- * `language`: the language of the text sample, which can be:
508
- * the ISO 639-1 code of a natural language: `en`, `fr`, `de`, `es`, or `it`;
509
- * the common name prefixed by "`code:`" of a programming language: `code:python`, `code:c++`, …; or
510
- * a list of ISO 639-1 codes separated by commas, if the text sample is multilingual: `fr,en`, `de,fr`, `es,en`, `it,en`
511
- (or in the opposite order if the languages appear in the opposite order in the text).
512
  * `url` (optional): the URL of the original text sample on the web, if available.
513
  * `title` (optional): the title of the original text sample, if available.
514
  * `author` (optional): the author of the original text sample, if available.
@@ -533,6 +533,7 @@ The following table provides an overview of the dataset composition,
533
  broken down by source and language.
534
  Sources are grouped by category.
535
  The table provides the number of documents, words, tokens, and characters for each subset.
 
536
 
537
  <!-- The following is automatically generated. Do not update manually. -->
538
  <!-- TABLE START -->
@@ -1452,7 +1453,7 @@ The table provides the number of documents, words, tokens, and characters for ea
1452
  #### AmericanStories
1453
  * <u>Source</u>: [dell-research-harvard/AmericanStories](https://huggingface.co/datasets/dell-research-harvard/AmericanStories). License: [CC BY 4.0](https://huggingface.co/datasets/dell-research-harvard/AmericanStories).
1454
  * <u>Extracted from</u>: [Chronicling America](https://www.loc.gov/collections/chronicling-america/about-this-collection/). License: [Open](https://www.loc.gov/collections/chronicling-america/about-this-collection/rights-and-access/).
1455
- * <u>Description</u>: "The American Stories dataset is a collection of full article texts extracted from historical U.S. newspaper images. It includes nearly 20 million scans from the public domain Chronicling America collection maintained by the Library of Congress. The dataset is designed to address the challenges posed by complex layouts and low OCR quality in existing newspaper datasets" (from the [dataset card](https://huggingface.co/datasets/dell-research-harvard/AmericanStories)).
1456
  * <u>Citation</u>: Melissa Dell, Jacob Carlson, Tom Bryan, Emily Silcock, Abhishek Arora, Zejiang Shen, Luca D'Amico-Wong, Quan Le, Pablo Querubin and Leander Heldring (2023). "American Stories: A Large-Scale Structured Text Dataset of Historical U.S. Newspapers," [arxiv:2308.12477](https://arxiv.org/abs/2308.12477v1).
1457
 
1458
 
@@ -1460,13 +1461,17 @@ The table provides the number of documents, words, tokens, and characters for ea
1460
  * <u>Sources</u>:
1461
  * French dataset: [OpenLLM-France/Claire-Dialogue-French-0.1](https://huggingface.co/datasets/OpenLLM-France/Claire-Dialogue-French-0.1). License: [CC BY-NC-SA 4.0](https://huggingface.co/datasets/OpenLLM-France/Claire-Dialogue-French-0.1).
1462
  * English dataset: [OpenLLM-France/Claire-Dialogue-English-0.1](https://huggingface.co/datasets/OpenLLM-France/Claire-Dialogue-English-0.1). License: [CC BY-NC-SA 4.0](https://huggingface.co/datasets/OpenLLM-France/Claire-Dialogue-English-0.1).
1463
- * <u>Description</u>: The Claire datasets are composed of transcripts of spoken conversation -- including parliamentary proceedings, interviews, debates, meetings, and free conversations -- as well as some written conversations from theater plays and written chats. The dataset is designed to help downstream performance of models fine-tuned for tasks requiring the comprehension of spontaneous spoken conversation, such as meeting summarization. Each dialogue is split into speech turns, and each speech turn is labeled with the name of the speaker or a unique identifier.
 
1464
  * <u>Citation</u>: Julie Hunter, Jérôme Louradour, Virgile Rennard, Ismaïl Harrando, Guokan Shang, Jean-Pierre Lorré (2023). The Claire French Dialogue Dataset. [arXiv:2311.16840](https://arxiv.org/abs/2311.16840).
1465
 
1466
  #### CroissantAligned
1467
- * <u>Source</u>: [croissantllm/croissant_dataset_no_web_data](https://huggingface.co/datasets/croissantllm/croissant_dataset_no_web_data). License: not specified.
1468
- * <u>Extracted from</u>: [OPUS](https://opus.nlpl.eu/), theses, [song lyrics](https://www.lacoccinelle.net)
1469
- * <u>Description</u>: A collection of English-French translation pairs selected by a custom filtering pipeline. Designed to "improve the multilingual capabilities of the model" ([Arxiv paper](https://arxiv.org/pdf/2402.00786)).
 
 
 
1470
  * <u>Citation</u>: Manuel Faysse, Patrick Fernandes, Nuno M. Guerreiro, António Loison, Duarte M. Alves, Caio Corro, Nicolas Boizard, João Alves, Ricardo Rei, Pedro H. Martins, Antoni Bigata Casademunt, François Yvon, André F.T. Martins, Gautier Viaud, Céline Hudelot, Pierre Colombo (2024). "CroissantLLM: A Truly Bilingual French-English Language Model," [arXiv:2402.00786](https://arxiv.org/abs/2402.00786).
1471
 
1472
  #### DiscoursPublics
@@ -1485,7 +1490,7 @@ The table provides the number of documents, words, tokens, and characters for ea
1485
  #### Eurovoc
1486
  * <u>Source</u>: [EuropeanParliament/Eurovoc](https://huggingface.co/datasets/EuropeanParliament/Eurovoc). License: [EUPL 1.1](https://joinup.ec.europa.eu/licence/european-union-public-licence-version-11-or-later-eupl).
1487
  * <u>Extracted from</u>: [Cellar](https://op.europa.eu/en/web/cellar). License: [Open](https://op.europa.eu/en/web/cellar).
1488
- * <u>Description</u>: A collection of mutlilingual documents from the data repository of the Publications Office of the European Union annotated with Eurovoc labels.
1489
  * <u>Citations</u>:
1490
  * Ilias Chalkidis, Emmanouil Fergadiotis, Prodromos Malakasiotis, Nikolaos Aletras, and Ion Androutsopoulos (2019). "Extreme Multi-Label Legal Text Classification: A Case Study in EU Legislation," Proceedings of the Natural Legal Language Processing Workshop 2019, pages 78–87, Minneapolis, Minnesota. Association for Computational Linguistics.
1491
  * Ilias Chalkidis, Manos Fergadiotis, Prodromos Malakasiotis and Ion Androutsopoulos (2019). "Large-Scale Multi-Label Text Classification on EU Legislation," Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (ACL 2019), Florence, Italy, (short papers).
@@ -1495,19 +1500,19 @@ The table provides the number of documents, words, tokens, and characters for ea
1495
  #### FineWebEdu
1496
  * <u>Source</u>: [HuggingFaceFW/fineweb-edu](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu). License: [ODC-BY](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu).
1497
  * <u>Extracted from</u>: [FineWeb](https://huggingface.co/datasets/HuggingFaceFW/fineweb). License: [ODC-BY](https://huggingface.co/datasets/HuggingFaceFW/fineweb).
1498
- * <u>Description</u>: A 1.3 trillion token selection from [FineWeb](https://huggingface.co/datasets/HuggingFaceFW/fineweb), which contains 15 trillion tokens of curated data from 96 Common Crawl dumps. Content in FineWebEdu has been selected by a custom designed classifier for its high-quality, educational content.
1499
  * <u>Citation</u>: Guilherme Penedo, Hynek Kydlíček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin Raffel, Leandro Von Werra, Thomas Wolf (2024). "The FineWeb Datasets: Decanting the Web for the Finest Text Data at Scale," [ arXiv:2406.17557](https://arxiv.org/abs/2406.17557).
1500
 
1501
  #### GallicaMonographies
1502
  * <u>Source</u>: Corpus contributed by OpenLLM partners. A version is also published here: [PleIAs/French-PD-Books](https://huggingface.co/datasets/PleIAs/French-PD-Books). License: None (public domain).
1503
  * <u>Extracted from</u>: [Gallicagram](https://shiny.ens-paris-saclay.fr/app/gallicagram).
1504
- * <u>Description</u>: A large collection of French monographies in the public domain made available through the French National Library ([Gallica](https://gallica.bnf.fr/accueil/fr/content/accueil-fr?mode=desktop)).
1505
  * <u>Citation</u>: No paper found.
1506
 
1507
  #### GallicaPress
1508
  * <u>Source</u>: Corpus contributed by OpenLLM partners. A version is also published here: [PleIAs/French-PD-Newspapers](https://huggingface.co/datasets/PleIAs/French-PD-Newspapers). License: None (public domain).
1509
  * <u>Extracted from</u>: [Gallicagram](https://shiny.ens-paris-saclay.fr/app/gallicagram).
1510
- * <u>Description</u>: A large collection of French newspapers and periodicals in the public domain made available through the French National Library ([Gallica](https://gallica.bnf.fr/accueil/fr/content/accueil-fr?mode=desktop)).
1511
  * <u>Citation</u>: No paper found.
1512
 
1513
  #### Gutenberg
@@ -1519,10 +1524,11 @@ The table provides the number of documents, words, tokens, and characters for ea
1519
  * <u>Citation</u>: No paper found.
1520
 
1521
  #### HAL
1522
- * <u>Source</u>:
1523
  * <u>Extracted from</u>: [HAL](https://hal.science/).
1524
- * <u>Description</u>: A collection of scientific papers and manuscripts distributed through an open science platform.
1525
- * <u>Citation</u>:
 
1526
 
1527
  #### InterventionsParlement
1528
  * <u>Source</u>: Corpus contributed by OpenLLM partners.
@@ -1531,13 +1537,13 @@ The table provides the number of documents, words, tokens, and characters for ea
1531
  * <u>Citation</u>: No paper found.
1532
 
1533
  #### MathPile
1534
- * <u>Source</u>: [GAIR/MathPile_Commercial](https://huggingface.co/datasets/GAIR/MathPile_Commercial). License: CC BY-SA 4.0
1535
- * <u>Extracted from</u>: [MathPile](https://huggingface.co/datasets/GAIR/MathPile). License: CC BY-SA-NC 4.0.
1536
  * <u>Description</u>: A preprocessed collection of documents focused on math, including Textbooks, arXiv, Wikipedia, ProofWiki, StackExchange, and web pages from Common Crawl. The content targets a range of levels, from kindergarten through postgraduate level. MathPile_Commercial was obtained by removing documents from MathPile that do not allow commercial use.
1537
  * <u>Citation</u>: Zengzhi Wang, Rui Xia and Pengfei Liu (2023). "Generative AI for Math: Part I -- MathPile: A Billion-Token-Scale Pretraining Corpus for Math," [ arXiv:2312.17120](https://export.arxiv.org/abs/2312.17120).
1538
 
1539
  #### OpenData
1540
- * <u>Source</u>: [Nicolas-BZRD/DILA_OPENDATA_FR_2023](https://huggingface.co/datasets/Nicolas-BZRD/DILA_OPENDATA_FR_2023/tree/main) (balo, dole, inca, kali, legi and sarde subsets). License: ODC-BY.
1541
  * <u>Extracted from</u>: [OpenData](https://echanges.dila.gouv.fr/OPENDATA/) (Data collection date: October, 2023).
1542
  * <u>Description</u>: "The French Government Open Data (DILA) Dataset is a collection of text data extracted from various sources provided by the French government, specifically the Direction de l'information légale et administrative (DILA). This dataset contains a wide range of legal, administrative, and legislative documents. The data has been organized into several categories for easy access and analysis" (from the [dataset card](https://huggingface.co/datasets/Nicolas-BZRD/DILA_OPENDATA_FR_2023/tree/main)).
1543
  * <u>Citation</u>: No paper found.
@@ -1551,19 +1557,19 @@ The table provides the number of documents, words, tokens, and characters for ea
1551
  #### PeS2o
1552
  * <u>Source</u>: [allenai/peS2o](https://huggingface.co/datasets/allenai/peS2o). License: [ODC BY-v1.0](https://opendatacommons.org/licenses/by/1-0/)
1553
  * <u>Extracted from</u>: [S2ORC](https://github.com/allenai/s2orc) (see [aclanthology](https://aclanthology.org/2020.acl-main.447/)). Knowledge cutoff: 2023-01-03.
1554
- * <u>Description</u>: A preprocessed collection of academic papers designed for pre-training of language models. It includes a subset of full papers and another subset of titles and abstracts.
1555
  * <u>Citation</u>: Luca Soldaini and Kyle Lo (2023). "peS2o (Pretraining Efficiently on S2ORC) Dataset}, Allen Institute for AI. [GitHub](https://github.com/allenai/pes2o).
1556
 
1557
  #### Pile (Uncopyrighted)
1558
- * <u>Source</u>: [monology/pile-uncopyrighted](https://huggingface.co/datasets/monology/pile-uncopyrighted).
1559
- * <u>Extracted from</u>: FreeLaw, StackExchange, USPTO Backgrounds, DM Mathematics, Ubuntu IRC, Phil Papers, NIH ExPorter from [The Pile](https://huggingface.co/datasets/EleutherAI/pile). License: MIT.
1560
  * <u>Description</u> (from the [Datasheet](https://arxiv.org/abs/2201.07311)):
1561
  * FreeLaw: "The Free Law Project is US registered non-profit that provide access to millions of legal opinions and analytical tools for academic studies in the legal realm."
1562
  * StackExchange: "The StackExchange dataset is a dump of anonymized user-contributed content on the Stack Exchange network, a popular collection of websites centered around user-contributed questions and answers."
1563
- * USPTO Backgrounds: "The USPTO Backgrounds dataset is a set of background sections from patents granted by the United States Patent and Trademark Office, derived from its published [bulk archives](https://bulkdata.uspto.gov/)."
1564
  * DM Mathematics: "The DeepMind Mathematics dataset consists of a collection of mathematical problems such as algebra, arithmetic, calculus, number theory, and probability, formatted as natural language prompts [Saxton et al., 2019](https://arxiv.org/abs/1904.01557)."
1565
- * Ubuntu IRC: "The Ubuntu IRC dataset is derived from the publicly available [chatlogs](https://irclogs.ubuntu.com/) of all Ubunturelated channels on the Freenode IRC chat server."
1566
- * PhilPapers: [PhilPapers](https://philpapers.org/) is a dataset of open access philosophy publications from an international database maintained by the Center for Digital Philosophy at the University of Western Ontario.
1567
  * NIH ExPORTER: "The NIH Grant abstracts provides a bulk-data repository for awarded applications through the ExPORTER4 service covering the fiscal years 1985-present."
1568
  * <u>Citation</u>:
1569
  * Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, Connor Leahy (2020). "The Pile: An 800GB Dataset of Diverse Text for Language Modeling," [ arXiv:2101.00027](https://arxiv.org/abs/2101.00027).
@@ -1572,28 +1578,31 @@ The table provides the number of documents, words, tokens, and characters for ea
1572
  #### QuestionsEcritesParlement
1573
  * <u>Source</u>: Corpus contributed by OpenLLM partners.
1574
  * <u>Extracted from</u>: [Regards citoyens](https://www.regardscitoyens.org/#&panel1-4) ([text](https://data.regardscitoyens.org/nosdeputes.fr/)). License: [CC BY-NC-SA](https://data.regardscitoyens.org/nosdeputes.fr/).
1575
- * <u>Description</u>: Collection of long written questions, read during a session at the french national assembly: from a member of french parliament to a minister (Minister got 2 month to respond). ([text](https://data.regardscitoyens.org/nosdeputes.fr/)).
1576
  * <u>Citation</u>: No paper found.
1577
 
1578
  #### RedPajama (v2)
1579
- * <u>Source</u>: [togethercomputer/RedPajama-Data-V2](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-V2). License: Apache 2.0 (data preparation code), Not specified (data) but see [Common Crawl terms of use](https://commoncrawl.org/terms-of-use).
1580
- * <u>Description</u>: "RedPajama-V2 is an open dataset for training large language models. The dataset includes over 100B text documents coming from 84 CommonCrawl snapshots and processed using the [CCNet](https://github.com/facebookresearch/cc_net) pipeline. Out of these, there are 30B documents in the corpus that additionally come with quality signals, and 20B documents that are deduplicated" (from [GitHub](https://github.com/togethercomputer/RedPajama-Data)).
 
1581
  * <u>Citation</u>: Together Computer (2023). "RedPajama-Data-v2: an Open Dataset with 30 Trillion Tokens for Training Large Language Models," [GitHub](https://github.com/togethercomputer/RedPajama-Data).
1582
 
1583
  #### STAC
1584
- * <u>Source</u>: [STAC](https://www.irit.fr/STAC/corpus.html). License: CC BY-SA-NC 4.0.
 
1585
  * <u>Description</u>: A collection of chats from an online version of the game Settlers of Catan.
1586
  * <u>Citation</u>: Nicholas Asher, Julie Hunter, Mathieu Morey, Farah Benamara and Stergos Afantenos (2016). "Discourse structure and dialogue acts in multiparty dialogue: the STAC corpus," The Tenth International Conference on Language Resources and Evaluation (LREC 2016). European Language Resources Association, pp. 2721-2727.
1587
 
1588
  #### TheStack
1589
- * <u>Source</u>: [bigcode/the-stack-dedup](https://huggingface.co/datasets/bigcode/the-stack-dedup). License: Other (mixture of copyleft licenses).
1590
- * <u>Description</u>: "The Stack contains over 6TB of permissively-licensed source code files covering 358 programming languages. The dataset was created as part of the BigCode Project, an open scientific collaboration working on the responsible development of Large Language Models for Code (Code LLMs). The Stack serves as a pre-training dataset for Code LLMs, i.e., code-generating AI systems which enable the synthesis of programs from natural language descriptions as well as other from code snippets. This is the near-deduplicated version with 3TB data" (from the [dataset card](https://huggingface.co/datasets/bigcode/the-stack-dedup)).
 
1591
  * <u>Citation</u>: Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou, Carlos Muñoz Ferrandis, Yacine Jernite, Margaret Mitchell, Sean Hughes, Thomas Wolf, Dzmitry Bahdanau, Leandro von Werra and Harm de Vries (2022). "The Stack: 3 TB of permissively licensed source code," [arxiv:2211.15533](https://arxiv.org/abs/2211.15533).
1592
 
1593
  #### Theses
1594
  * <u>Source</u>: Corpus contributed by OpenLLM partners.
1595
- * <u>Extracted from</u>: [theses.fr](https://theses.fr/?domaine=theses) and [HAL???]().
1596
- * <u>Description</u>:
1597
  * <u>Citation</u>: No paper found.
1598
 
1599
  #### Wikipedia, Wikisource, Wiktionary
@@ -1602,14 +1611,14 @@ The table provides the number of documents, words, tokens, and characters for ea
1602
  * [OpenLLM-France/wikipedia](https://huggingface.co/datasets/OpenLLM-France/wikipedia)
1603
  * [OpenLLM-France/wikisource](https://huggingface.co/datasets/OpenLLM-France/wikisource)
1604
  * [OpenLLM-France/wiktionary](https://huggingface.co/datasets/OpenLLM-France/wiktionary)
1605
- * <u>Extracted from</u>: [Wikimedia dumps](https://dumps.wikimedia.org/other/enterprise_html/runs/). License: [GFDL/CC BY-SA](https://dumps.wikimedia.org/legal.html)
1606
  * <u>Description</u>:
1607
  * <u>Citation</u>: No paper found.
1608
 
1609
  #### YouTube
1610
  * <u>Source</u>: Corpus contributed by LINAGORA Labs (OpenLLM-France).
1611
- * <u>Extracted from</u>:
1612
- * <u>Description</u>:
1613
  * <u>Citation</u>: No paper found.
1614
 
1615
  ## Example use in python
 
504
  * `source`: an identifier for the source(s) of the text sample (`Wikipedia`, `RedPajama`, `Gutenberg`, …).
505
  The list of all sources is described in this document.
506
  * `id`: an identifier that is unique among the source.
507
+ * `language`: the language of the text sample (relying on the source, that information can be wrong). Possible values are:
508
+ * an ISO 639-1 code of a natural language: `en`, `fr`, `de`, `es`, or `it`;
509
+ * a common name prefixed by "`code:`" of a programming language: `code:python`, `code:c++`, …; or
510
+ * a list of ISO 639-1 codes separated by commas, if the text sample is multilingual: `fr,en`, `de,fr`, `es,en`, `it,en`,
511
+ or one of those pairs in the opposite order if the languages appear in the opposite order in the text.
512
  * `url` (optional): the URL of the original text sample on the web, if available.
513
  * `title` (optional): the title of the original text sample, if available.
514
  * `author` (optional): the author of the original text sample, if available.
 
533
  broken down by source and language.
534
  Sources are grouped by category.
535
  The table provides the number of documents, words, tokens, and characters for each subset.
536
+ All numbers in this table are available in the CSV file [dataset_composition.csv](metadata/dataset_composition.csv).
537
 
538
  <!-- The following is automatically generated. Do not update manually. -->
539
  <!-- TABLE START -->
 
1453
  #### AmericanStories
1454
  * <u>Source</u>: [dell-research-harvard/AmericanStories](https://huggingface.co/datasets/dell-research-harvard/AmericanStories). License: [CC BY 4.0](https://huggingface.co/datasets/dell-research-harvard/AmericanStories).
1455
  * <u>Extracted from</u>: [Chronicling America](https://www.loc.gov/collections/chronicling-america/about-this-collection/). License: [Open](https://www.loc.gov/collections/chronicling-america/about-this-collection/rights-and-access/).
1456
+ * <u>Description</u>: "The American Stories dataset is a collection of full article texts extracted from historical U.S. newspaper images. It includes nearly 20 million scans from the public domain Chronicling America collection maintained by the Library of Congress. The dataset is designed to address the challenges posed by complex layouts and low OCR quality in existing newspaper datasets" (from the [dataset card](https://huggingface.co/datasets/dell-research-harvard/AmericanStories)). Dataset containing text retrieved through OCR.
1457
  * <u>Citation</u>: Melissa Dell, Jacob Carlson, Tom Bryan, Emily Silcock, Abhishek Arora, Zejiang Shen, Luca D'Amico-Wong, Quan Le, Pablo Querubin and Leander Heldring (2023). "American Stories: A Large-Scale Structured Text Dataset of Historical U.S. Newspapers," [arxiv:2308.12477](https://arxiv.org/abs/2308.12477v1).
1458
 
1459
 
 
1461
  * <u>Sources</u>:
1462
  * French dataset: [OpenLLM-France/Claire-Dialogue-French-0.1](https://huggingface.co/datasets/OpenLLM-France/Claire-Dialogue-French-0.1). License: [CC BY-NC-SA 4.0](https://huggingface.co/datasets/OpenLLM-France/Claire-Dialogue-French-0.1).
1463
  * English dataset: [OpenLLM-France/Claire-Dialogue-English-0.1](https://huggingface.co/datasets/OpenLLM-France/Claire-Dialogue-English-0.1). License: [CC BY-NC-SA 4.0](https://huggingface.co/datasets/OpenLLM-France/Claire-Dialogue-English-0.1).
1464
+ * <u>Extracted from</u>: see the datacards for the [French](https://huggingface.co/datasets/OpenLLM-France/Claire-Dialogue-French-0.1) and [English](https://huggingface.co/datasets/OpenLLM-France/Claire-Dialogue-English-0.1) datasets.
1465
+ * <u>Description</u>: The Claire datasets are composed of transcripts of spoken conversations -- including parliamentary proceedings, interviews, debates, meetings, and free conversations -- as well as some written conversations from theater plays and written chats. The dataset is designed to help downstream performance of models fine-tuned for tasks requiring the comprehension of spontaneous spoken conversation, such as meeting summarization. Each dialogue is split into speech turns, and each speech turn is labeled with the name of the speaker or a unique identifier.
1466
  * <u>Citation</u>: Julie Hunter, Jérôme Louradour, Virgile Rennard, Ismaïl Harrando, Guokan Shang, Jean-Pierre Lorré (2023). The Claire French Dialogue Dataset. [arXiv:2311.16840](https://arxiv.org/abs/2311.16840).
1467
 
1468
  #### CroissantAligned
1469
+ * <u>Source</u>: [croissantllm/croissant_dataset_no_web_data](https://huggingface.co/datasets/croissantllm/croissant_dataset_no_web_data/tree/main/aligned_36b) (subset: `aligned_36b`). License: not specified.
1470
+ * <u>Extracted from</u>:
1471
+ * Translation pairs: [OPUS](https://opus.nlpl.eu/) (99.6% of the data in CroissantAligned). Pairs extracted from OPUS are labeled as "UnbabelFrEn". License: .
1472
+ * Thesis abstracts: French thesis abstract pairs. License: [ETALAB-Licence-Ouverte-v2.0](https://www.etalab.gouv.fr/wp-content/uploads/2017/04/ETALAB-Licence-Ouverte-v2.0.pdf).
1473
+ * Song lyrics: [lacoccinelle](https://www.lacoccinelle.net). License: .
1474
+ * <u>Description</u>: Data extracted from OPUS takes the form of sentences pairs, where one sentence is in French and the other is in English. OPUS pairs were passed through a custom pipeline designed to select the highest quality sentences pairs. Selected pairs are labeled "UnbabelFrEn" in the CroissantAligned dataset. The thesis abstract subset contains pairs of French or English thesis abstracts paired with translations written by the thesis author. The song lyrics are translated by contributors to www.lacoccinelle.net. Parallel data are used to boost the multilingual capabilities of models trained on them ([Faysse et al.,2024](https://arxiv.org/pdf/2402.00786)).
1475
  * <u>Citation</u>: Manuel Faysse, Patrick Fernandes, Nuno M. Guerreiro, António Loison, Duarte M. Alves, Caio Corro, Nicolas Boizard, João Alves, Ricardo Rei, Pedro H. Martins, Antoni Bigata Casademunt, François Yvon, André F.T. Martins, Gautier Viaud, Céline Hudelot, Pierre Colombo (2024). "CroissantLLM: A Truly Bilingual French-English Language Model," [arXiv:2402.00786](https://arxiv.org/abs/2402.00786).
1476
 
1477
  #### DiscoursPublics
 
1490
  #### Eurovoc
1491
  * <u>Source</u>: [EuropeanParliament/Eurovoc](https://huggingface.co/datasets/EuropeanParliament/Eurovoc). License: [EUPL 1.1](https://joinup.ec.europa.eu/licence/european-union-public-licence-version-11-or-later-eupl).
1492
  * <u>Extracted from</u>: [Cellar](https://op.europa.eu/en/web/cellar). License: [Open](https://op.europa.eu/en/web/cellar).
1493
+ * <u>Description</u>: A collection of mutlilingual documents from the data repository of the Publications Office of the European Union annotated with Eurovoc labels. Dataset containing text retrieved through OCR.
1494
  * <u>Citations</u>:
1495
  * Ilias Chalkidis, Emmanouil Fergadiotis, Prodromos Malakasiotis, Nikolaos Aletras, and Ion Androutsopoulos (2019). "Extreme Multi-Label Legal Text Classification: A Case Study in EU Legislation," Proceedings of the Natural Legal Language Processing Workshop 2019, pages 78–87, Minneapolis, Minnesota. Association for Computational Linguistics.
1496
  * Ilias Chalkidis, Manos Fergadiotis, Prodromos Malakasiotis and Ion Androutsopoulos (2019). "Large-Scale Multi-Label Text Classification on EU Legislation," Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (ACL 2019), Florence, Italy, (short papers).
 
1500
  #### FineWebEdu
1501
  * <u>Source</u>: [HuggingFaceFW/fineweb-edu](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu). License: [ODC-BY](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu).
1502
  * <u>Extracted from</u>: [FineWeb](https://huggingface.co/datasets/HuggingFaceFW/fineweb). License: [ODC-BY](https://huggingface.co/datasets/HuggingFaceFW/fineweb).
1503
+ * <u>Description</u>: A 1.3 trillion token selection from [FineWeb](https://huggingface.co/datasets/HuggingFaceFW/fineweb), which contains 15 trillion tokens of curated data from 96 Common Crawl dumps. Content in FineWebEdu has been selected by a custom designed classifier for its high-quality, educational content. Knowledge cutoff: 2019-2024.
1504
  * <u>Citation</u>: Guilherme Penedo, Hynek Kydlíček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin Raffel, Leandro Von Werra, Thomas Wolf (2024). "The FineWeb Datasets: Decanting the Web for the Finest Text Data at Scale," [ arXiv:2406.17557](https://arxiv.org/abs/2406.17557).
1505
 
1506
  #### GallicaMonographies
1507
  * <u>Source</u>: Corpus contributed by OpenLLM partners. A version is also published here: [PleIAs/French-PD-Books](https://huggingface.co/datasets/PleIAs/French-PD-Books). License: None (public domain).
1508
  * <u>Extracted from</u>: [Gallicagram](https://shiny.ens-paris-saclay.fr/app/gallicagram).
1509
+ * <u>Description</u>: A large collection of French monographies in the public domain made available through the French National Library ([Gallica](https://gallica.bnf.fr/accueil/fr/content/accueil-fr?mode=desktop)). Dataset containing text retrieved through OCR.
1510
  * <u>Citation</u>: No paper found.
1511
 
1512
  #### GallicaPress
1513
  * <u>Source</u>: Corpus contributed by OpenLLM partners. A version is also published here: [PleIAs/French-PD-Newspapers](https://huggingface.co/datasets/PleIAs/French-PD-Newspapers). License: None (public domain).
1514
  * <u>Extracted from</u>: [Gallicagram](https://shiny.ens-paris-saclay.fr/app/gallicagram).
1515
+ * <u>Description</u>: A large collection of French newspapers and periodicals in the public domain made available through the French National Library ([Gallica](https://gallica.bnf.fr/accueil/fr/content/accueil-fr?mode=desktop)). Dataset containing text retrieved through OCR.
1516
  * <u>Citation</u>: No paper found.
1517
 
1518
  #### Gutenberg
 
1524
  * <u>Citation</u>: No paper found.
1525
 
1526
  #### HAL
1527
+ * <u>Source</u>: The ROOTS corpus by BigScience (unpublished). License: CC BY-4.0.
1528
  * <u>Extracted from</u>: [HAL](https://hal.science/).
1529
+ * <u>Description</u>: A collection of scientific papers and manuscripts distributed through an open science platform. Dataset containing text retrieved through OCR.
1530
+ * <u>Citation</u>: Hugo Laurençon, Lucile Saulnier, Thomas Wang, Christopher Akiki, Albert Villanova del Moral, Teven Le Scao, Leandro Von Werra, Chenghao Mou, Eduardo González Ponferrada, Huu Nguyen, Jörg Frohberg, Mario Šaško, Quentin Lhoest, Angelina McMillan-Major, Gerard Dupont, Stella Biderman, Anna Rogers, Loubna Ben allal, Francesco De Toni, Giada Pistilli, Olivier Nguyen, Somaieh Nikpoor, Maraim Masoud, Pierre Colombo, Javier de la Rosa, Paulo Villegas, Tristan Thrush, Shayne Longpre, Sebastian Nagel, Leon Weber, Manuel Muñoz, Jian Zhu, Daniel Van Strien, Zaid Alyafeai, Khalid Almubarak, Minh Chien Vu, Itziar Gonzalez-Dios, Aitor Soroa, Kyle Lo, Manan Dey, Pedro Ortiz Suarez, Aaron Gokaslan, Shamik Bose, David Adelani, Long Phan, Hieu Tran, Ian Yu, Suhas Pai, Jenny Chim, Violette Lepercq, Suzana Ilic, Margaret Mitchell, Sasha Alexandra Luccioni, Yacine Jernite (2022). [The BigScience ROOTS Corpus: A 1.6TB Composite Multilingual Dataset](https://proceedings.neurips.cc/paper_files/paper/2022/hash/ce9e92e3de2372a4b93353eb7f3dc0bd-Abstract-Datasets_and_Benchmarks.html). Advances in Neural Information Processing Systems (NeurIPS), 35, 31809-31826.
1531
+
1532
 
1533
  #### InterventionsParlement
1534
  * <u>Source</u>: Corpus contributed by OpenLLM partners.
 
1537
  * <u>Citation</u>: No paper found.
1538
 
1539
  #### MathPile
1540
+ * <u>Source</u>: [GAIR/MathPile_Commercial](https://huggingface.co/datasets/GAIR/MathPile_Commercial). License: [CC BY-SA 4.0](https://huggingface.co/datasets/GAIR/MathPile_Commercial)
1541
+ * <u>Extracted from</u>: [MathPile](https://huggingface.co/datasets/GAIR/MathPile). License: [CC BY-SA-NC 4.0](https://huggingface.co/datasets/GAIR/MathPile).
1542
  * <u>Description</u>: A preprocessed collection of documents focused on math, including Textbooks, arXiv, Wikipedia, ProofWiki, StackExchange, and web pages from Common Crawl. The content targets a range of levels, from kindergarten through postgraduate level. MathPile_Commercial was obtained by removing documents from MathPile that do not allow commercial use.
1543
  * <u>Citation</u>: Zengzhi Wang, Rui Xia and Pengfei Liu (2023). "Generative AI for Math: Part I -- MathPile: A Billion-Token-Scale Pretraining Corpus for Math," [ arXiv:2312.17120](https://export.arxiv.org/abs/2312.17120).
1544
 
1545
  #### OpenData
1546
+ * <u>Source</u>: [Nicolas-BZRD/DILA_OPENDATA_FR_2023](https://huggingface.co/datasets/Nicolas-BZRD/DILA_OPENDATA_FR_2023/tree/main) (balo, dole, inca, kali, legi and sarde subsets). License: [ODC-BY](https://huggingface.co/datasets/Nicolas-BZRD/DILA_OPENDATA_FR_2023/tree/main).
1547
  * <u>Extracted from</u>: [OpenData](https://echanges.dila.gouv.fr/OPENDATA/) (Data collection date: October, 2023).
1548
  * <u>Description</u>: "The French Government Open Data (DILA) Dataset is a collection of text data extracted from various sources provided by the French government, specifically the Direction de l'information légale et administrative (DILA). This dataset contains a wide range of legal, administrative, and legislative documents. The data has been organized into several categories for easy access and analysis" (from the [dataset card](https://huggingface.co/datasets/Nicolas-BZRD/DILA_OPENDATA_FR_2023/tree/main)).
1549
  * <u>Citation</u>: No paper found.
 
1557
  #### PeS2o
1558
  * <u>Source</u>: [allenai/peS2o](https://huggingface.co/datasets/allenai/peS2o). License: [ODC BY-v1.0](https://opendatacommons.org/licenses/by/1-0/)
1559
  * <u>Extracted from</u>: [S2ORC](https://github.com/allenai/s2orc) (see [aclanthology](https://aclanthology.org/2020.acl-main.447/)). Knowledge cutoff: 2023-01-03.
1560
+ * <u>Description</u>: A preprocessed collection of academic papers designed for pre-training of language models. PeS2o is composed of two subsets: one containing full papers and one containing only paper titles and abstracts. Dataset containing (some) text retrieved through OCR.
1561
  * <u>Citation</u>: Luca Soldaini and Kyle Lo (2023). "peS2o (Pretraining Efficiently on S2ORC) Dataset}, Allen Institute for AI. [GitHub](https://github.com/allenai/pes2o).
1562
 
1563
  #### Pile (Uncopyrighted)
1564
+ * <u>Source</u>: [monology/pile-uncopyrighted](https://huggingface.co/datasets/monology/pile-uncopyrighted). License: [Other](https://huggingface.co/datasets/monology/pile-uncopyrighted).
1565
+ * <u>Extracted from</u>: [FreeLaw](https://free.law/), [StackExchange](https://stackexchange.com/), [USPTO Backgrounds](https://bulkdata.uspto.gov/), [DM Mathematics](https://github.com/google-deepmind/mathematics_dataset), [Ubuntu IRC](https://irclogs.ubuntu.com/), [PhilPapers](https://philpapers.org/), NIH ExPorter from [The Pile](https://huggingface.co/datasets/EleutherAI/pile). License: MIT.
1566
  * <u>Description</u> (from the [Datasheet](https://arxiv.org/abs/2201.07311)):
1567
  * FreeLaw: "The Free Law Project is US registered non-profit that provide access to millions of legal opinions and analytical tools for academic studies in the legal realm."
1568
  * StackExchange: "The StackExchange dataset is a dump of anonymized user-contributed content on the Stack Exchange network, a popular collection of websites centered around user-contributed questions and answers."
1569
+ * USPTO Backgrounds: "The USPTO Backgrounds dataset is a set of background sections from patents granted by the United States Patent and Trademark Office, derived from its published bulk archives."
1570
  * DM Mathematics: "The DeepMind Mathematics dataset consists of a collection of mathematical problems such as algebra, arithmetic, calculus, number theory, and probability, formatted as natural language prompts [Saxton et al., 2019](https://arxiv.org/abs/1904.01557)."
1571
+ * Ubuntu IRC: "The Ubuntu IRC dataset is derived from the publicly available chatlogs of all Ubunturelated channels on the Freenode IRC chat server."
1572
+ * PhilPapers: a dataset of open access philosophy publications from an international database maintained by the Center for Digital Philosophy at the University of Western Ontario.
1573
  * NIH ExPORTER: "The NIH Grant abstracts provides a bulk-data repository for awarded applications through the ExPORTER4 service covering the fiscal years 1985-present."
1574
  * <u>Citation</u>:
1575
  * Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, Connor Leahy (2020). "The Pile: An 800GB Dataset of Diverse Text for Language Modeling," [ arXiv:2101.00027](https://arxiv.org/abs/2101.00027).
 
1578
  #### QuestionsEcritesParlement
1579
  * <u>Source</u>: Corpus contributed by OpenLLM partners.
1580
  * <u>Extracted from</u>: [Regards citoyens](https://www.regardscitoyens.org/#&panel1-4) ([text](https://data.regardscitoyens.org/nosdeputes.fr/)). License: [CC BY-NC-SA](https://data.regardscitoyens.org/nosdeputes.fr/).
1581
+ * <u>Description</u>: Collection of long written questions, read during a session at the French National Assembly. Questions are asked by a member of the French parliament and addressed to a minister (who is given two months to respond).
1582
  * <u>Citation</u>: No paper found.
1583
 
1584
  #### RedPajama (v2)
1585
+ * <u>Source</u>: [togethercomputer/RedPajama-Data-V2](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-V2). License: [Apache 2.0](https://github.com/togethercomputer/RedPajama-Data) (data preparation code), Not specified (data) but see [Common Crawl terms of use](https://commoncrawl.org/terms-of-use).
1586
+ * <u>Extracted from</u>: [Common Crawl](https://commoncrawl.org/).
1587
+ * <u>Description</u>: "RedPajama-V2 is an open dataset for training large language models. The dataset includes over 100B text documents coming from 84 CommonCrawl snapshots and processed using the [CCNet](https://github.com/facebookresearch/cc_net) pipeline. Out of these, there are 30B documents in the corpus that additionally come with quality signals, and 20B documents that are deduplicated" (from [GitHub](https://github.com/togethercomputer/RedPajama-Data)). Knowledge cutoff: 2014-2023.
1588
  * <u>Citation</u>: Together Computer (2023). "RedPajama-Data-v2: an Open Dataset with 30 Trillion Tokens for Training Large Language Models," [GitHub](https://github.com/togethercomputer/RedPajama-Data).
1589
 
1590
  #### STAC
1591
+ * <u>Source</u>: [STAC](https://www.irit.fr/STAC/corpus.html). License: [CC BY-SA-NC 4.0](https://www.irit.fr/STAC/corpus.html).
1592
+ * <u>Extracted from</u>: [STAC](https://www.irit.fr/STAC/corpus.html). The full STAC corpus contains annotations for discourse structure. We use only the text of the chats.
1593
  * <u>Description</u>: A collection of chats from an online version of the game Settlers of Catan.
1594
  * <u>Citation</u>: Nicholas Asher, Julie Hunter, Mathieu Morey, Farah Benamara and Stergos Afantenos (2016). "Discourse structure and dialogue acts in multiparty dialogue: the STAC corpus," The Tenth International Conference on Language Resources and Evaluation (LREC 2016). European Language Resources Association, pp. 2721-2727.
1595
 
1596
  #### TheStack
1597
+ * <u>Source</u>: [bigcode/the-stack-dedup](https://huggingface.co/datasets/bigcode/the-stack-dedup). License: [Other](https://huggingface.co/datasets/bigcode/the-stack-dedup) (mixture of copyleft licenses).
1598
+ * <u>Extracted from</u>: [GHarchive](https://www.gharchive.org/)
1599
+ * <u>Description</u>: "The Stack contains over 6TB of permissively-licensed source code files covering 358 programming languages. The dataset was created as part of the [BigCode Project](https://www.bigcode-project.org/), an open scientific collaboration working on the responsible development of Large Language Models for Code (Code LLMs). The Stack serves as a pre-training dataset for Code LLMs, i.e., code-generating AI systems which enable the synthesis of programs from natural language descriptions as well as other from code snippets. This is the near-deduplicated version with 3TB data" (from the [dataset card](https://huggingface.co/datasets/bigcode/the-stack-dedup)).
1600
  * <u>Citation</u>: Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou, Carlos Muñoz Ferrandis, Yacine Jernite, Margaret Mitchell, Sean Hughes, Thomas Wolf, Dzmitry Bahdanau, Leandro von Werra and Harm de Vries (2022). "The Stack: 3 TB of permissively licensed source code," [arxiv:2211.15533](https://arxiv.org/abs/2211.15533).
1601
 
1602
  #### Theses
1603
  * <u>Source</u>: Corpus contributed by OpenLLM partners.
1604
+ * <u>Extracted from</u>: [theses.fr](https://theses.fr/?domaine=theses) and [HAL](https://hal.science/).
1605
+ * <u>Description</u>: A collection of doctoral theses published in France. Dataset containing text retrieved through OCR.
1606
  * <u>Citation</u>: No paper found.
1607
 
1608
  #### Wikipedia, Wikisource, Wiktionary
 
1611
  * [OpenLLM-France/wikipedia](https://huggingface.co/datasets/OpenLLM-France/wikipedia)
1612
  * [OpenLLM-France/wikisource](https://huggingface.co/datasets/OpenLLM-France/wikisource)
1613
  * [OpenLLM-France/wiktionary](https://huggingface.co/datasets/OpenLLM-France/wiktionary)
1614
+ * <u>Extracted from</u>: [Wikimedia dumps](https://dumps.wikimedia.org/other/enterprise_html/runs/). License: [GFDL/CC BY-SA](https://dumps.wikimedia.org/legal.html).
1615
  * <u>Description</u>:
1616
  * <u>Citation</u>: No paper found.
1617
 
1618
  #### YouTube
1619
  * <u>Source</u>: Corpus contributed by LINAGORA Labs (OpenLLM-France).
1620
+ * <u>Extracted from</u>: [YouTube](https://www.youtube.com/). License: .
1621
+ * <u>Description</u>: French subtitles from videos published with permissive licenses on YouTube.
1622
  * <u>Citation</u>: No paper found.
1623
 
1624
  ## Example use in python
metadata/dataset_composition.csv ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name,language,category,M docs,B words,B tokens,B chars,#words/doc,#chars/doc,#tokens/doc,#char/word,#tokens/word
2
+ TOTAL,,,2186.562,1356.021,2314.862,8842.200,620,4044,1059,6.5,1.71
3
+ TOTAL,fr,,653.812,583.687,928.618,3619.672,893,5536,1420,6.2,1.59
4
+ TOTAL,en,,554.289,412.202,611.894,2553.541,744,4607,1104,6.2,1.48
5
+ TOTAL,code,,125.769,51.306,228.954,630.749,408,5015,1820,12.3,4.46
6
+ TOTAL,de,,165.915,105.609,206.610,764.779,637,4609,1245,7.2,1.96
7
+ TOTAL,es,,171.651,123.857,200.825,759.457,722,4424,1170,6.1,1.62
8
+ TOTAL,it,,99.440,62.051,112.031,404.454,624,4067,1127,6.5,1.81
9
+ TOTAL,fr-en,,410.032,17.016,25.494,107.658,41,263,62,6.3,1.5
10
+ TOTAL,it-en,,1.901,0.100,0.151,0.638,53,336,79,6.4,1.51
11
+ TOTAL,es-en,,1.961,0.103,0.143,0.631,53,322,73,6.1,1.39
12
+ TOTAL,de-fr,,1.792,0.0908,0.141,0.621,51,347,79,6.8,1.55
13
+ RedPajama,fr,Web,640.770,477.758,741.023,2974.596,746,4642,1156,6.2,1.55
14
+ RedPajama,de,Web,162.779,103.078,201.371,747.631,633,4593,1237,7.3,1.95
15
+ RedPajama,es,Web,169.447,121.751,197.125,746.984,719,4408,1163,6.1,1.62
16
+ RedPajama,it,Web,97.324,60.194,108.416,393.012,618,4038,1114,6.5,1.8
17
+ FineWebEdu,en,Web,421.209,327.453,467.837,2018.215,777,4791,1111,6.2,1.43
18
+ GallicaPress,fr,Newspaper,3.205,67.496,121.606,408.882,21060,127576,37943,6.1,1.8
19
+ AmericanStories,en,Newspaper,59.420,8.902,14.313,50.844,150,856,241,5.7,1.61
20
+ PeS2o,en,Technical,38.972,42.296,65.365,268.963,1085,6901,1677,6.4,1.55
21
+ HAL,fr,Technical,0.349,9.356,16.224,58.308,26808,167072,46487,6.2,1.73
22
+ Theses,fr,Technical,0.102,7.547,14.060,47.758,73990,468216,137843,6.3,1.86
23
+ Pile (USPTO_Backgrounds),en,Technical,5.139,3.492,5.105,22.309,680,4341,993,6.4,1.46
24
+ OpenEdition,fr,Technical,0.939,2.225,3.604,14.459,2370,15398,3838,6.5,1.62
25
+ Pile (PhilPapers),en,Technical,0.0308,0.363,0.618,2.304,11786,74805,20065,6.3,1.7
26
+ Pile (NIH_ExPorter),en,Technical,0.914,0.288,0.431,1.979,315,2165,472,6.9,1.5
27
+ GallicaMonographies,fr,Book,0.278,15.106,25.169,90.456,54338,325381,90536,6.0,1.67
28
+ Gutenberg,en,Book,0.0563,3.544,5.516,20.579,62948,365524,97975,5.8,1.56
29
+ Gutenberg,fr,Book,0.00345,0.227,0.383,1.392,65797,403478,111014,6.1,1.69
30
+ Gutenberg,de,Book,0.00188,0.0987,0.193,0.654,52500,347872,102660,6.6,1.96
31
+ Gutenberg,it,Book,0.000958,0.0657,0.129,0.414,68580,432150,134656,6.3,1.96
32
+ Gutenberg,es,Book,0.000735,0.0512,0.0920,0.303,69660,412245,125170,5.9,1.8
33
+ Pile (FreeLaw),en,Legislative Texts,3.415,8.204,14.011,52.580,2402,15397,4103,6.4,1.71
34
+ Eurovoc,en,Legislative Texts,0.272,1.523,2.571,9.468,5599,34809,9452,6.2,1.69
35
+ Eurovoc,it,Legislative Texts,0.245,0.731,1.527,4.867,2984,19865,6233,6.7,2.09
36
+ Eurovoc,de,Legislative Texts,0.247,0.678,1.497,4.915,2745,19899,6061,7.2,2.21
37
+ Eurovoc,es,Legislative Texts,0.246,0.757,1.411,4.684,3077,19041,5736,6.2,1.86
38
+ OpenData,fr,Legislative Texts,1.169,0.755,1.209,4.638,646,3967,1034,6.1,1.6
39
+ QuestionsEcritesParlement,fr,Legislative Texts,0.189,0.108,0.156,0.705,571,3730,825,6.5,1.44
40
+ LEGI,fr,Legislative Texts,0.621,0.0878,0.145,0.563,141,907,233,6.4,1.65
41
+ AmendementsParlement,fr,Legislative Texts,0.673,0.0452,0.0738,0.274,67,407,110,6.1,1.63
42
+ Europarl,de,Legislative Transcripts,0.0102,0.0451,0.0734,0.327,4422,32059,7196,7.3,1.63
43
+ Europarl,es,Legislative Transcripts,0.0103,0.0524,0.0733,0.325,5087,31553,7117,6.2,1.4
44
+ Europarl,fr,Legislative Transcripts,0.0103,0.0528,0.0717,0.339,5126,32913,6961,6.4,1.36
45
+ Europarl,en,Legislative Transcripts,0.0111,0.0563,0.0690,0.339,5072,30541,6216,6.0,1.23
46
+ DiscoursPublics,fr,Legislative Transcripts,0.110,0.163,0.238,1.025,1482,9318,2164,6.3,1.46
47
+ InterventionsParlement,fr,Legislative Transcripts,1.832,0.104,0.157,0.654,57,357,86,6.3,1.51
48
+ Wikipedia,en,Wiki,6.893,4.708,7.898,26.616,683,3861,1146,5.7,1.68
49
+ Wikipedia,de,Wiki,2.877,1.709,3.476,11.252,594,3911,1208,6.6,2.03
50
+ Wikipedia,fr,Wiki,2.648,1.726,2.940,9.879,652,3731,1110,5.7,1.7
51
+ Wikipedia,es,Wiki,1.947,1.245,2.124,7.161,639,3678,1091,5.8,1.71
52
+ Wikipedia,it,Wiki,1.870,1.060,1.959,6.161,567,3295,1048,5.8,1.85
53
+ wikisource,fr,Wiki,0.186,0.523,0.795,3.080,2812,16559,4274,5.9,1.52
54
+ wiktionary,fr,Wiki,0.650,0.0531,0.117,0.347,82,534,180,6.5,2.2
55
+ MathPile,en,Math,0.737,3.408,9.637,27.290,4624,37028,13076,8.0,2.83
56
+ Pile (DM_Mathematics),en,Math,0.992,1.746,4.928,8.127,1760,8193,4968,4.7,2.82
57
+ Pile (StackExchange),en,Forum,15.269,4.534,10.275,33.609,297,2201,673,7.4,2.27
58
+ Pile (Ubuntu_IRC),en,Forum,0.0104,0.867,2.159,5.610,83365,539423,207596,6.5,2.49
59
+ Claire,en,Dialogue,0.949,0.818,1.161,4.709,862,4962,1223,5.8,1.42
60
+ Claire,fr,Dialogue,0.0393,0.210,0.311,1.314,5344,33435,7913,6.3,1.48
61
+ YouTube,fr,Dialogue,0.0375,0.145,0.336,1.003,3867,26747,8960,6.9,2.32
62
+ Stac,en,Dialogue,0.0000450,0.0000529,0.000121,0.000327,1176,7267,2689,6.2,2.29
63
+ CroissantAligned,fr-en,Multilingual Parallel Corpora,408.029,16.911,25.351,107.003,41,262,62,6.3,1.5
64
+ EuroparlAligned,it-en,Multilingual Parallel Corpora,1.901,0.100,0.151,0.638,53,336,79,6.4,1.51
65
+ EuroparlAligned,fr-en,Multilingual Parallel Corpora,2.003,0.105,0.143,0.655,52,327,71,6.2,1.36
66
+ EuroparlAligned,es-en,Multilingual Parallel Corpora,1.961,0.103,0.143,0.631,53,322,73,6.1,1.39
67
+ EuroparlAligned,de-fr,Multilingual Parallel Corpora,1.792,0.0908,0.141,0.621,51,347,79,6.8,1.55
68
+ TheStack,JAVASCRIPT,Programming,21.109,8.526,58.609,141.647,404,6710,2776,16.6,6.87
69
+ TheStack,JAVA,Programming,20.152,7.421,27.680,89.297,368,4431,1374,12.0,3.73
70
+ TheStack,C,Programming,8.626,5.916,24.092,57.428,686,6658,2793,9.7,4.07
71
+ TheStack,PHP,Programming,15.905,4.865,22.883,66.844,306,4203,1439,13.7,4.7
72
+ TheStack,PYTHON,Programming,12.962,5.434,21.683,64.304,419,4961,1673,11.8,3.99
73
+ TheStack,C++,Programming,6.378,4.584,18.835,50.892,719,7979,2953,11.1,4.11
74
+ TheStack,C#,Programming,10.839,3.574,13.381,46.286,330,4270,1235,13.0,3.74
75
+ TheStack,GO,Programming,4.730,2.735,10.262,25.738,578,5441,2170,9.4,3.75
76
+ TheStack,TYPESCRIPT,Programming,10.637,2.617,9.836,28.815,246,2709,925,11.0,3.76
77
+ TheStack,RUST,Programming,1.387,0.872,3.241,9.529,629,6870,2337,10.9,3.72
78
+ TheStack,RUBY,Programming,3.405,0.646,2.392,7.139,190,2097,702,11.1,3.7
79
+ TheStack,SWIFT,Programming,1.756,0.553,1.876,6.134,315,3493,1068,11.1,3.39
80
+ TheStack,KOTLIN,Programming,2.243,0.454,1.758,5.769,202,2572,784,12.7,3.87
81
+ TheStack,SCALA,Programming,1.362,0.457,1.587,4.862,336,3570,1165,10.6,3.47
82
+ TheStack,TEX,Programming,0.398,0.394,1.507,3.805,990,9560,3786,9.7,3.82
83
+ TheStack,LUA,Programming,0.559,0.318,1.367,3.279,569,5866,2445,10.3,4.3
84
+ TheStack,DART,Programming,0.933,0.308,1.242,3.864,330,4141,1331,12.5,4.03
85
+ TheStack,PERL,Programming,0.392,0.297,1.149,2.634,758,6719,2931,8.9,3.87
86
+ TheStack,MATHEMATICA,Programming,0.0269,0.120,1.117,1.720,4461,63941,41524,14.3,9.31
87
+ TheStack,ASSEMBLY,Programming,0.248,0.209,0.867,1.575,843,6351,3496,7.5,4.15
88
+ TheStack,HASKELL,Programming,0.545,0.307,0.807,2.364,563,4338,1481,7.7,2.63
89
+ TheStack,FORTRAN,Programming,0.165,0.192,0.780,1.843,1164,11170,4727,9.6,4.06
90
+ TheStack,JULIA,Programming,0.299,0.152,0.660,1.539,508,5147,2207,10.1,4.34
91
+ TheStack,OCAML,Programming,0.160,0.130,0.430,1.107,812,6919,2688,8.5,3.31
92
+ TheStack,ERLANG,Programming,0.0994,0.0657,0.260,0.726,661,7304,2616,11.1,3.96
93
+ TheStack,ELIXIR,Programming,0.282,0.0731,0.258,0.737,259,2613,915,10.1,3.53
94
+ TheStack,CLOJURE,Programming,0.126,0.0448,0.179,0.492,356,3905,1421,11.0,4.0
95
+ TheStack,R,Programming,0.0392,0.0278,0.158,0.305,709,7781,4031,11.0,5.68
96
+ TheStack,MATLAB,Programming,0.000967,0.00865,0.0427,0.0372,8945,38469,44157,4.3,4.94
97
+ TheStack,RACKET,Programming,0.00420,0.00479,0.0153,0.0378,1140,9000,3643,7.9,3.19