Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
File size: 63,157 Bytes
3c40969
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df3d1cd
 
 
 
e497f10
 
 
 
71269d8
5bd858a
 
 
71269d8
5bd858a
 
 
c5ed47b
 
 
 
3c40969
 
d64e379
3c40969
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
0b874a4
3c40969
 
 
fe24391
 
 
 
 
 
 
 
 
 
 
 
2c64667
fe24391
 
 
2c64667
fe24391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c64667
fe24391
 
 
2c64667
fe24391
 
 
2c64667
fe24391
 
 
2c64667
fe24391
 
 
 
 
 
 
5bd858a
fe24391
5bd858a
fe24391
5bd858a
fe24391
5bd858a
fe24391
5bd858a
fe24391
5bd858a
fe24391
5bd858a
fe24391
5bd858a
fe24391
 
 
 
 
63adc8e
fe24391
 
 
2c64667
fe24391
 
 
2c64667
fe24391
 
 
2c64667
fe24391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c64667
fe24391
 
 
2c64667
fe24391
 
 
2c64667
fe24391
 
 
2c64667
fe24391
 
 
2c64667
fe24391
 
 
 
 
 
 
64d0cc9
 
 
 
 
 
 
 
fe24391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1945339
 
 
 
 
 
 
 
ebc4412
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64d0cc9
 
 
 
fe24391
 
 
 
2c64667
fe24391
 
 
2c64667
fe24391
 
 
2c64667
fe24391
 
 
2c64667
fe24391
 
 
 
 
 
 
3c40969
 
 
 
fe24391
 
 
 
 
 
 
 
2c64667
fe24391
 
 
2c64667
fe24391
 
 
2c64667
fe24391
 
 
2c64667
fe24391
 
 
2c64667
fe24391
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c40969
c5ed47b
 
 
 
aa47305
 
c5ed47b
aa47305
c5ed47b
 
aa47305
f28164b
 
 
 
cdf9460
f28164b
 
27f929c
f28164b
 
27f929c
 
f28164b
 
 
27f929c
f28164b
27f929c
 
f28164b
27f929c
f28164b
 
27f929c
f28164b
27f929c
 
 
f28164b
 
 
 
 
 
cdf9460
27f929c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f28164b
 
 
 
 
 
 
aa47305
 
c5ed47b
 
aa47305
c5ed47b
aa47305
 
 
c5ed47b
aa47305
 
c5ed47b
aa47305
c5ed47b
aa47305
 
c5ed47b
 
 
 
 
 
 
 
0f3cb76
 
 
 
 
c5ed47b
 
 
 
 
 
 
 
 
 
 
91c1a59
c5ed47b
aa47305
 
 
3616b36
e51a349
128172f
e51a349
 
3616b36
 
e8b2eaf
0f3cb76
e8b2eaf
a07b06a
 
 
aa47305
 
 
a07b06a
 
 
 
 
 
 
aa47305
 
 
 
a07b06a
 
 
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
789c727
a07b06a
 
 
e51a349
a07b06a
 
 
 
789c727
a07b06a
 
 
3616b36
a07b06a
 
 
 
789c727
a07b06a
 
 
e51a349
a07b06a
 
 
 
789c727
a07b06a
 
 
e51a349
a07b06a
 
 
 
789c727
a07b06a
 
 
e51a349
a07b06a
 
 
 
789c727
a07b06a
 
 
 
 
 
 
 
789c727
a07b06a
 
 
 
 
 
 
 
3616b36
a07b06a
 
 
 
 
 
 
 
3616b36
a07b06a
 
 
 
 
 
 
 
3616b36
a07b06a
 
 
 
 
e51a349
a07b06a
 
 
 
789c727
a07b06a
 
 
e51a349
a07b06a
 
 
 
789c727
a07b06a
 
 
e51a349
a07b06a
 
 
 
789c727
a07b06a
 
 
e51a349
a07b06a
 
 
 
789c727
a07b06a
 
 
e51a349
a07b06a
 
 
 
789c727
a07b06a
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
789c727
a07b06a
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
789c727
a07b06a
 
 
e51a349
a07b06a
 
 
 
789c727
a07b06a
 
 
e51a349
a07b06a
 
 
 
 
 
 
 
e51a349
a07b06a
 
 
 
 
 
 
3616b36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a07b06a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa47305
 
 
a07b06a
aa47305
 
 
 
 
 
 
 
 
 
 
 
0f3cb76
aa47305
 
 
 
 
 
 
0f3cb76
 
aa47305
 
a72e89b
0f3cb76
 
 
 
 
 
aa47305
 
a72e89b
aa47305
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f3cb76
aa47305
 
 
 
 
 
 
 
 
0f3cb76
aa47305
 
 
 
 
0f3cb76
aa47305
 
 
 
 
0f3cb76
aa47305
 
 
 
 
 
 
 
 
 
 
0f3cb76
aa47305
0f3cb76
 
 
aa47305
a72e89b
aa47305
 
 
 
 
 
0f3cb76
 
aa47305
 
 
 
0f3cb76
aa47305
 
 
 
 
 
 
 
 
 
 
 
 
0f3cb76
aa47305
 
 
0f3cb76
 
aa47305
 
 
0f3cb76
aa47305
0f3cb76
 
aa47305
 
 
 
 
 
 
 
0f3cb76
aa47305
 
 
0f3cb76
 
 
aa47305
 
 
0f3cb76
 
aa47305
 
 
 
0f3cb76
 
 
aa47305
 
 
 
0f3cb76
 
aa47305
 
 
 
 
 
 
 
0f3cb76
aa47305
 
 
 
 
0f3cb76
 
aa47305
 
 
c5ed47b
39ef121
c5ed47b
 
 
 
 
 
aa47305
 
 
 
c5ed47b
 
 
 
39ef121
c5ed47b
 
 
39ef121
c5ed47b
 
 
39ef121
c5ed47b
 
 
39ef121
c5ed47b
aa47305
c5ed47b
39ef121
c5ed47b
 
 
39ef121
c5ed47b
 
 
aa47305
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
---
pretty_name: Lucie Training Dataset
license: cc-by-nc-sa-4.0
language:
- en
- fr
- de
- es
- it
- code
multilinguality:
- multilingual
task_categories:
- text-generation
- text2text-generation
task_ids:
- language-modeling
tags:
- text-generation
- conditional-text-generation
size_categories:
- n>1T
viewer: true
configs:
- config_name: default
  data_files:
  - path: data/*/*/*/*parquet
    split: train
- config_name: en
  data_files:
  - path: data/natural/en/*/*parquet
    split: train
- config_name: fr
  data_files:
  - path: data/natural/fr/*/*parquet
    split: train
- config_name: de
  data_files:
  - path: data/natural/de/*/*parquet
    split: train
- config_name: es
  data_files:
  - path: data/natural/es/*/*parquet
    split: train
- config_name: it
  data_files:
  - path: data/natural/it/*/*parquet
    split: train
- config_name: de,fr
  data_files:
  - path: data/natural/de-fr/*/*.parquet
    split: train
- config_name: es,en
  data_files:
  - path: data/natural/es-en/*/*.parquet
    split: train
- config_name: fr,en
  data_files:
  - path: data/natural/fr-en/*/*.parquet
    split: train
- config_name: it,en
  data_files:
  - path: data/natural/it-en/*/*.parquet
    split: train
- config_name: natural
  data_files:
  - path: data/natural/*/*/*.parquet
    split: train
- config_name: code
  data_files:
  - path: data/code/*/*/*parquet
    split: train
- config_name: code-assembly
  data_files:
  - path: data/code/assembly/*/*.parquet
    split: train
- config_name: code-c
  data_files:
  - path: data/code/c/*/*.parquet
    split: train
- config_name: code-c#
  data_files:
  - path: data/code/c#/*/*.parquet
    split: train
- config_name: code-c++
  data_files:
  - path: data/code/c++/*/*.parquet
    split: train
- config_name: code-clojure
  data_files:
  - path: data/code/clojure/*/*.parquet
    split: train
- config_name: code-dart
  data_files:
  - path: data/code/dart/*/*.parquet
    split: train
- config_name: code-elixir
  data_files:
  - path: data/code/elixir/*/*.parquet
    split: train
- config_name: code-erlang
  data_files:
  - path: data/code/erlang/*/*.parquet
    split: train
- config_name: code-fortran
  data_files:
  - path: data/code/fortran/*/*.parquet
    split: train
- config_name: code-go
  data_files:
  - path: data/code/go/*/*.parquet
    split: train
- config_name: code-haskell
  data_files:
  - path: data/code/haskell/*/*.parquet
    split: train
- config_name: code-java
  data_files:
  - path: data/code/java/*/*.parquet
    split: train
- config_name: code-javascript
  data_files:
  - path: data/code/javascript/*/*.parquet
    split: train
- config_name: code-julia
  data_files:
  - path: data/code/julia/*/*.parquet
    split: train
- config_name: code-kotlin
  data_files:
  - path: data/code/kotlin/*/*.parquet
    split: train
- config_name: code-lua
  data_files:
  - path: data/code/lua/*/*.parquet
    split: train
- config_name: code-mathematica
  data_files:
  - path: data/code/mathematica/*/*.parquet
    split: train
- config_name: code-matlab
  data_files:
  - path: data/code/matlab/*/*.parquet
    split: train
- config_name: code-ocaml
  data_files:
  - path: data/code/ocaml/*/*.parquet
    split: train
- config_name: code-perl
  data_files:
  - path: data/code/perl/*/*.parquet
    split: train
- config_name: code-php
  data_files:
  - path: data/code/php/*/*.parquet
    split: train
- config_name: code-python
  data_files:
  - path: data/code/python/*/*.parquet
    split: train
- config_name: code-r
  data_files:
  - path: data/code/r/*/*.parquet
    split: train
- config_name: code-racket
  data_files:
  - path: data/code/racket/*/*.parquet
    split: train
- config_name: code-ruby
  data_files:
  - path: data/code/ruby/*/*.parquet
    split: train
- config_name: code-rust
  data_files:
  - path: data/code/rust/*/*.parquet
    split: train
- config_name: code-scala
  data_files:
  - path: data/code/scala/*/*.parquet
    split: train
- config_name: code-swift
  data_files:
  - path: data/code/swift/*/*.parquet
    split: train
- config_name: code-tex
  data_files:
  - path: data/code/tex/*/*.parquet
    split: train
- config_name: code-typescript
  data_files:
  - path: data/code/typescript/*/*.parquet
    split: train
- config_name: AmendementsParlement
  data_files:
  - path: data/natural/*/AmendementsParlement/*.parquet
    split: train
- config_name: AmericanStories
  data_files:
  - path: data/natural/*/AmericanStories/*.parquet
    split: train
- config_name: Claire
  data_files:
  - path: data/natural/*/Claire/*.parquet
    split: train
- config_name: Claire-en
  data_files:
  - path: data/natural/en/Claire/*.parquet
    split: train
- config_name: Claire-fr
  data_files:
  - path: data/natural/fr/Claire/*.parquet
    split: train
- config_name: CroissantAligned
  data_files:
  - path: data/natural/*/CroissantAligned/*.parquet
    split: train
- config_name: DiscoursPublics
  data_files:
  - path: data/natural/*/DiscoursPublics/*.parquet
    split: train
- config_name: Europarl
  data_files:
  - path: data/natural/*/Europarl/*.parquet
    split: train
- config_name: Europarl-de
  data_files:
  - path: data/natural/de/Europarl/*.parquet
    split: train
- config_name: Europarl-en
  data_files:
  - path: data/natural/en/Europarl/*.parquet
    split: train
- config_name: Europarl-es
  data_files:
  - path: data/natural/es/Europarl/*.parquet
    split: train
- config_name: Europarl-fr
  data_files:
  - path: data/natural/fr/Europarl/*.parquet
    split: train
- config_name: EuroparlAligned
  data_files:
  - path: data/natural/*/EuroparlAligned/*.parquet
    split: train
- config_name: EuroparlAligned-de,fr
  data_files:
  - path: data/natural/de-fr/EuroparlAligned/*.parquet
    split: train
- config_name: EuroparlAligned-es,en
  data_files:
  - path: data/natural/es-en/EuroparlAligned/*.parquet
    split: train
- config_name: EuroparlAligned-fr,en
  data_files:
  - path: data/natural/fr-en/EuroparlAligned/*.parquet
    split: train
- config_name: EuroparlAligned-it,en
  data_files:
  - path: data/natural/it-en/EuroparlAligned/*.parquet
    split: train
- config_name: Eurovoc
  data_files:
  - path: data/natural/*/Eurovoc/*.parquet
    split: train
- config_name: Eurovoc-de
  data_files:
  - path: data/natural/de/Eurovoc/*.parquet
    split: train
- config_name: Eurovoc-en
  data_files:
  - path: data/natural/en/Eurovoc/*.parquet
    split: train
- config_name: Eurovoc-es
  data_files:
  - path: data/natural/es/Eurovoc/*.parquet
    split: train
- config_name: Eurovoc-it
  data_files:
  - path: data/natural/it/Eurovoc/*.parquet
    split: train
- config_name: FineWebEdu
  data_files:
  - path: data/natural/*/FineWebEdu/*.parquet
    split: train
- config_name: GallicaMonographies
  data_files:
  - path: data/natural/*/GallicaMonographies/*.parquet
    split: train
- config_name: GallicaPress
  data_files:
  - path: data/natural/*/GallicaPress/*.parquet
    split: train
- config_name: Gutenberg
  data_files:
  - path: data/natural/*/Gutenberg/*.parquet
    split: train
- config_name: Gutenberg-de
  data_files:
  - path: data/natural/de/Gutenberg/*.parquet
    split: train
- config_name: Gutenberg-en
  data_files:
  - path: data/natural/en/Gutenberg/*.parquet
    split: train
- config_name: Gutenberg-es
  data_files:
  - path: data/natural/es/Gutenberg/*.parquet
    split: train
- config_name: Gutenberg-fr
  data_files:
  - path: data/natural/fr/Gutenberg/*.parquet
    split: train
- config_name: Gutenberg-it
  data_files:
  - path: data/natural/it/Gutenberg/*.parquet
    split: train
- config_name: HAL
  data_files:
  - path: data/natural/*/HAL/*.parquet
    split: train
- config_name: InterventionsParlement
  data_files:
  - path: data/natural/*/InterventionsParlement/*.parquet
    split: train
- config_name: LEGI
  data_files:
  - path: data/natural/*/LEGI/*.parquet
    split: train
- config_name: MathPile
  data_files:
  - path: data/natural/*/MathPile/*.parquet
    split: train
- config_name: OpenData
  data_files:
  - path: data/natural/*/OpenData/*.parquet
    split: train
- config_name: OpenEdition
  data_files:
  - path: data/natural/*/OpenEdition/*.parquet
    split: train
- config_name: PeS2o
  data_files:
  - path: data/natural/*/PeS2o/*.parquet
    split: train
- config_name: PeS2o-s2ag
  data_files:
  - path: data/natural/*/PeS2o/*s2ag.parquet
    split: train
- config_name: PeS2o-s2orc
  data_files:
  - path: data/natural/*/PeS2o/*s2orc.parquet
    split: train
- config_name: Pile
  data_files:
  - path: data/natural/*/Pile/*.parquet
    split: train
- config_name: Pile-DM_Mathematics
  data_files:
  - path: data/natural/*/Pile/*DM_Mathematics.parquet
    split: train
- config_name: Pile-FreeLaw
  data_files:
  - path: data/natural/*/Pile/*FreeLaw.parquet
    split: train
- config_name: Pile-NIH_ExPorter
  data_files:
  - path: data/natural/*/Pile/*NIH_ExPorter.parquet
    split: train
- config_name: Pile-PhilPapers
  data_files:
  - path: data/natural/*/Pile/*PhilPapers.parquet
    split: train
- config_name: Pile-StackExchange
  data_files:
  - path: data/natural/*/Pile/*StackExchange.parquet
    split: train
- config_name: Pile-USPTO_Backgrounds
  data_files:
  - path: data/natural/*/Pile/*USPTO_Backgrounds.parquet
    split: train
- config_name: Pile-Ubuntu_IRC
  data_files:
  - path: data/natural/*/Pile/*Ubuntu_IRC.parquet
    split: train
- config_name: QuestionsEcritesParlement
  data_files:
  - path: data/natural/*/QuestionsEcritesParlement/*.parquet
    split: train
- config_name: RedPajama
  data_files:
  - path: data/natural/*/RedPajama/*.parquet
    split: train
- config_name: RedPajama-de
  data_files:
  - path: data/natural/de/RedPajama/*.parquet
    split: train
- config_name: RedPajama-es
  data_files:
  - path: data/natural/es/RedPajama/*.parquet
    split: train
- config_name: RedPajama-fr
  data_files:
  - path: data/natural/fr/RedPajama/*.parquet
    split: train
- config_name: RedPajama-it
  data_files:
  - path: data/natural/it/RedPajama/*.parquet
    split: train
- config_name: Stac
  data_files:
  - path: data/natural/*/Stac/*.parquet
    split: train
- config_name: TheStack
  data_files:
  - path: data/code/*/TheStack/*.parquet
    split: train
- config_name: Theses
  data_files:
  - path: data/natural/*/Theses/*.parquet
    split: train
- config_name: Wikipedia
  data_files:
  - path: data/natural/*/Wikipedia/*.parquet
    split: train
- config_name: Wikipedia-de
  data_files:
  - path: data/natural/de/Wikipedia/*.parquet
    split: train
- config_name: Wikipedia-en
  data_files:
  - path: data/natural/en/Wikipedia/*.parquet
    split: train
- config_name: Wikipedia-es
  data_files:
  - path: data/natural/es/Wikipedia/*.parquet
    split: train
- config_name: Wikipedia-fr
  data_files:
  - path: data/natural/fr/Wikipedia/*.parquet
    split: train
- config_name: Wikipedia-it
  data_files:
  - path: data/natural/it/Wikipedia/*.parquet
    split: train
- config_name: Wikisource
  data_files:
  - path: data/natural/*/Wikisource/*.parquet
    split: train
- config_name: Wiktionary
  data_files:
  - path: data/natural/*/Wiktionary/*.parquet
    split: train
- config_name: YouTube
  data_files:
  - path: data/natural/*/YouTube/*.parquet
    split: train
---

# Dataset Card

The Lucie Training Dataset is a curated collection of text data
in English, French, German, Spanish and Italian culled from a variety of sources including: web data, video subtitles, academic papers,
digital books, newspapers, and magazines, some of which were processed by Optical Character Recognition (OCR). It also contains samples of diverse programming languages.

The Lucie Training Dataset was used to pretrain [Lucie-7B](https://huggingface.co/OpenLLM-France/Lucie-7B),
a foundation LLM with strong capabilities in French and English.

Table of Contents:
<ul>
  <li><a href="#dataset-description">Dataset Description</a>
    <ul>
        <li><a href="#dataset-structure">Dataset Structure</a></li>
        <li><a href="#dataset-composition">Dataset Composition</a>
          <table>
            <tr>
              <td style="vertical-align: top;">
                <ul>
                  <li><a href="#category-web">Web</a></li>
                  <li><a href="#category-newspaper">Newspaper</a></li>
                  <li><a href="#category-technical">Technical</a></li>
                  <li><a href="#category-book">Book</a></li>
                </ul>
              </td>
              <td style="vertical-align: top;">
                <ul>
                  <li><a href="#category-legislative-texts">Legislative Texts</a></li>
                  <li><a href="#category-legislative-transcripts">Legislative Transcripts</a></li>
                  <li><a href="#category-wiki">Wiki</a></li>
                  <li><a href="#category-math">Math</a></li>
                </ul>
              </td>
              <td style="vertical-align: top;">
                <ul>
                  <li><a href="#category-forum">Forum</a></li>
                  <li><a href="#category-dialogue">Dialogue</a></li>
                  <li><a href="#category-multilingual-parallel-corpora">Multilingual Parallel Corpora</a></li>
                  <li><a href="#category-programming">Programming</a></li>
                </ul>
              </td>
            </tr>
          </table>
        </li>
      <li><a href="#details-on-data-sources">Details on Data Sources</a>
          <table>
            <tr>
              <td style="vertical-align: top;">
                <ul>
                  <li><a href="#amendementsparlement">AmendementsParlement</a></li>
                  <li><a href="#americanstories">AmericanStories</a></li>
                  <li><a href="#claire-french-and-english">Claire (French and English)</a></li>
                  <li><a href="#croissantaligned">CroissantAligned</a></li>
                  <li><a href="#discourspublics">DiscoursPublics</a></li>
                  <li><a href="#europarl-monolingual-and-parallel">Europarl (monolingual and parallel)</a></li>
                  <li><a href="#eurovoc">Eurovoc</a></li>
                  <li><a href="#finewebedu">FineWebEdu</a></li>
                  <li><a href="#gallicamonographies">GallicaMonographies</a></li>
                </ul>
              </td>
              <td style="vertical-align: top;">
                <ul>
                  <li><a href="#gallicapress">GallicaPress</a></li>
                  <li><a href="#gutenberg">Gutenberg</a></li>
                  <li><a href="#hal">HAL</a></li>
                  <li><a href="#interventionsparlement">InterventionsParlement</a></li>
                  <li><a href="#legi">LEGI</a></li>
                  <li><a href="#mathpile">MathPile</a></li>
                  <li><a href="#opendata">OpenData</a></li>
                  <li><a href="#openedition">OpenEdition</a></li>
                  <li><a href="#pes2o">PeS2o</a></li>
                </ul>
              </td>
              <td style="vertical-align: top;">
                <ul>
                  <li><a href="#pile-uncopyrighted">Pile (Uncopyrighted)</a></li>
                  <li><a href="#questionsecritesparlement">QuestionsEcritesParlement</a></li>
                  <li><a href="#redpajama-v2">RedPajama (v2)</a></li>
                  <li><a href="#stac">Stac</a></li>
                  <li><a href="#thestack">TheStack</a></li>
                  <li><a href="#theses">Theses</a></li>
                  <li><a href="#wikipedia-wikisource-wiktionary">Wikipedia, Wikisource, Wiktionary</a></li>
                  <li><a href="#youtube">YouTube</a></li>
                </ul>
              </td>
            </tr>
          </table>
      </li>
    </ul>
  </li>
  <li><a href="#example-use-in-python">Example use in python</a></li>
  <li><a href="#license">License</a></li>
  <li><a href="#citation">Citation</a></li>
  <li><a href="#contact">Contact</a></li>
</ul>


## Dataset Description

This dataset was made to provide an extensive and diverse dataset for training Large Language Models (LLMs). Here are some of the principal features of the corpus:
* Data mix:
    * The dataset contains equal amounts of French and English data -- it is in fact one of the biggest collections of French text data that has been preprocessed for LLM training -- with the aim of minimizing anglo-centric cultural biases.
    * German, Spanish and Italian are also represented in small amounts.
    * Code is also included to boost the reasoning capabilities of LLMs.
* Data filtering and deduplication:
    * The dataset has been cleaned in an effort to remove very low-quality data.
    * Duplicate data samples have been removed to some extent, following best practices.
* Ethics:
    * Special care has been taken to respect copyright laws and individual privacy.
      All books, newspapers, monographies, and magazines are in the public domain
  (which depends on the author's date of death and the country of publication).
    * All web data in the dataset came from sites with robots.txt files that do not forbid crawling.

### Dataset Structure

The corpus contains the following information for each text sample:
* `text`: the text sample itself.
* `source`: an identifier for the source(s) of the text sample (`Wikipedia`, `RedPajama`, `Gutenberg`, …).
  The list of all sources is described in this document.
* `id`: an identifier that is unique among the source.
* `language`: the language of the text sample (relying on the source, that information can be wrong). Possible values are:
    * an ISO 639-1 code of a natural language: `en`, `fr`, `de`, `es`, or `it`;
    * a common name prefixed by "`code:`" of a programming language:  `code:python`, `code:c++`, …; or
    * a list of ISO 639-1 codes separated by commas, if the text sample is multilingual: `fr,en`, `de,fr`, `es,en`, `it,en`,
     or one of those pairs in the opposite order if the languages appear in the opposite order in the text.
* `url` (optional): the URL of the original text sample on the web, if available.
* `title` (optional): the title of the original text sample, if available.
* `author` (optional): the author of the original text sample, if available.
   Usually the author name in plain text, except for `Gutenberg` where it is the JSON serialized object of the author metadata.
* `date` (optional): the publication date of the original text sample, if available. The text format of the source depends on the source.
* `quality_signals` (optional): a list of quality signals about the text sample (that could be used for further filtering or sample weighting).
  It can include indicators computed by `fasttext` and `CCNet`, statistics about occurrences of characters, words, special characters, etc.
  This field is always a JSON serialized object.
* `extra` (optional): JSON serialized extra information about the text sample.
  This can include metadata about the source subset, the rights, etc.

Examples of metadata (except from `text`) are shown for each source in [metadata_examples.json](metadata/metadata_examples.json).


### Dataset Composition

The following figure shows the distribution of the dataset by language (colors) and category (hatch patterns).

![Dataset composition](figures/fig_dataset_composition.png)

The following table provides an overview of the dataset composition,
broken down by source and language.
Sources are grouped by category.
The table provides the numbers of documents, words, tokens, and characters for each subset.
All numbers in this table are available in the CSV file [dataset_composition.csv](metadata/dataset_composition.csv).
The Number of tokens was computed using the tokenizer of [Lucie-7B LLM](https://huggingface.co/OpenLLM-France/Lucie-7B).

<!-- The following is automatically generated. Do not update manually. -->
<!-- TABLE START -->
<table>
<thead>
<tr>
<th><a href="#subset"><strong>subset</strong></a></th>
<th><strong>language</strong></th>
<th><strong>M docs</strong></th>
<th><strong>B words</strong></th>
<th><strong>B tokens</strong></th>
<th><strong>B chars</strong></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td rowspan="11" style="vertical-align: top;"><strong>TOTAL</strong></td>
<td></td>
<td>2186.562</td>
<td>1356.021</td>
<td>2314.862</td>
<td>8842.200</td>
<td></td>
</tr>
<tr>

<td><strong>French (fr)</strong></td>
<td>653.812</td>
<td>583.687</td>
<td>928.618</td>
<td>3619.672</td>
<td><a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_french_pie.png">composition details</a></td>
</tr>
<tr>

<td><strong>English (en)</strong></td>
<td>554.289</td>
<td>412.202</td>
<td>611.894</td>
<td>2553.541</td>
<td><a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_english_pie.png">composition details</a></td>
</tr>
<tr>

<td><strong>code</strong></td>
<td>125.769</td>
<td>51.306</td>
<td>228.954</td>
<td>630.749</td>
<td><a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_code_pie.png">composition details</a></td>
</tr>
<tr>

<td><strong>German (de)</strong></td>
<td>165.915</td>
<td>105.609</td>
<td>206.610</td>
<td>764.779</td>
<td><a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_german_pie.png">composition details</a></td>
</tr>
<tr>

<td><strong>Spanish (es)</strong></td>
<td>171.651</td>
<td>123.857</td>
<td>200.825</td>
<td>759.457</td>
<td><a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_spanish_pie.png">composition details</a></td>
</tr>
<tr>

<td><strong>Italian (it)</strong></td>
<td>99.440</td>
<td>62.051</td>
<td>112.031</td>
<td>404.454</td>
<td><a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_italian_pie.png">composition details</a></td>
</tr>
<tr>

<td><strong>fr-en</strong></td>
<td>410.032</td>
<td>17.016</td>
<td>25.494</td>
<td>107.658</td>
<td><a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_fr-en_pie.png">composition details</a></td>
</tr>
<tr>

<td><strong>it-en</strong></td>
<td>1.901</td>
<td>0.100</td>
<td>0.151</td>
<td>0.638</td>
<td></td>
</tr>
<tr>

<td><strong>es-en</strong></td>
<td>1.961</td>
<td>0.103</td>
<td>0.143</td>
<td>0.631</td>
<td></td>
</tr>
<tr>

<td><strong>de-fr</strong></td>
<td>1.792</td>
<td>0.0908</td>
<td>0.141</td>
<td>0.621</td>
<td></td>
</tr>
<tr>
<td colspan="7"><h4 id="category-web">Category: Web</h4></td></tr>
<tr>
<td rowspan="4" style="vertical-align: top;"><a href="#redpajama-v2"><strong>RedPajama</strong></a></td>
<td><strong>French (fr)</strong></td>
<td>640.770</td>
<td>477.758</td>
<td>741.023</td>
<td>2974.596</td>
<td><a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_redpajama-french_histogram.png">composition details</a></td>
</tr>
<tr>

<td><strong>German (de)</strong></td>
<td>162.779</td>
<td>103.078</td>
<td>201.371</td>
<td>747.631</td>
<td><a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_redpajama-german_histogram.png">composition details</a></td>
</tr>
<tr>

<td><strong>Spanish (es)</strong></td>
<td>169.447</td>
<td>121.751</td>
<td>197.125</td>
<td>746.984</td>
<td><a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_redpajama-spanish_histogram.png">composition details</a></td>
</tr>
<tr>

<td><strong>Italian (it)</strong></td>
<td>97.324</td>
<td>60.194</td>
<td>108.416</td>
<td>393.012</td>
<td><a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_redpajama-italian_histogram.png">composition details</a></td>
</tr>
<tr>
<td><a href="#finewebedu"><strong>FineWebEdu</strong></a></td>
<td><strong>English (en)</strong></td>
<td>421.209</td>
<td>327.453</td>
<td>467.837</td>
<td>2018.215</td>
<td><a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_finewebedu-english_histogram.png">composition details</a></td>
</tr>
<tr>
<td colspan="7"><h4 id="category-newspaper">Category: Newspaper</h4></td></tr>
<tr>
<td><a href="#gallicapress"><strong>GallicaPress</strong></a></td>
<td><strong>French (fr)</strong></td>
<td>3.205</td>
<td>67.496</td>
<td>121.606</td>
<td>408.882</td>
<td></td>
</tr>
<tr>
<td><a href="#americanstories"><strong>AmericanStories</strong></a></td>
<td><strong>English (en)</strong></td>
<td>59.420</td>
<td>8.902</td>
<td>14.313</td>
<td>50.844</td>
<td><a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_americanstories-english_histogram.png">composition details</a></td>
</tr>
<tr>
<td colspan="7"><h4 id="category-technical">Category: Technical</h4></td></tr>
<tr>
<td><a href="#pes2o"><strong>PeS2o</strong></a></td>
<td><strong>English (en)</strong></td>
<td>38.972</td>
<td>42.296</td>
<td>65.365</td>
<td>268.963</td>
<td></td>
</tr>
<tr>
<td><a href="#hal"><strong>HAL</strong></a></td>
<td><strong>French (fr)</strong></td>
<td>0.349</td>
<td>9.356</td>
<td>16.224</td>
<td>58.308</td>
<td></td>
</tr>
<tr>
<td><a href="#theses"><strong>Theses</strong></a></td>
<td><strong>French (fr)</strong></td>
<td>0.102</td>
<td>7.547</td>
<td>14.060</td>
<td>47.758</td>
<td></td>
</tr>
<tr>
<td><a href="#pile-uncopyrighted"><strong>Pile (USPTO_Backgrounds)</strong></a></td>
<td><strong>English (en)</strong></td>
<td>5.139</td>
<td>3.492</td>
<td>5.105</td>
<td>22.309</td>
<td></td>
</tr>
<tr>
<td><a href="#openedition"><strong>OpenEdition</strong></a></td>
<td><strong>French (fr)</strong></td>
<td>0.939</td>
<td>2.225</td>
<td>3.604</td>
<td>14.459</td>
<td></td>
</tr>
<tr>
<td><a href="#pile-uncopyrighted"><strong>Pile (PhilPapers)</strong></a></td>
<td><strong>English (en)</strong></td>
<td>0.0308</td>
<td>0.363</td>
<td>0.618</td>
<td>2.304</td>
<td></td>
</tr>
<tr>
<td><a href="#pile-uncopyrighted"><strong>Pile (NIH_ExPorter)</strong></a></td>
<td><strong>English (en)</strong></td>
<td>0.914</td>
<td>0.288</td>
<td>0.431</td>
<td>1.979</td>
<td></td>
</tr>
<tr>
<td colspan="7"><h4 id="category-book">Category: Book</h4></td></tr>
<tr>
<td><a href="#gallicamonographies"><strong>GallicaMonographies</strong></a></td>
<td><strong>French (fr)</strong></td>
<td>0.278</td>
<td>15.106</td>
<td>25.169</td>
<td>90.456</td>
<td></td>
</tr>
<tr>
<td rowspan="5" style="vertical-align: top;"><a href="#gutenberg"><strong>Gutenberg</strong></a></td>
<td><strong>English (en)</strong></td>
<td>0.0563</td>
<td>3.544</td>
<td>5.516</td>
<td>20.579</td>
<td></td>
</tr>
<tr>

<td><strong>French (fr)</strong></td>
<td>0.00345</td>
<td>0.227</td>
<td>0.383</td>
<td>1.392</td>
<td></td>
</tr>
<tr>

<td><strong>German (de)</strong></td>
<td>0.00188</td>
<td>0.0987</td>
<td>0.193</td>
<td>0.654</td>
<td></td>
</tr>
<tr>

<td><strong>Italian (it)</strong></td>
<td>0.000958</td>
<td>0.0657</td>
<td>0.129</td>
<td>0.414</td>
<td></td>
</tr>
<tr>

<td><strong>Spanish (es)</strong></td>
<td>0.000735</td>
<td>0.0512</td>
<td>0.0920</td>
<td>0.303</td>
<td></td>
</tr>
<tr>
<td colspan="7"><h4 id="category-legislative-texts">Category: Legislative Texts</h4></td></tr>
<tr>
<td><a href="#pile-uncopyrighted"><strong>Pile (FreeLaw)</strong></a></td>
<td><strong>English (en)</strong></td>
<td>3.415</td>
<td>8.204</td>
<td>14.011</td>
<td>52.580</td>
<td></td>
</tr>
<tr>
<td rowspan="4" style="vertical-align: top;"><a href="#eurovoc"><strong>Eurovoc</strong></a></td>
<td><strong>English (en)</strong></td>
<td>0.272</td>
<td>1.523</td>
<td>2.571</td>
<td>9.468</td>
<td></td>
</tr>
<tr>

<td><strong>Italian (it)</strong></td>
<td>0.245</td>
<td>0.731</td>
<td>1.527</td>
<td>4.867</td>
<td></td>
</tr>
<tr>

<td><strong>German (de)</strong></td>
<td>0.247</td>
<td>0.678</td>
<td>1.497</td>
<td>4.915</td>
<td></td>
</tr>
<tr>

<td><strong>Spanish (es)</strong></td>
<td>0.246</td>
<td>0.757</td>
<td>1.411</td>
<td>4.684</td>
<td></td>
</tr>
<tr>
<td><a href="#opendata"><strong>OpenData</strong></a></td>
<td><strong>French (fr)</strong></td>
<td>1.169</td>
<td>0.755</td>
<td>1.209</td>
<td>4.638</td>
<td></td>
</tr>
<tr>
<td><a href="#questionsecritesparlement"><strong>QuestionsEcritesParlement</strong></a></td>
<td><strong>French (fr)</strong></td>
<td>0.189</td>
<td>0.108</td>
<td>0.156</td>
<td>0.705</td>
<td></td>
</tr>
<tr>
<td><a href="#legi"><strong>LEGI</strong></a></td>
<td><strong>French (fr)</strong></td>
<td>0.621</td>
<td>0.0878</td>
<td>0.145</td>
<td>0.563</td>
<td></td>
</tr>
<tr>
<td><a href="#amendementsparlement"><strong>AmendementsParlement</strong></a></td>
<td><strong>French (fr)</strong></td>
<td>0.673</td>
<td>0.0452</td>
<td>0.0738</td>
<td>0.274</td>
<td></td>
</tr>
<tr>
<td colspan="7"><h4 id="category-legislative-transcripts">Category: Legislative Transcripts</h4></td></tr>
<tr>
<td rowspan="4" style="vertical-align: top;"><a href="#europarl-monolingual-and-parallel"><strong>Europarl</strong></a></td>
<td><strong>German (de)</strong></td>
<td>0.0102</td>
<td>0.0451</td>
<td>0.0734</td>
<td>0.327</td>
<td></td>
</tr>
<tr>

<td><strong>Spanish (es)</strong></td>
<td>0.0103</td>
<td>0.0524</td>
<td>0.0733</td>
<td>0.325</td>
<td></td>
</tr>
<tr>

<td><strong>French (fr)</strong></td>
<td>0.0103</td>
<td>0.0528</td>
<td>0.0717</td>
<td>0.339</td>
<td></td>
</tr>
<tr>

<td><strong>English (en)</strong></td>
<td>0.0111</td>
<td>0.0563</td>
<td>0.0690</td>
<td>0.339</td>
<td></td>
</tr>
<tr>
<td><a href="#discourspublics"><strong>DiscoursPublics</strong></a></td>
<td><strong>French (fr)</strong></td>
<td>0.110</td>
<td>0.163</td>
<td>0.238</td>
<td>1.025</td>
<td></td>
</tr>
<tr>
<td><a href="#interventionsparlement"><strong>InterventionsParlement</strong></a></td>
<td><strong>French (fr)</strong></td>
<td>1.832</td>
<td>0.104</td>
<td>0.157</td>
<td>0.654</td>
<td></td>
</tr>
<tr>
<td colspan="7"><h4 id="category-wiki">Category: Wiki</h4></td></tr>
<tr>
<td rowspan="5" style="vertical-align: top;"><a href="#wikipedia-wikisource-wiktionary"><strong>Wikipedia</strong></a></td>
<td><strong>English (en)</strong></td>
<td>6.893</td>
<td>4.708</td>
<td>7.898</td>
<td>26.616</td>
<td></td>
</tr>
<tr>

<td><strong>German (de)</strong></td>
<td>2.877</td>
<td>1.709</td>
<td>3.476</td>
<td>11.252</td>
<td></td>
</tr>
<tr>

<td><strong>French (fr)</strong></td>
<td>2.648</td>
<td>1.726</td>
<td>2.940</td>
<td>9.879</td>
<td></td>
</tr>
<tr>

<td><strong>Spanish (es)</strong></td>
<td>1.947</td>
<td>1.245</td>
<td>2.124</td>
<td>7.161</td>
<td></td>
</tr>
<tr>

<td><strong>Italian (it)</strong></td>
<td>1.870</td>
<td>1.060</td>
<td>1.959</td>
<td>6.161</td>
<td></td>
</tr>
<tr>
<td><a href="#wikipedia-wikisource-wiktionary"><strong>wikisource</strong></a></td>
<td><strong>French (fr)</strong></td>
<td>0.186</td>
<td>0.523</td>
<td>0.795</td>
<td>3.080</td>
<td></td>
</tr>
<tr>
<td><a href="#wikipedia-wikisource-wiktionary"><strong>wiktionary</strong></a></td>
<td><strong>French (fr)</strong></td>
<td>0.650</td>
<td>0.0531</td>
<td>0.117</td>
<td>0.347</td>
<td></td>
</tr>
<tr>
<td colspan="7"><h4 id="category-math">Category: Math</h4></td></tr>
<tr>
<td><a href="#mathpile"><strong>MathPile</strong></a></td>
<td><strong>English (en)</strong></td>
<td>0.737</td>
<td>3.408</td>
<td>9.637</td>
<td>27.290</td>
<td></td>
</tr>
<tr>
<td><a href="#pile-uncopyrighted"><strong>Pile (DM_Mathematics)</strong></a></td>
<td><strong>English (en)</strong></td>
<td>0.992</td>
<td>1.746</td>
<td>4.928</td>
<td>8.127</td>
<td></td>
</tr>
<tr>
<td colspan="7"><h4 id="category-forum">Category: Forum</h4></td></tr>
<tr>
<td><a href="#pile-uncopyrighted"><strong>Pile (StackExchange)</strong></a></td>
<td><strong>English (en)</strong></td>
<td>15.269</td>
<td>4.534</td>
<td>10.275</td>
<td>33.609</td>
<td></td>
</tr>
<tr>
<td><a href="#pile-uncopyrighted"><strong>Pile (Ubuntu_IRC)</strong></a></td>
<td><strong>English (en)</strong></td>
<td>0.0104</td>
<td>0.867</td>
<td>2.159</td>
<td>5.610</td>
<td></td>
</tr>
<tr>
<td colspan="7"><h4 id="category-dialogue">Category: Dialogue</h4></td></tr>
<tr>
<td rowspan="2" style="vertical-align: top;"><a href="#claire-french-and-english"><strong>Claire</strong></a></td>
<td><strong>English (en)</strong></td>
<td>0.949</td>
<td>0.818</td>
<td>1.161</td>
<td>4.709</td>
<td><a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_claire-english_pie.png">composition details</a></td>
</tr>
<tr>

<td><strong>French (fr)</strong></td>
<td>0.0393</td>
<td>0.210</td>
<td>0.311</td>
<td>1.314</td>
<td><a href="https://huggingface.co/datasets/OpenLLM-France/Lucie-Training-Dataset/blob/main/figures/fig_distribution_claire-french_pie.png">composition details</a></td>
</tr>
<tr>
<td><a href="#youtube"><strong>YouTube</strong></a></td>
<td><strong>French (fr)</strong></td>
<td>0.0375</td>
<td>0.145</td>
<td>0.336</td>
<td>1.003</td>
<td></td>
</tr>
<tr>
<td><a href="#stac"><strong>Stac</strong></a></td>
<td><strong>English (en)</strong></td>
<td>0.0000450</td>
<td>0.0000529</td>
<td>0.000121</td>
<td>0.000327</td>
<td></td>
</tr>
<tr>
<td colspan="7"><h4 id="category-multilingual-parallel-corpora">Category: Multilingual Parallel Corpora</h4></td></tr>
<tr>
<td><a href="#croissantaligned"><strong>CroissantAligned</strong></a></td>
<td><strong>fr-en</strong></td>
<td>408.029</td>
<td>16.911</td>
<td>25.351</td>
<td>107.003</td>
<td></td>
</tr>
<tr>
<td rowspan="4" style="vertical-align: top;"><a href="#europarl-monolingual-and-parallel"><strong>EuroparlAligned</strong></a></td>
<td><strong>it-en</strong></td>
<td>1.901</td>
<td>0.100</td>
<td>0.151</td>
<td>0.638</td>
<td></td>
</tr>
<tr>

<td><strong>fr-en</strong></td>
<td>2.003</td>
<td>0.105</td>
<td>0.143</td>
<td>0.655</td>
<td></td>
</tr>
<tr>

<td><strong>es-en</strong></td>
<td>1.961</td>
<td>0.103</td>
<td>0.143</td>
<td>0.631</td>
<td></td>
</tr>
<tr>

<td><strong>de-fr</strong></td>
<td>1.792</td>
<td>0.0908</td>
<td>0.141</td>
<td>0.621</td>
<td></td>
</tr>
<tr>
<td colspan="7"><h4 id="category-programming">Category: Programming</h4></td></tr>
<tr>
<td rowspan="30" style="vertical-align: top;"><a href="#thestack"><strong>TheStack</strong></a></td>
<td><strong>JAVASCRIPT</strong></td>
<td>21.109</td>
<td>8.526</td>
<td>58.609</td>
<td>141.647</td>
<td></td>
</tr>
<tr>

<td><strong>JAVA</strong></td>
<td>20.152</td>
<td>7.421</td>
<td>27.680</td>
<td>89.297</td>
<td></td>
</tr>
<tr>

<td><strong>C</strong></td>
<td>8.626</td>
<td>5.916</td>
<td>24.092</td>
<td>57.428</td>
<td></td>
</tr>
<tr>

<td><strong>PHP</strong></td>
<td>15.905</td>
<td>4.865</td>
<td>22.883</td>
<td>66.844</td>
<td></td>
</tr>
<tr>

<td><strong>PYTHON</strong></td>
<td>12.962</td>
<td>5.434</td>
<td>21.683</td>
<td>64.304</td>
<td></td>
</tr>
<tr>

<td><strong>C++</strong></td>
<td>6.378</td>
<td>4.584</td>
<td>18.835</td>
<td>50.892</td>
<td></td>
</tr>
<tr>

<td><strong>C#</strong></td>
<td>10.839</td>
<td>3.574</td>
<td>13.381</td>
<td>46.286</td>
<td></td>
</tr>
<tr>

<td><strong>GO</strong></td>
<td>4.730</td>
<td>2.735</td>
<td>10.262</td>
<td>25.738</td>
<td></td>
</tr>
<tr>

<td><strong>TYPESCRIPT</strong></td>
<td>10.637</td>
<td>2.617</td>
<td>9.836</td>
<td>28.815</td>
<td></td>
</tr>
<tr>

<td><strong>RUST</strong></td>
<td>1.387</td>
<td>0.872</td>
<td>3.241</td>
<td>9.529</td>
<td></td>
</tr>
<tr>

<td><strong>RUBY</strong></td>
<td>3.405</td>
<td>0.646</td>
<td>2.392</td>
<td>7.139</td>
<td></td>
</tr>
<tr>

<td><strong>SWIFT</strong></td>
<td>1.756</td>
<td>0.553</td>
<td>1.876</td>
<td>6.134</td>
<td></td>
</tr>
<tr>

<td><strong>KOTLIN</strong></td>
<td>2.243</td>
<td>0.454</td>
<td>1.758</td>
<td>5.769</td>
<td></td>
</tr>
<tr>

<td><strong>SCALA</strong></td>
<td>1.362</td>
<td>0.457</td>
<td>1.587</td>
<td>4.862</td>
<td></td>
</tr>
<tr>

<td><strong>TEX</strong></td>
<td>0.398</td>
<td>0.394</td>
<td>1.507</td>
<td>3.805</td>
<td></td>
</tr>
<tr>

<td><strong>LUA</strong></td>
<td>0.559</td>
<td>0.318</td>
<td>1.367</td>
<td>3.279</td>
<td></td>
</tr>
<tr>

<td><strong>DART</strong></td>
<td>0.933</td>
<td>0.308</td>
<td>1.242</td>
<td>3.864</td>
<td></td>
</tr>
<tr>

<td><strong>PERL</strong></td>
<td>0.392</td>
<td>0.297</td>
<td>1.149</td>
<td>2.634</td>
<td></td>
</tr>
<tr>

<td><strong>MATHEMATICA</strong></td>
<td>0.0269</td>
<td>0.120</td>
<td>1.117</td>
<td>1.720</td>
<td></td>
</tr>
<tr>

<td><strong>ASSEMBLY</strong></td>
<td>0.248</td>
<td>0.209</td>
<td>0.867</td>
<td>1.575</td>
<td></td>
</tr>
<tr>

<td><strong>HASKELL</strong></td>
<td>0.545</td>
<td>0.307</td>
<td>0.807</td>
<td>2.364</td>
<td></td>
</tr>
<tr>

<td><strong>FORTRAN</strong></td>
<td>0.165</td>
<td>0.192</td>
<td>0.780</td>
<td>1.843</td>
<td></td>
</tr>
<tr>

<td><strong>JULIA</strong></td>
<td>0.299</td>
<td>0.152</td>
<td>0.660</td>
<td>1.539</td>
<td></td>
</tr>
<tr>

<td><strong>OCAML</strong></td>
<td>0.160</td>
<td>0.130</td>
<td>0.430</td>
<td>1.107</td>
<td></td>
</tr>
<tr>

<td><strong>ERLANG</strong></td>
<td>0.0994</td>
<td>0.0657</td>
<td>0.260</td>
<td>0.726</td>
<td></td>
</tr>
<tr>

<td><strong>ELIXIR</strong></td>
<td>0.282</td>
<td>0.0731</td>
<td>0.258</td>
<td>0.737</td>
<td></td>
</tr>
<tr>

<td><strong>CLOJURE</strong></td>
<td>0.126</td>
<td>0.0448</td>
<td>0.179</td>
<td>0.492</td>
<td></td>
</tr>
<tr>

<td><strong>R</strong></td>
<td>0.0392</td>
<td>0.0278</td>
<td>0.158</td>
<td>0.305</td>
<td></td>
</tr>
<tr>

<td><strong>MATLAB</strong></td>
<td>0.000967</td>
<td>0.00865</td>
<td>0.0427</td>
<td>0.0372</td>
<td></td>
</tr>
<tr>

<td><strong>RACKET</strong></td>
<td>0.00420</td>
<td>0.00479</td>
<td>0.0153</td>
<td>0.0378</td>
<td></td>
</tr>
</tbody>
</table>
<!-- TABLE END -->

### Details on Data Sources

#### AmendementsParlement
* <u>Source</u>: Corpus contributed by OpenLLM partners.
* <u>Extracted from</u>:  [Regards citoyens](https://www.regardscitoyens.org/#&panel1-4) ([nodeputes.fr](http://www.nosdeputes.fr/), [nossenateurs.fr](http://www.nossenateurs.fr/)). [API](https://github.com/regardscitoyens). License: [CC BY-SA](https://www.regardscitoyens.org/#&panel1-2).
* <u>Description</u>: A collection of proposed amendments by the French parliament: the legal text and description of the requested modification. 
* <u>Citation</u>: No paper found.

#### AmericanStories
* <u>Source</u>: [dell-research-harvard/AmericanStories](https://huggingface.co/datasets/dell-research-harvard/AmericanStories). License: [CC BY 4.0](https://huggingface.co/datasets/dell-research-harvard/AmericanStories).
* <u>Extracted from</u>: [Chronicling America](https://www.loc.gov/collections/chronicling-america/about-this-collection/). License: [Open](https://www.loc.gov/collections/chronicling-america/about-this-collection/rights-and-access/).
* <u>Description</u>: "The American Stories dataset is a collection of full article texts extracted from historical U.S. newspaper images. It includes nearly 20 million scans from the public domain Chronicling America collection maintained by the Library of Congress. The dataset is designed to address the challenges posed by complex layouts and low OCR quality in existing newspaper datasets" (from the [dataset card](https://huggingface.co/datasets/dell-research-harvard/AmericanStories)). Dataset containing text retrieved through OCR.
* <u>Citation</u>: Melissa Dell, Jacob Carlson, Tom Bryan, Emily Silcock, Abhishek Arora, Zejiang Shen, Luca D'Amico-Wong, Quan Le, Pablo Querubin and Leander Heldring (2023). "American Stories: A Large-Scale Structured Text Dataset of Historical U.S. Newspapers," [arxiv:2308.12477](https://arxiv.org/abs/2308.12477v1).


#### Claire (French and English)
* <u>Sources</u>:
  * French dataset: [OpenLLM-France/Claire-Dialogue-French-0.1](https://huggingface.co/datasets/OpenLLM-France/Claire-Dialogue-French-0.1). License: [CC BY-NC-SA 4.0](https://huggingface.co/datasets/OpenLLM-France/Claire-Dialogue-French-0.1).
  * English dataset: [OpenLLM-France/Claire-Dialogue-English-0.1](https://huggingface.co/datasets/OpenLLM-France/Claire-Dialogue-English-0.1). License: [CC BY-NC-SA 4.0](https://huggingface.co/datasets/OpenLLM-France/Claire-Dialogue-English-0.1).
* <u>Extracted from</u>: see the datacards for the [French](https://huggingface.co/datasets/OpenLLM-France/Claire-Dialogue-French-0.1) and [English](https://huggingface.co/datasets/OpenLLM-France/Claire-Dialogue-English-0.1) datasets.
* <u>Description</u>: The Claire datasets are composed of transcripts of spoken conversations -- including parliamentary proceedings, interviews, debates, meetings, and free conversations -- as well as some written conversations from theater plays and written chats. The dataset is designed to help downstream performance of models fine-tuned for tasks requiring the comprehension of spontaneous spoken conversation, such as meeting summarization. Each dialogue is split into speech turns, and each speech turn is labeled with the name of the speaker or a unique identifier.
* <u>Citation</u>: Julie Hunter, Jérôme Louradour, Virgile Rennard, Ismaïl Harrando, Guokan Shang, Jean-Pierre Lorré (2023). The Claire French Dialogue Dataset. [arXiv:2311.16840](https://arxiv.org/abs/2311.16840).

#### CroissantAligned
* <u>Source</u>: [croissantllm/croissant_dataset_no_web_data](https://huggingface.co/datasets/croissantllm/croissant_dataset_no_web_data/tree/main/aligned_36b) (subset: `aligned_36b`). License: not specified.
* <u>Extracted from</u>: 
  * Translation pairs: [OPUS](https://opus.nlpl.eu/) (99.6% of the data in CroissantAligned). Pairs extracted from OPUS are labeled as "UnbabelFrEn". License: .
  * Thesis abstracts: French thesis abstract pairs. License: [ETALAB-Licence-Ouverte-v2.0](https://www.etalab.gouv.fr/wp-content/uploads/2017/04/ETALAB-Licence-Ouverte-v2.0.pdf).
  * Song lyrics: [lacoccinelle](https://www.lacoccinelle.net). License: .
* <u>Description</u>: Data extracted from OPUS takes the form of sentences pairs, where one sentence is in French and the other is in English. OPUS pairs were passed through a custom pipeline designed to select the highest quality sentences pairs. Selected pairs are labeled "UnbabelFrEn" in the CroissantAligned dataset. The thesis abstract subset contains pairs of French or English thesis abstracts paired with translations written by the thesis author. The song lyrics are translated by contributors to www.lacoccinelle.net. Parallel data are used to boost the multilingual capabilities of models trained on them ([Faysse et al.,2024](https://arxiv.org/pdf/2402.00786)).
* <u>Citation</u>: Manuel Faysse, Patrick Fernandes, Nuno M. Guerreiro, António Loison, Duarte M. Alves, Caio Corro, Nicolas Boizard, João Alves, Ricardo Rei, Pedro H. Martins, Antoni Bigata Casademunt, François Yvon, André F.T. Martins, Gautier Viaud, Céline Hudelot, Pierre Colombo (2024). "CroissantLLM: A Truly Bilingual French-English Language Model," [arXiv:2402.00786](https://arxiv.org/abs/2402.00786).

#### DiscoursPublics
  * <u>Source</u>: Corpus contributed by OpenLLM partners.
  * <u>Extracted from</u>: [Vie Publique](https://www.vie-publique.fr/collection-discours-publics).
  * <u>Description</u>: A collection of public speeches from the principal public actors in France including speeches from the French President starting from 1974 and from the Prime Minister and members of the government starting from 1980.
  * <u>Citation</u>: No paper found.

#### Europarl (monolingual and parallel)
* <u>Sources</u>: 
  * `fr-en`, `es-en`, `it-en` parallel data: [Europarl v7](https://www.statmt.org/europarl/v7/). License: [Open](https://www.statmt.org/europarl/).
  * `fr`, `en`, `de`, `es` monolingual data and `de-fr` parallel data: [Europarl v10](https://www.statmt.org/europarl/v10/training-monolingual/). License: [Open](https://www.statmt.org/europarl/).
* <u>Description</u>: "The Europarl parallel corpus is extracted from the proceedings of the European Parliament. It includes versions in 21 European languages: Romanic (French, Italian, Spanish, Portuguese, Romanian), Germanic (English, Dutch, German, Danish, Swedish), Slavik (Bulgarian, Czech, Polish, Slovak, Slovene), Finni-Ugric (Finnish, Hungarian, Estonian), Baltic (Latvian, Lithuanian), and Greek. The goal of the extraction and processing was to generate sentence aligned text for statistical machine translation systems" ([www.statmt.org](https://www.statmt.org/europarl/)).
* <u>Citation</u>: Philipp Koehn (2005). "Europarl: A Parallel Corpus for Statistical Machine Translation," MT Summit. 

#### Eurovoc
* <u>Source</u>:   [EuropeanParliament/Eurovoc](https://huggingface.co/datasets/EuropeanParliament/Eurovoc). License: [EUPL 1.1](https://joinup.ec.europa.eu/licence/european-union-public-licence-version-11-or-later-eupl).
* <u>Extracted from</u>: [Cellar](https://op.europa.eu/en/web/cellar). License: [Open](https://op.europa.eu/en/web/cellar).
* <u>Description</u>: A collection of mutlilingual documents from the data repository of the Publications Office of the European Union annotated with Eurovoc labels. Dataset containing text retrieved through OCR.
* <u>Citations</u>:
  * Ilias Chalkidis, Emmanouil Fergadiotis, Prodromos Malakasiotis, Nikolaos Aletras, and Ion Androutsopoulos (2019). "Extreme Multi-Label Legal Text Classification: A Case Study in EU Legislation," Proceedings of the Natural Legal Language Processing Workshop 2019, pages 78–87, Minneapolis, Minnesota. Association for Computational Linguistics.
  * Ilias Chalkidis,  Manos Fergadiotis, Prodromos Malakasiotis and Ion Androutsopoulos (2019). "Large-Scale Multi-Label Text Classification on EU Legislation," Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (ACL 2019), Florence, Italy, (short papers).
  * Andrei-Marius Avram, Vasile Pais, and Dan Ioan Tufis (2021). "PyEuroVoc: A Tool for Multilingual Legal Document Classification with EuroVoc Descriptors," Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021), pages 92–101, Held Online. INCOMA Ltd.
  * Zein Shaheen, Gerhard Wohlgenannt and Erwin Filtz (2020). "Large scale legal text classification using transformer models," [arXiv:2010.12871](https://arxiv.org/abs/2010.12871v1).

#### FineWebEdu
* <u>Source</u>: [HuggingFaceFW/fineweb-edu](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu). License: [ODC-BY](https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu).
* <u>Extracted from</u>: [FineWeb](https://huggingface.co/datasets/HuggingFaceFW/fineweb). License: [ODC-BY](https://huggingface.co/datasets/HuggingFaceFW/fineweb).
* <u>Description</u>: A 1.3 trillion token selection from [FineWeb](https://huggingface.co/datasets/HuggingFaceFW/fineweb), which contains 15 trillion tokens of curated data from 96 Common Crawl dumps. Content in FineWebEdu has been selected by a custom designed classifier for its high-quality, educational content. Knowledge cutoff: 2019-2024.
* <u>Citation</u>: Guilherme Penedo, Hynek Kydlíček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin Raffel, Leandro Von Werra, Thomas Wolf (2024). "The FineWeb Datasets: Decanting the Web for the Finest Text Data at Scale," [	arXiv:2406.17557](https://arxiv.org/abs/2406.17557).

#### GallicaMonographies
* <u>Source</u>: Corpus contributed by OpenLLM partners. A version is also published here: [PleIAs/French-PD-Books](https://huggingface.co/datasets/PleIAs/French-PD-Books). License: None (public domain).
* <u>Extracted from</u>: [Gallicagram](https://shiny.ens-paris-saclay.fr/app/gallicagram).
* <u>Description</u>: A large collection of French monographies in the public domain made available through the French National Library ([Gallica](https://gallica.bnf.fr/accueil/fr/content/accueil-fr?mode=desktop)). Dataset containing text retrieved through OCR.
* <u>Citation</u>: No paper found.

#### GallicaPress
* <u>Source</u>: Corpus contributed by OpenLLM partners. A version is also published here: [PleIAs/French-PD-Newspapers](https://huggingface.co/datasets/PleIAs/French-PD-Newspapers). License: None (public domain).
* <u>Extracted from</u>: [Gallicagram](https://shiny.ens-paris-saclay.fr/app/gallicagram).
* <u>Description</u>: A large collection of French newspapers and periodicals in the public domain made available through the French National Library ([Gallica](https://gallica.bnf.fr/accueil/fr/content/accueil-fr?mode=desktop)). Dataset containing text retrieved through OCR.
* <u>Citation</u>: No paper found.

#### Gutenberg
  * <u>Source</u>: Corpus compiled by OpenLLM partners.
  * <u>Extracted from</u>: 
    * [aleph.gutenberg.org](http://aleph.gutenberg.org/) via [Project Gutenberg](https://www.gutenberg.org/). License: [Open](https://www.gutenberg.org/policy/terms_of_use.html).
    * [pgcorpus](https://github.com/pgcorpus/gutenberg). License: [CC BY-4.0](https://zenodo.org/records/2422561).
  * <u>Description</u>: A collection of free eBooks, manually prepared by human annotators. 
  * <u>Citation</u>: No paper found.

#### HAL
* <u>Source</u>: The ROOTS corpus by BigScience (unpublished). License: CC BY-4.0.
* <u>Extracted from</u>: [HAL](https://hal.science/).
* <u>Description</u>: A collection of scientific papers and manuscripts distributed through an open science platform. Dataset containing text retrieved through OCR.
* <u>Citation</u>: Hugo Laurençon, Lucile Saulnier, Thomas Wang, Christopher Akiki, Albert Villanova del Moral, Teven Le Scao, Leandro Von Werra, Chenghao Mou, Eduardo González Ponferrada, Huu Nguyen, Jörg Frohberg, Mario Šaško, Quentin Lhoest, Angelina McMillan-Major, Gerard Dupont, Stella Biderman, Anna Rogers, Loubna Ben allal, Francesco De Toni, Giada Pistilli, Olivier Nguyen, Somaieh Nikpoor, Maraim Masoud, Pierre Colombo, Javier de la Rosa, Paulo Villegas, Tristan Thrush, Shayne Longpre, Sebastian Nagel, Leon Weber, Manuel Muñoz, Jian Zhu, Daniel Van Strien, Zaid Alyafeai, Khalid Almubarak, Minh Chien Vu, Itziar Gonzalez-Dios, Aitor Soroa, Kyle Lo, Manan Dey, Pedro Ortiz Suarez, Aaron Gokaslan, Shamik Bose, David Adelani, Long Phan, Hieu Tran, Ian Yu, Suhas Pai, Jenny Chim, Violette Lepercq, Suzana Ilic, Margaret Mitchell, Sasha Alexandra Luccioni, Yacine Jernite (2022). [The BigScience ROOTS Corpus: A 1.6TB Composite Multilingual Dataset](https://proceedings.neurips.cc/paper_files/paper/2022/hash/ce9e92e3de2372a4b93353eb7f3dc0bd-Abstract-Datasets_and_Benchmarks.html). Advances in Neural Information Processing Systems (NeurIPS), 35, 31809-31826.


#### InterventionsParlement
* <u>Source</u>: Corpus contributed by OpenLLM partners.
* <u>Extracted from</u>:  [Regards citoyens](https://www.regardscitoyens.org/#&panel1-4) ([nodeputes.fr](http://www.nosdeputes.fr/), [nossenateurs.fr](http://www.nossenateurs.fr/)). [API](https://github.com/regardscitoyens). License: [CC BY-SA](https://www.regardscitoyens.org/#&panel1-2).
* <u>Description</u>: Transcripts of speeches made during French parlementary debates.  
* <u>Citation</u>: No paper found.

#### MathPile
* <u>Source</u>: [GAIR/MathPile_Commercial](https://huggingface.co/datasets/GAIR/MathPile_Commercial). License: [CC BY-SA 4.0](https://huggingface.co/datasets/GAIR/MathPile_Commercial)
* <u>Extracted from</u>: [MathPile](https://huggingface.co/datasets/GAIR/MathPile). License: [CC BY-SA-NC 4.0](https://huggingface.co/datasets/GAIR/MathPile).
* <u>Description</u>: A preprocessed collection of documents focused on math, including Textbooks, arXiv, Wikipedia, ProofWiki, StackExchange, and web pages from Common Crawl. The content targets a range of levels, from kindergarten through postgraduate level. MathPile_Commercial was obtained by removing documents from MathPile that do not allow commercial use.
* <u>Citation</u>: Zengzhi Wang, Rui Xia and Pengfei Liu (2023). "Generative AI for Math: Part I -- MathPile: A Billion-Token-Scale Pretraining Corpus for Math," [	arXiv:2312.17120](https://export.arxiv.org/abs/2312.17120).

#### OpenData
* <u>Source</u>: [Nicolas-BZRD/DILA_OPENDATA_FR_2023](https://huggingface.co/datasets/Nicolas-BZRD/DILA_OPENDATA_FR_2023/tree/main) (balo, dole, inca, kali, legi and sarde subsets). License: [ODC-BY](https://huggingface.co/datasets/Nicolas-BZRD/DILA_OPENDATA_FR_2023/tree/main).
* <u>Extracted from</u>: [OpenData](https://echanges.dila.gouv.fr/OPENDATA/) (Data collection date: October, 2023).
* <u>Description</u>: "The French Government Open Data (DILA) Dataset is a collection of text data extracted from various sources provided by the French government, specifically the Direction de l'information légale et administrative (DILA). This dataset contains a wide range of legal, administrative, and legislative documents. The data has been organized into several categories for easy access and analysis" (from the [dataset card](https://huggingface.co/datasets/Nicolas-BZRD/DILA_OPENDATA_FR_2023/tree/main)).
* <u>Citation</u>: No paper found.

#### OpenEdition
* <u>Source</u>: Corpus contributed by OpenLLM partners.
* <u>Extracted from</u>: [Open Edition](https://www.openedition.org/).
* <u>Description</u>: 
* <u>Citation</u>: No paper found.

#### PeS2o
* <u>Source</u>: [allenai/peS2o](https://huggingface.co/datasets/allenai/peS2o). License: 	[ODC BY-v1.0](https://opendatacommons.org/licenses/by/1-0/)
* <u>Extracted from</u>: [S2ORC](https://github.com/allenai/s2orc) (see [aclanthology](https://aclanthology.org/2020.acl-main.447/)). Knowledge cutoff: 2023-01-03.
* <u>Description</u>: A preprocessed collection of academic papers designed for pre-training of language models. PeS2o is composed of two subsets: one containing full papers and one containing only paper titles and abstracts. Dataset containing (some) text retrieved through OCR.
* <u>Citation</u>: Luca Soldaini and Kyle Lo (2023). "peS2o (Pretraining Efficiently on S2ORC) Dataset}, Allen Institute for AI. [GitHub](https://github.com/allenai/pes2o).

#### Pile (Uncopyrighted)
* <u>Source</u>: [monology/pile-uncopyrighted](https://huggingface.co/datasets/monology/pile-uncopyrighted). License: [Other](https://huggingface.co/datasets/monology/pile-uncopyrighted).
* <u>Extracted from</u>: [FreeLaw](https://free.law/), [StackExchange](https://stackexchange.com/), [USPTO Backgrounds](https://bulkdata.uspto.gov/), [DM Mathematics](https://github.com/google-deepmind/mathematics_dataset), [Ubuntu IRC](https://irclogs.ubuntu.com/), [PhilPapers](https://philpapers.org/), NIH ExPorter from [The Pile](https://huggingface.co/datasets/EleutherAI/pile). License: MIT.
* <u>Description</u> (from the [Datasheet](https://arxiv.org/abs/2201.07311)):
  * FreeLaw: "The Free Law Project is US registered non-profit that provide access to millions of legal opinions and analytical tools for academic studies in the legal realm."
  * StackExchange: "The StackExchange dataset is a dump of anonymized user-contributed content on the Stack Exchange network, a popular collection of websites centered around user-contributed questions and answers."
  * USPTO Backgrounds: "The USPTO Backgrounds dataset is a set of background sections from patents granted by the United States Patent and Trademark Office, derived from its published bulk archives."
  * DM Mathematics: "The DeepMind Mathematics dataset consists of a collection of mathematical problems such as algebra, arithmetic, calculus, number theory, and probability, formatted as natural language prompts [Saxton et al., 2019](https://arxiv.org/abs/1904.01557)."
  * Ubuntu IRC: "The Ubuntu IRC dataset is derived from the publicly available chatlogs of all Ubunturelated channels on the Freenode IRC chat server."
  * PhilPapers: a dataset of open access philosophy publications from an international database maintained by the Center for Digital Philosophy at the University of Western Ontario.
  * NIH ExPORTER: "The NIH Grant abstracts provides a bulk-data repository for awarded applications through the ExPORTER4 service covering the fiscal years 1985-present."
* <u>Citation</u>:
  * Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang, Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, Connor Leahy (2020). "The Pile: An 800GB Dataset of Diverse Text for Language Modeling," [	arXiv:2101.00027](https://arxiv.org/abs/2101.00027).
  * Stella Biderman, Kieran Bicheno, Leo Gao (2022). "Datasheet for the Pile," [	arXiv:2201.07311](https://arxiv.org/abs/2201.07311).

#### QuestionsEcritesParlement
* <u>Source</u>: Corpus contributed by OpenLLM partners.
* <u>Extracted from</u>:  [Regards citoyens](https://www.regardscitoyens.org/#&panel1-4) ([text](https://data.regardscitoyens.org/nosdeputes.fr/)). License: [CC BY-NC-SA](https://data.regardscitoyens.org/nosdeputes.fr/).
* <u>Description</u>: Collection of long written questions, read during a session at the French National Assembly. Questions are asked by a member of the French parliament and addressed to a minister (who is given two months to respond). 
* <u>Citation</u>: No paper found.

#### RedPajama (v2)
* <u>Source</u>: [togethercomputer/RedPajama-Data-V2](https://huggingface.co/datasets/togethercomputer/RedPajama-Data-V2). License: [Apache 2.0](https://github.com/togethercomputer/RedPajama-Data) (data preparation code), Not specified (data) but see [Common Crawl terms of use](https://commoncrawl.org/terms-of-use).
* <u>Extracted from</u>: [Common Crawl](https://commoncrawl.org/).
* <u>Description</u>: "RedPajama-V2 is an open dataset for training large language models. The dataset includes over 100B text documents coming from 84 CommonCrawl snapshots and processed using the [CCNet](https://github.com/facebookresearch/cc_net) pipeline. Out of these, there are 30B documents in the corpus that additionally come with quality signals, and 20B documents that are deduplicated" (from [GitHub](https://github.com/togethercomputer/RedPajama-Data)). Knowledge cutoff: 2014-2023.
* <u>Citation</u>: Together Computer (2023). "RedPajama-Data-v2: an Open Dataset with 30 Trillion Tokens for Training Large Language Models," [GitHub](https://github.com/togethercomputer/RedPajama-Data).

#### STAC
* <u>Source</u>: [STAC](https://www.irit.fr/STAC/corpus.html). License: [CC BY-SA-NC 4.0](https://www.irit.fr/STAC/corpus.html).
* <u>Extracted from</u>: [STAC](https://www.irit.fr/STAC/corpus.html). The full STAC corpus contains annotations for discourse structure. We use only the text of the chats.
* <u>Description</u>: A collection of chats from an online version of the game Settlers of Catan.
* <u>Citation</u>: Nicholas Asher, Julie Hunter, Mathieu Morey, Farah Benamara and Stergos Afantenos (2016). "Discourse structure and dialogue acts in multiparty dialogue: the STAC corpus," The Tenth International Conference on Language Resources and Evaluation (LREC 2016). European Language Resources Association, pp. 2721-2727.

#### TheStack
* <u>Source</u>: [bigcode/the-stack-dedup](https://huggingface.co/datasets/bigcode/the-stack-dedup). License: [Other](https://huggingface.co/datasets/bigcode/the-stack-dedup) (mixture of copyleft licenses).
* <u>Extracted from</u>: [GHarchive](https://www.gharchive.org/)
* <u>Description</u>: "The Stack contains over 6TB of permissively-licensed source code files covering 358 programming languages. The dataset was created as part of the [BigCode Project](https://www.bigcode-project.org/), an open scientific collaboration working on the responsible development of Large Language Models for Code (Code LLMs). The Stack serves as a pre-training dataset for Code LLMs, i.e., code-generating AI systems which enable the synthesis of programs from natural language descriptions as well as other from code snippets. This is the near-deduplicated version with 3TB data" (from the [dataset card](https://huggingface.co/datasets/bigcode/the-stack-dedup)).
* <u>Citation</u>: Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou, Carlos Muñoz Ferrandis, Yacine Jernite, Margaret Mitchell, Sean Hughes, Thomas Wolf, Dzmitry Bahdanau, Leandro von Werra and Harm de Vries (2022). "The Stack: 3 TB of permissively licensed source code," [arxiv:2211.15533](https://arxiv.org/abs/2211.15533).

#### Theses
* <u>Source</u>: Corpus contributed by OpenLLM partners.
* <u>Extracted from</u>: [theses.fr](https://theses.fr/?domaine=theses) and  [HAL](https://hal.science/).
* <u>Description</u>: A collection of doctoral theses published in France. Dataset containing text retrieved through OCR.
* <u>Citation</u>: No paper found.

#### Wikipedia, Wikisource, Wiktionary
* <u>Source</u>: Corpus contributed by LINAGORA Labs (OpenLLM-France).
  Also published here:
  * [OpenLLM-France/wikipedia](https://huggingface.co/datasets/OpenLLM-France/wikipedia)
  * [OpenLLM-France/wikisource](https://huggingface.co/datasets/OpenLLM-France/wikisource)
  * [OpenLLM-France/wiktionary](https://huggingface.co/datasets/OpenLLM-France/wiktionary)
* <u>Extracted from</u>: [Wikimedia dumps](https://dumps.wikimedia.org/other/enterprise_html/runs/). License: [GFDL/CC BY-SA](https://dumps.wikimedia.org/legal.html).
* <u>Description</u>:
* <u>Citation</u>: No paper found.

#### YouTube
* <u>Source</u>: Corpus contributed by LINAGORA Labs (OpenLLM-France).
* <u>Extracted from</u>: [YouTube](https://www.youtube.com/). License: .
* <u>Description</u>: French subtitles from videos published with permissive licenses on YouTube.
* <u>Citation</u>: No paper found.

## Example use in python

Load the dataset using the `datasets` library:
```python
from datasets import load_dataset

kwargs = {"split": "train", "streaming": True}

dataset = load_dataset("OpenLLM-France/Lucie-Training-Dataset", **kwargs)

for sample in dataset:
   text = sample["text"]
   # ... do something with the text
```

Several configurations are available to select a language, a source, or both, illustrated in the following examples.

Load data in French:
```python
dataset = load_dataset("OpenLLM-France/Lucie-Training-Dataset", "fr", **kwargs)
```
Load data where French and English are aligned:
```python
dataset = load_dataset("OpenLLM-France/Lucie-Training-Dataset", "fr,en", **kwargs)
```
Load data corresponding to files with programming languages:
```python
dataset = load_dataset("OpenLLM-France/Lucie-Training-Dataset", "code", **kwargs)
```
Load data in Python:
```python
dataset = load_dataset("OpenLLM-France/Lucie-Training-Dataset", "code-python", **kwargs)
```
Load data from Wikipedia (in available languages):
```python
dataset = load_dataset("OpenLLM-France/Lucie-Training-Dataset", "Wikipedia", **kwargs)
```
Load data from French pages of Wikipedia ([wikipedia.fr](https://www.wikipedia.fr/)):
```python
dataset = load_dataset("OpenLLM-France/Lucie-Training-Dataset", "Wikipedia-fr", **kwargs)
```

## License

TODO

## Citation

TODO

## Contact

<pre>[email protected]</pre>