repo_name
stringlengths
7
79
path
stringlengths
4
179
copies
stringlengths
1
3
size
stringlengths
4
6
content
stringlengths
959
798k
license
stringclasses
15 values
glorizen/nupic
external/linux32/lib/python2.6/site-packages/matplotlib/transforms.py
69
75638
""" matplotlib includes a framework for arbitrary geometric transformations that is used determine the final position of all elements drawn on the canvas. Transforms are composed into trees of :class:`TransformNode` objects whose actual value depends on their children. When the contents of children change, their parents are automatically invalidated. The next time an invalidated transform is accessed, it is recomputed to reflect those changes. This invalidation/caching approach prevents unnecessary recomputations of transforms, and contributes to better interactive performance. For example, here is a graph of the transform tree used to plot data to the graph: .. image:: ../_static/transforms.png The framework can be used for both affine and non-affine transformations. However, for speed, we want use the backend renderers to perform affine transformations whenever possible. Therefore, it is possible to perform just the affine or non-affine part of a transformation on a set of data. The affine is always assumed to occur after the non-affine. For any transform:: full transform == non-affine part + affine part The backends are not expected to handle non-affine transformations themselves. """ import numpy as np from numpy import ma from matplotlib._path import affine_transform from numpy.linalg import inv from weakref import WeakKeyDictionary import warnings try: set except NameError: from sets import Set as set import cbook from path import Path from _path import count_bboxes_overlapping_bbox, update_path_extents DEBUG = False if DEBUG: import warnings MaskedArray = ma.MaskedArray class TransformNode(object): """ :class:`TransformNode` is the base class for anything that participates in the transform tree and needs to invalidate its parents or be invalidated. This includes classes that are not really transforms, such as bounding boxes, since some transforms depend on bounding boxes to compute their values. """ _gid = 0 # Invalidation may affect only the affine part. If the # invalidation was "affine-only", the _invalid member is set to # INVALID_AFFINE_ONLY INVALID_NON_AFFINE = 1 INVALID_AFFINE = 2 INVALID = INVALID_NON_AFFINE | INVALID_AFFINE # Some metadata about the transform, used to determine whether an # invalidation is affine-only is_affine = False is_bbox = False # If pass_through is True, all ancestors will always be # invalidated, even if 'self' is already invalid. pass_through = False def __init__(self): """ Creates a new :class:`TransformNode`. """ # Parents are stored in a WeakKeyDictionary, so that if the # parents are deleted, references from the children won't keep # them alive. self._parents = WeakKeyDictionary() # TransformNodes start out as invalid until their values are # computed for the first time. self._invalid = 1 def __copy__(self, *args): raise NotImplementedError( "TransformNode instances can not be copied. " + "Consider using frozen() instead.") __deepcopy__ = __copy__ def invalidate(self): """ Invalidate this :class:`TransformNode` and all of its ancestors. Should be called any time the transform changes. """ # If we are an affine transform being changed, we can set the # flag to INVALID_AFFINE_ONLY value = (self.is_affine) and self.INVALID_AFFINE or self.INVALID # Shortcut: If self is already invalid, that means its parents # are as well, so we don't need to do anything. if self._invalid == value: return if not len(self._parents): self._invalid = value return # Invalidate all ancestors of self using pseudo-recursion. stack = [self] while len(stack): root = stack.pop() # Stop at subtrees that have already been invalidated if root._invalid != value or root.pass_through: root._invalid = self.INVALID stack.extend(root._parents.keys()) def set_children(self, *children): """ Set the children of the transform, to let the invalidation system know which transforms can invalidate this transform. Should be called from the constructor of any transforms that depend on other transforms. """ for child in children: child._parents[self] = None if DEBUG: _set_children = set_children def set_children(self, *children): self._set_children(*children) self._children = children set_children.__doc__ = _set_children.__doc__ def frozen(self): """ Returns a frozen copy of this transform node. The frozen copy will not update when its children change. Useful for storing a previously known state of a transform where ``copy.deepcopy()`` might normally be used. """ return self if DEBUG: def write_graphviz(self, fobj, highlight=[]): """ For debugging purposes. Writes the transform tree rooted at 'self' to a graphviz "dot" format file. This file can be run through the "dot" utility to produce a graph of the transform tree. Affine transforms are marked in blue. Bounding boxes are marked in yellow. *fobj*: A Python file-like object """ seen = set() def recurse(root): if root in seen: return seen.add(root) props = {} label = root.__class__.__name__ if root._invalid: label = '[%s]' % label if root in highlight: props['style'] = 'bold' props['shape'] = 'box' props['label'] = '"%s"' % label props = ' '.join(['%s=%s' % (key, val) for key, val in props.items()]) fobj.write('%s [%s];\n' % (hash(root), props)) if hasattr(root, '_children'): for child in root._children: name = '?' for key, val in root.__dict__.items(): if val is child: name = key break fobj.write('%s -> %s [label="%s", fontsize=10];\n' % ( hash(root), hash(child), name)) recurse(child) fobj.write("digraph G {\n") recurse(self) fobj.write("}\n") else: def write_graphviz(self, fobj, highlight=[]): return class BboxBase(TransformNode): """ This is the base class of all bounding boxes, and provides read-only access to its data. A mutable bounding box is provided by the :class:`Bbox` class. The canonical representation is as two points, with no restrictions on their ordering. Convenience properties are provided to get the left, bottom, right and top edges and width and height, but these are not stored explicity. """ is_bbox = True is_affine = True #* Redundant: Removed for performance # # def __init__(self): # TransformNode.__init__(self) if DEBUG: def _check(points): if ma.isMaskedArray(points): warnings.warn("Bbox bounds are a masked array.") points = np.asarray(points) if (points[1,0] - points[0,0] == 0 or points[1,1] - points[0,1] == 0): warnings.warn("Singular Bbox.") _check = staticmethod(_check) def frozen(self): return Bbox(self.get_points().copy()) frozen.__doc__ = TransformNode.__doc__ def __array__(self, *args, **kwargs): return self.get_points() def is_unit(self): """ Returns True if the :class:`Bbox` is the unit bounding box from (0, 0) to (1, 1). """ return list(self.get_points().flatten()) == [0., 0., 1., 1.] def _get_x0(self): return self.get_points()[0, 0] x0 = property(_get_x0, None, None, """ (property) :attr:`x0` is the first of the pair of *x* coordinates that define the bounding box. :attr:`x0` is not guaranteed to be less than :attr:`x1`. If you require that, use :attr:`xmin`.""") def _get_y0(self): return self.get_points()[0, 1] y0 = property(_get_y0, None, None, """ (property) :attr:`y0` is the first of the pair of *y* coordinates that define the bounding box. :attr:`y0` is not guaranteed to be less than :attr:`y1`. If you require that, use :attr:`ymin`.""") def _get_x1(self): return self.get_points()[1, 0] x1 = property(_get_x1, None, None, """ (property) :attr:`x1` is the second of the pair of *x* coordinates that define the bounding box. :attr:`x1` is not guaranteed to be greater than :attr:`x0`. If you require that, use :attr:`xmax`.""") def _get_y1(self): return self.get_points()[1, 1] y1 = property(_get_y1, None, None, """ (property) :attr:`y1` is the second of the pair of *y* coordinates that define the bounding box. :attr:`y1` is not guaranteed to be greater than :attr:`y0`. If you require that, use :attr:`ymax`.""") def _get_p0(self): return self.get_points()[0] p0 = property(_get_p0, None, None, """ (property) :attr:`p0` is the first pair of (*x*, *y*) coordinates that define the bounding box. It is not guaranteed to be the bottom-left corner. For that, use :attr:`min`.""") def _get_p1(self): return self.get_points()[1] p1 = property(_get_p1, None, None, """ (property) :attr:`p1` is the second pair of (*x*, *y*) coordinates that define the bounding box. It is not guaranteed to be the top-right corner. For that, use :attr:`max`.""") def _get_xmin(self): return min(self.get_points()[:, 0]) xmin = property(_get_xmin, None, None, """ (property) :attr:`xmin` is the left edge of the bounding box.""") def _get_ymin(self): return min(self.get_points()[:, 1]) ymin = property(_get_ymin, None, None, """ (property) :attr:`ymin` is the bottom edge of the bounding box.""") def _get_xmax(self): return max(self.get_points()[:, 0]) xmax = property(_get_xmax, None, None, """ (property) :attr:`xmax` is the right edge of the bounding box.""") def _get_ymax(self): return max(self.get_points()[:, 1]) ymax = property(_get_ymax, None, None, """ (property) :attr:`ymax` is the top edge of the bounding box.""") def _get_min(self): return [min(self.get_points()[:, 0]), min(self.get_points()[:, 1])] min = property(_get_min, None, None, """ (property) :attr:`min` is the bottom-left corner of the bounding box.""") def _get_max(self): return [max(self.get_points()[:, 0]), max(self.get_points()[:, 1])] max = property(_get_max, None, None, """ (property) :attr:`max` is the top-right corner of the bounding box.""") def _get_intervalx(self): return self.get_points()[:, 0] intervalx = property(_get_intervalx, None, None, """ (property) :attr:`intervalx` is the pair of *x* coordinates that define the bounding box. It is not guaranteed to be sorted from left to right.""") def _get_intervaly(self): return self.get_points()[:, 1] intervaly = property(_get_intervaly, None, None, """ (property) :attr:`intervaly` is the pair of *y* coordinates that define the bounding box. It is not guaranteed to be sorted from bottom to top.""") def _get_width(self): points = self.get_points() return points[1, 0] - points[0, 0] width = property(_get_width, None, None, """ (property) The width of the bounding box. It may be negative if :attr:`x1` < :attr:`x0`.""") def _get_height(self): points = self.get_points() return points[1, 1] - points[0, 1] height = property(_get_height, None, None, """ (property) The height of the bounding box. It may be negative if :attr:`y1` < :attr:`y0`.""") def _get_size(self): points = self.get_points() return points[1] - points[0] size = property(_get_size, None, None, """ (property) The width and height of the bounding box. May be negative, in the same way as :attr:`width` and :attr:`height`.""") def _get_bounds(self): x0, y0, x1, y1 = self.get_points().flatten() return (x0, y0, x1 - x0, y1 - y0) bounds = property(_get_bounds, None, None, """ (property) Returns (:attr:`x0`, :attr:`y0`, :attr:`width`, :attr:`height`).""") def _get_extents(self): return self.get_points().flatten().copy() extents = property(_get_extents, None, None, """ (property) Returns (:attr:`x0`, :attr:`y0`, :attr:`x1`, :attr:`y1`).""") def get_points(self): return NotImplementedError() def containsx(self, x): """ Returns True if *x* is between or equal to :attr:`x0` and :attr:`x1`. """ x0, x1 = self.intervalx return ((x0 < x1 and (x >= x0 and x <= x1)) or (x >= x1 and x <= x0)) def containsy(self, y): """ Returns True if *y* is between or equal to :attr:`y0` and :attr:`y1`. """ y0, y1 = self.intervaly return ((y0 < y1 and (y >= y0 and y <= y1)) or (y >= y1 and y <= y0)) def contains(self, x, y): """ Returns *True* if (*x*, *y*) is a coordinate inside the bounding box or on its edge. """ return self.containsx(x) and self.containsy(y) def overlaps(self, other): """ Returns True if this bounding box overlaps with the given bounding box *other*. """ ax1, ay1, ax2, ay2 = self._get_extents() bx1, by1, bx2, by2 = other._get_extents() if ax2 < ax1: ax2, ax1 = ax1, ax2 if ay2 < ay1: ay2, ay1 = ay1, ay2 if bx2 < bx1: bx2, bx1 = bx1, bx2 if by2 < by1: by2, by1 = by1, by2 return not ((bx2 < ax1) or (by2 < ay1) or (bx1 > ax2) or (by1 > ay2)) def fully_containsx(self, x): """ Returns True if *x* is between but not equal to :attr:`x0` and :attr:`x1`. """ x0, x1 = self.intervalx return ((x0 < x1 and (x > x0 and x < x1)) or (x > x1 and x < x0)) def fully_containsy(self, y): """ Returns True if *y* is between but not equal to :attr:`y0` and :attr:`y1`. """ y0, y1 = self.intervaly return ((y0 < y1 and (x > y0 and x < y1)) or (x > y1 and x < y0)) def fully_contains(self, x, y): """ Returns True if (*x*, *y*) is a coordinate inside the bounding box, but not on its edge. """ return self.fully_containsx(x) \ and self.fully_containsy(y) def fully_overlaps(self, other): """ Returns True if this bounding box overlaps with the given bounding box *other*, but not on its edge alone. """ ax1, ay1, ax2, ay2 = self._get_extents() bx1, by1, bx2, by2 = other._get_extents() if ax2 < ax1: ax2, ax1 = ax1, ax2 if ay2 < ay1: ay2, ay1 = ay1, ay2 if bx2 < bx1: bx2, bx1 = bx1, bx2 if by2 < by1: by2, by1 = by1, by2 return not ((bx2 <= ax1) or (by2 <= ay1) or (bx1 >= ax2) or (by1 >= ay2)) def transformed(self, transform): """ Return a new :class:`Bbox` object, statically transformed by the given transform. """ return Bbox(transform.transform(self.get_points())) def inverse_transformed(self, transform): """ Return a new :class:`Bbox` object, statically transformed by the inverse of the given transform. """ return Bbox(transform.inverted().transform(self.get_points())) coefs = {'C': (0.5, 0.5), 'SW': (0,0), 'S': (0.5, 0), 'SE': (1.0, 0), 'E': (1.0, 0.5), 'NE': (1.0, 1.0), 'N': (0.5, 1.0), 'NW': (0, 1.0), 'W': (0, 0.5)} def anchored(self, c, container = None): """ Return a copy of the :class:`Bbox`, shifted to position *c* within a container. *c*: may be either: * a sequence (*cx*, *cy*) where *cx* and *cy* range from 0 to 1, where 0 is left or bottom and 1 is right or top * a string: - 'C' for centered - 'S' for bottom-center - 'SE' for bottom-left - 'E' for left - etc. Optional argument *container* is the box within which the :class:`Bbox` is positioned; it defaults to the initial :class:`Bbox`. """ if container is None: container = self l, b, w, h = container.bounds if isinstance(c, str): cx, cy = self.coefs[c] else: cx, cy = c L, B, W, H = self.bounds return Bbox(self._points + [(l + cx * (w-W)) - L, (b + cy * (h-H)) - B]) def shrunk(self, mx, my): """ Return a copy of the :class:`Bbox`, shrunk by the factor *mx* in the *x* direction and the factor *my* in the *y* direction. The lower left corner of the box remains unchanged. Normally *mx* and *my* will be less than 1, but this is not enforced. """ w, h = self.size return Bbox([self._points[0], self._points[0] + [mx * w, my * h]]) def shrunk_to_aspect(self, box_aspect, container = None, fig_aspect = 1.0): """ Return a copy of the :class:`Bbox`, shrunk so that it is as large as it can be while having the desired aspect ratio, *box_aspect*. If the box coordinates are relative---that is, fractions of a larger box such as a figure---then the physical aspect ratio of that figure is specified with *fig_aspect*, so that *box_aspect* can also be given as a ratio of the absolute dimensions, not the relative dimensions. """ assert box_aspect > 0 and fig_aspect > 0 if container is None: container = self w, h = container.size H = w * box_aspect/fig_aspect if H <= h: W = w else: W = h * fig_aspect/box_aspect H = h return Bbox([self._points[0], self._points[0] + (W, H)]) def splitx(self, *args): """ e.g., ``bbox.splitx(f1, f2, ...)`` Returns a list of new :class:`Bbox` objects formed by splitting the original one with vertical lines at fractional positions *f1*, *f2*, ... """ boxes = [] xf = [0] + list(args) + [1] x0, y0, x1, y1 = self._get_extents() w = x1 - x0 for xf0, xf1 in zip(xf[:-1], xf[1:]): boxes.append(Bbox([[x0 + xf0 * w, y0], [x0 + xf1 * w, y1]])) return boxes def splity(self, *args): """ e.g., ``bbox.splitx(f1, f2, ...)`` Returns a list of new :class:`Bbox` objects formed by splitting the original one with horizontal lines at fractional positions *f1*, *f2*, ... """ boxes = [] yf = [0] + list(args) + [1] x0, y0, x1, y1 = self._get_extents() h = y1 - y0 for yf0, yf1 in zip(yf[:-1], yf[1:]): boxes.append(Bbox([[x0, y0 + yf0 * h], [x1, y0 + yf1 * h]])) return boxes def count_contains(self, vertices): """ Count the number of vertices contained in the :class:`Bbox`. *vertices* is a Nx2 Numpy array. """ if len(vertices) == 0: return 0 vertices = np.asarray(vertices) x0, y0, x1, y1 = self._get_extents() dx0 = np.sign(vertices[:, 0] - x0) dy0 = np.sign(vertices[:, 1] - y0) dx1 = np.sign(vertices[:, 0] - x1) dy1 = np.sign(vertices[:, 1] - y1) inside = (abs(dx0 + dx1) + abs(dy0 + dy1)) <= 2 return np.sum(inside) def count_overlaps(self, bboxes): """ Count the number of bounding boxes that overlap this one. bboxes is a sequence of :class:`BboxBase` objects """ return count_bboxes_overlapping_bbox(self, bboxes) def expanded(self, sw, sh): """ Return a new :class:`Bbox` which is this :class:`Bbox` expanded around its center by the given factors *sw* and *sh*. """ width = self.width height = self.height deltaw = (sw * width - width) / 2.0 deltah = (sh * height - height) / 2.0 a = np.array([[-deltaw, -deltah], [deltaw, deltah]]) return Bbox(self._points + a) def padded(self, p): """ Return a new :class:`Bbox` that is padded on all four sides by the given value. """ points = self._points return Bbox(points + [[-p, -p], [p, p]]) def translated(self, tx, ty): """ Return a copy of the :class:`Bbox`, statically translated by *tx* and *ty*. """ return Bbox(self._points + (tx, ty)) def corners(self): """ Return an array of points which are the four corners of this rectangle. For example, if this :class:`Bbox` is defined by the points (*a*, *b*) and (*c*, *d*), :meth:`corners` returns (*a*, *b*), (*a*, *d*), (*c*, *b*) and (*c*, *d*). """ l, b, r, t = self.get_points().flatten() return np.array([[l, b], [l, t], [r, b], [r, t]]) def rotated(self, radians): """ Return a new bounding box that bounds a rotated version of this bounding box by the given radians. The new bounding box is still aligned with the axes, of course. """ corners = self.corners() corners_rotated = Affine2D().rotate(radians).transform(corners) bbox = Bbox.unit() bbox.update_from_data_xy(corners_rotated, ignore=True) return bbox #@staticmethod def union(bboxes): """ Return a :class:`Bbox` that contains all of the given bboxes. """ assert(len(bboxes)) if len(bboxes) == 1: return bboxes[0] x0 = np.inf y0 = np.inf x1 = -np.inf y1 = -np.inf for bbox in bboxes: points = bbox.get_points() xs = points[:, 0] ys = points[:, 1] x0 = min(x0, np.min(xs)) y0 = min(y0, np.min(ys)) x1 = max(x1, np.max(xs)) y1 = max(y1, np.max(ys)) return Bbox.from_extents(x0, y0, x1, y1) union = staticmethod(union) class Bbox(BboxBase): """ A mutable bounding box. """ def __init__(self, points): """ *points*: a 2x2 numpy array of the form [[x0, y0], [x1, y1]] If you need to create a :class:`Bbox` object from another form of data, consider the static methods :meth:`unit`, :meth:`from_bounds` and :meth:`from_extents`. """ BboxBase.__init__(self) self._points = np.asarray(points, np.float_) self._minpos = np.array([0.0000001, 0.0000001]) self._ignore = True if DEBUG: ___init__ = __init__ def __init__(self, points): self._check(points) self.___init__(points) def invalidate(self): self._check(self._points) TransformNode.invalidate(self) _unit_values = np.array([[0.0, 0.0], [1.0, 1.0]], np.float_) #@staticmethod def unit(): """ (staticmethod) Create a new unit :class:`Bbox` from (0, 0) to (1, 1). """ return Bbox(Bbox._unit_values.copy()) unit = staticmethod(unit) #@staticmethod def from_bounds(x0, y0, width, height): """ (staticmethod) Create a new :class:`Bbox` from *x0*, *y0*, *width* and *height*. *width* and *height* may be negative. """ return Bbox.from_extents(x0, y0, x0 + width, y0 + height) from_bounds = staticmethod(from_bounds) #@staticmethod def from_extents(*args): """ (staticmethod) Create a new Bbox from *left*, *bottom*, *right* and *top*. The *y*-axis increases upwards. """ points = np.array(args, dtype=np.float_).reshape(2, 2) return Bbox(points) from_extents = staticmethod(from_extents) def __repr__(self): return 'Bbox(%s)' % repr(self._points) __str__ = __repr__ def ignore(self, value): """ Set whether the existing bounds of the box should be ignored by subsequent calls to :meth:`update_from_data` or :meth:`update_from_data_xy`. *value*: - When True, subsequent calls to :meth:`update_from_data` will ignore the existing bounds of the :class:`Bbox`. - When False, subsequent calls to :meth:`update_from_data` will include the existing bounds of the :class:`Bbox`. """ self._ignore = value def update_from_data(self, x, y, ignore=None): """ Update the bounds of the :class:`Bbox` based on the passed in data. After updating, the bounds will have positive *width* and *height*; *x0* and *y0* will be the minimal values. *x*: a numpy array of *x*-values *y*: a numpy array of *y*-values *ignore*: - when True, ignore the existing bounds of the :class:`Bbox`. - when False, include the existing bounds of the :class:`Bbox`. - when None, use the last value passed to :meth:`ignore`. """ warnings.warn( "update_from_data requires a memory copy -- please replace with update_from_data_xy") xy = np.hstack((x.reshape((len(x), 1)), y.reshape((len(y), 1)))) return self.update_from_data_xy(xy, ignore) def update_from_path(self, path, ignore=None, updatex=True, updatey=True): """ Update the bounds of the :class:`Bbox` based on the passed in data. After updating, the bounds will have positive *width* and *height*; *x0* and *y0* will be the minimal values. *path*: a :class:`~matplotlib.path.Path` instance *ignore*: - when True, ignore the existing bounds of the :class:`Bbox`. - when False, include the existing bounds of the :class:`Bbox`. - when None, use the last value passed to :meth:`ignore`. *updatex*: when True, update the x values *updatey*: when True, update the y values """ if ignore is None: ignore = self._ignore if path.vertices.size == 0: return points, minpos, changed = update_path_extents( path, None, self._points, self._minpos, ignore) if changed: self.invalidate() if updatex: self._points[:,0] = points[:,0] self._minpos[0] = minpos[0] if updatey: self._points[:,1] = points[:,1] self._minpos[1] = minpos[1] def update_from_data_xy(self, xy, ignore=None, updatex=True, updatey=True): """ Update the bounds of the :class:`Bbox` based on the passed in data. After updating, the bounds will have positive *width* and *height*; *x0* and *y0* will be the minimal values. *xy*: a numpy array of 2D points *ignore*: - when True, ignore the existing bounds of the :class:`Bbox`. - when False, include the existing bounds of the :class:`Bbox`. - when None, use the last value passed to :meth:`ignore`. *updatex*: when True, update the x values *updatey*: when True, update the y values """ if len(xy) == 0: return path = Path(xy) self.update_from_path(path, ignore=ignore, updatex=updatex, updatey=updatey) def _set_x0(self, val): self._points[0, 0] = val self.invalidate() x0 = property(BboxBase._get_x0, _set_x0) def _set_y0(self, val): self._points[0, 1] = val self.invalidate() y0 = property(BboxBase._get_y0, _set_y0) def _set_x1(self, val): self._points[1, 0] = val self.invalidate() x1 = property(BboxBase._get_x1, _set_x1) def _set_y1(self, val): self._points[1, 1] = val self.invalidate() y1 = property(BboxBase._get_y1, _set_y1) def _set_p0(self, val): self._points[0] = val self.invalidate() p0 = property(BboxBase._get_p0, _set_p0) def _set_p1(self, val): self._points[1] = val self.invalidate() p1 = property(BboxBase._get_p1, _set_p1) def _set_intervalx(self, interval): self._points[:, 0] = interval self.invalidate() intervalx = property(BboxBase._get_intervalx, _set_intervalx) def _set_intervaly(self, interval): self._points[:, 1] = interval self.invalidate() intervaly = property(BboxBase._get_intervaly, _set_intervaly) def _set_bounds(self, bounds): l, b, w, h = bounds points = np.array([[l, b], [l+w, b+h]], np.float_) if np.any(self._points != points): self._points = points self.invalidate() bounds = property(BboxBase._get_bounds, _set_bounds) def _get_minpos(self): return self._minpos minpos = property(_get_minpos) def _get_minposx(self): return self._minpos[0] minposx = property(_get_minposx) def _get_minposy(self): return self._minpos[1] minposy = property(_get_minposy) def get_points(self): """ Get the points of the bounding box directly as a numpy array of the form: [[x0, y0], [x1, y1]]. """ self._invalid = 0 return self._points def set_points(self, points): """ Set the points of the bounding box directly from a numpy array of the form: [[x0, y0], [x1, y1]]. No error checking is performed, as this method is mainly for internal use. """ if np.any(self._points != points): self._points = points self.invalidate() def set(self, other): """ Set this bounding box from the "frozen" bounds of another :class:`Bbox`. """ if np.any(self._points != other.get_points()): self._points = other.get_points() self.invalidate() class TransformedBbox(BboxBase): """ A :class:`Bbox` that is automatically transformed by a given transform. When either the child bounding box or transform changes, the bounds of this bbox will update accordingly. """ def __init__(self, bbox, transform): """ *bbox*: a child :class:`Bbox` *transform*: a 2D :class:`Transform` """ assert bbox.is_bbox assert isinstance(transform, Transform) assert transform.input_dims == 2 assert transform.output_dims == 2 BboxBase.__init__(self) self._bbox = bbox self._transform = transform self.set_children(bbox, transform) self._points = None def __repr__(self): return "TransformedBbox(%s, %s)" % (self._bbox, self._transform) __str__ = __repr__ def get_points(self): if self._invalid: points = self._transform.transform(self._bbox.get_points()) if ma.isMaskedArray(points): points.putmask(0.0) points = np.asarray(points) self._points = points self._invalid = 0 return self._points get_points.__doc__ = Bbox.get_points.__doc__ if DEBUG: _get_points = get_points def get_points(self): points = self._get_points() self._check(points) return points class Transform(TransformNode): """ The base class of all :class:`TransformNode` instances that actually perform a transformation. All non-affine transformations should be subclasses of this class. New affine transformations should be subclasses of :class:`Affine2D`. Subclasses of this class should override the following members (at minimum): - :attr:`input_dims` - :attr:`output_dims` - :meth:`transform` - :attr:`is_separable` - :attr:`has_inverse` - :meth:`inverted` (if :meth:`has_inverse` can return True) If the transform needs to do something non-standard with :class:`mathplotlib.path.Path` objects, such as adding curves where there were once line segments, it should override: - :meth:`transform_path` """ # The number of input and output dimensions for this transform. # These must be overridden (with integers) in the subclass. input_dims = None output_dims = None # True if this transform as a corresponding inverse transform. has_inverse = False # True if this transform is separable in the x- and y- dimensions. is_separable = False #* Redundant: Removed for performance # # def __init__(self): # TransformNode.__init__(self) def __add__(self, other): """ Composes two transforms together such that *self* is followed by *other*. """ if isinstance(other, Transform): return composite_transform_factory(self, other) raise TypeError( "Can not add Transform to object of type '%s'" % type(other)) def __radd__(self, other): """ Composes two transforms together such that *self* is followed by *other*. """ if isinstance(other, Transform): return composite_transform_factory(other, self) raise TypeError( "Can not add Transform to object of type '%s'" % type(other)) def __array__(self, *args, **kwargs): """ Used by C/C++ -based backends to get at the array matrix data. """ return self.frozen().__array__() def transform(self, values): """ Performs the transformation on the given array of values. Accepts a numpy array of shape (N x :attr:`input_dims`) and returns a numpy array of shape (N x :attr:`output_dims`). """ raise NotImplementedError() def transform_affine(self, values): """ Performs only the affine part of this transformation on the given array of values. ``transform(values)`` is always equivalent to ``transform_affine(transform_non_affine(values))``. In non-affine transformations, this is generally a no-op. In affine transformations, this is equivalent to ``transform(values)``. Accepts a numpy array of shape (N x :attr:`input_dims`) and returns a numpy array of shape (N x :attr:`output_dims`). """ return values def transform_non_affine(self, values): """ Performs only the non-affine part of the transformation. ``transform(values)`` is always equivalent to ``transform_affine(transform_non_affine(values))``. In non-affine transformations, this is generally equivalent to ``transform(values)``. In affine transformations, this is always a no-op. Accepts a numpy array of shape (N x :attr:`input_dims`) and returns a numpy array of shape (N x :attr:`output_dims`). """ return self.transform(values) def get_affine(self): """ Get the affine part of this transform. """ return IdentityTransform() def transform_point(self, point): """ A convenience function that returns the transformed copy of a single point. The point is given as a sequence of length :attr:`input_dims`. The transformed point is returned as a sequence of length :attr:`output_dims`. """ assert len(point) == self.input_dims return self.transform(np.asarray([point]))[0] def transform_path(self, path): """ Returns a transformed copy of path. *path*: a :class:`~matplotlib.path.Path` instance. In some cases, this transform may insert curves into the path that began as line segments. """ return Path(self.transform(path.vertices), path.codes) def transform_path_affine(self, path): """ Returns a copy of path, transformed only by the affine part of this transform. *path*: a :class:`~matplotlib.path.Path` instance. ``transform_path(path)`` is equivalent to ``transform_path_affine(transform_path_non_affine(values))``. """ return path def transform_path_non_affine(self, path): """ Returns a copy of path, transformed only by the non-affine part of this transform. *path*: a :class:`~matplotlib.path.Path` instance. ``transform_path(path)`` is equivalent to ``transform_path_affine(transform_path_non_affine(values))``. """ return Path(self.transform_non_affine(path.vertices), path.codes) def transform_angles(self, angles, pts, radians=False, pushoff=1e-5): """ Performs transformation on a set of angles anchored at specific locations. The *angles* must be a column vector (i.e., numpy array). The *pts* must be a two-column numpy array of x,y positions (angle transforms currently only work in 2D). This array must have the same number of rows as *angles*. *radians* indicates whether or not input angles are given in radians (True) or degrees (False; the default). *pushoff* is the distance to move away from *pts* for determining transformed angles (see discussion of method below). The transformed angles are returned in an array with the same size as *angles*. The generic version of this method uses a very generic algorithm that transforms *pts*, as well as locations very close to *pts*, to find the angle in the transformed system. """ # Must be 2D if self.input_dims <> 2 or self.output_dims <> 2: raise NotImplementedError('Only defined in 2D') # pts must be array with 2 columns for x,y assert pts.shape[1] == 2 # angles must be a column vector and have same number of # rows as pts assert np.prod(angles.shape) == angles.shape[0] == pts.shape[0] # Convert to radians if desired if not radians: angles = angles / 180.0 * np.pi # Move a short distance away pts2 = pts + pushoff * np.c_[ np.cos(angles), np.sin(angles) ] # Transform both sets of points tpts = self.transform( pts ) tpts2 = self.transform( pts2 ) # Calculate transformed angles d = tpts2 - tpts a = np.arctan2( d[:,1], d[:,0] ) # Convert back to degrees if desired if not radians: a = a * 180.0 / np.pi return a def inverted(self): """ Return the corresponding inverse transformation. The return value of this method should be treated as temporary. An update to *self* does not cause a corresponding update to its inverted copy. ``x === self.inverted().transform(self.transform(x))`` """ raise NotImplementedError() class TransformWrapper(Transform): """ A helper class that holds a single child transform and acts equivalently to it. This is useful if a node of the transform tree must be replaced at run time with a transform of a different type. This class allows that replacement to correctly trigger invalidation. Note that :class:`TransformWrapper` instances must have the same input and output dimensions during their entire lifetime, so the child transform may only be replaced with another child transform of the same dimensions. """ pass_through = True is_affine = False def __init__(self, child): """ *child*: A class:`Transform` instance. This child may later be replaced with :meth:`set`. """ assert isinstance(child, Transform) Transform.__init__(self) self.input_dims = child.input_dims self.output_dims = child.output_dims self._set(child) self._invalid = 0 def __repr__(self): return "TransformWrapper(%r)" % self._child __str__ = __repr__ def frozen(self): return self._child.frozen() frozen.__doc__ = Transform.frozen.__doc__ def _set(self, child): self._child = child self.set_children(child) self.transform = child.transform self.transform_affine = child.transform_affine self.transform_non_affine = child.transform_non_affine self.transform_path = child.transform_path self.transform_path_affine = child.transform_path_affine self.transform_path_non_affine = child.transform_path_non_affine self.get_affine = child.get_affine self.inverted = child.inverted def set(self, child): """ Replace the current child of this transform with another one. The new child must have the same number of input and output dimensions as the current child. """ assert child.input_dims == self.input_dims assert child.output_dims == self.output_dims self._set(child) self._invalid = 0 self.invalidate() self._invalid = 0 def _get_is_separable(self): return self._child.is_separable is_separable = property(_get_is_separable) def _get_has_inverse(self): return self._child.has_inverse has_inverse = property(_get_has_inverse) class AffineBase(Transform): """ The base class of all affine transformations of any number of dimensions. """ is_affine = True def __init__(self): Transform.__init__(self) self._inverted = None def __array__(self, *args, **kwargs): return self.get_matrix() #@staticmethod def _concat(a, b): """ Concatenates two transformation matrices (represented as numpy arrays) together. """ return np.dot(b, a) _concat = staticmethod(_concat) def get_matrix(self): """ Get the underlying transformation matrix as a numpy array. """ raise NotImplementedError() def transform_non_affine(self, points): return points transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__ def transform_path_affine(self, path): return self.transform_path(path) transform_path_affine.__doc__ = Transform.transform_path_affine.__doc__ def transform_path_non_affine(self, path): return path transform_path_non_affine.__doc__ = Transform.transform_path_non_affine.__doc__ def get_affine(self): return self get_affine.__doc__ = Transform.get_affine.__doc__ class Affine2DBase(AffineBase): """ The base class of all 2D affine transformations. 2D affine transformations are performed using a 3x3 numpy array:: a c e b d f 0 0 1 This class provides the read-only interface. For a mutable 2D affine transformation, use :class:`Affine2D`. Subclasses of this class will generally only need to override a constructor and :meth:`get_matrix` that generates a custom 3x3 matrix. """ input_dims = 2 output_dims = 2 #* Redundant: Removed for performance # # def __init__(self): # Affine2DBase.__init__(self) def frozen(self): return Affine2D(self.get_matrix().copy()) frozen.__doc__ = AffineBase.frozen.__doc__ def _get_is_separable(self): mtx = self.get_matrix() return mtx[0, 1] == 0.0 and mtx[1, 0] == 0.0 is_separable = property(_get_is_separable) def __array__(self, *args, **kwargs): return self.get_matrix() def to_values(self): """ Return the values of the matrix as a sequence (a,b,c,d,e,f) """ mtx = self.get_matrix() return tuple(mtx[:2].swapaxes(0, 1).flatten()) #@staticmethod def matrix_from_values(a, b, c, d, e, f): """ (staticmethod) Create a new transformation matrix as a 3x3 numpy array of the form:: a c e b d f 0 0 1 """ return np.array([[a, c, e], [b, d, f], [0.0, 0.0, 1.0]], np.float_) matrix_from_values = staticmethod(matrix_from_values) def transform(self, points): mtx = self.get_matrix() if isinstance(points, MaskedArray): tpoints = affine_transform(points.data, mtx) return ma.MaskedArray(tpoints, mask=ma.getmask(points)) return affine_transform(points, mtx) def transform_point(self, point): mtx = self.get_matrix() return affine_transform(point, mtx) transform_point.__doc__ = AffineBase.transform_point.__doc__ if DEBUG: _transform = transform def transform(self, points): # The major speed trap here is just converting to the # points to an array in the first place. If we can use # more arrays upstream, that should help here. if (not ma.isMaskedArray(points) and not isinstance(points, np.ndarray)): warnings.warn( ('A non-numpy array of type %s was passed in for ' + 'transformation. Please correct this.') % type(values)) return self._transform(points) transform.__doc__ = AffineBase.transform.__doc__ transform_affine = transform transform_affine.__doc__ = AffineBase.transform_affine.__doc__ def inverted(self): if self._inverted is None or self._invalid: mtx = self.get_matrix() self._inverted = Affine2D(inv(mtx)) self._invalid = 0 return self._inverted inverted.__doc__ = AffineBase.inverted.__doc__ class Affine2D(Affine2DBase): """ A mutable 2D affine transformation. """ def __init__(self, matrix = None): """ Initialize an Affine transform from a 3x3 numpy float array:: a c e b d f 0 0 1 If *matrix* is None, initialize with the identity transform. """ Affine2DBase.__init__(self) if matrix is None: matrix = np.identity(3) elif DEBUG: matrix = np.asarray(matrix, np.float_) assert matrix.shape == (3, 3) self._mtx = matrix self._invalid = 0 def __repr__(self): return "Affine2D(%s)" % repr(self._mtx) __str__ = __repr__ def __cmp__(self, other): if (isinstance(other, Affine2D) and (self.get_matrix() == other.get_matrix()).all()): return 0 return -1 #@staticmethod def from_values(a, b, c, d, e, f): """ (staticmethod) Create a new Affine2D instance from the given values:: a c e b d f 0 0 1 """ return Affine2D( np.array([a, c, e, b, d, f, 0.0, 0.0, 1.0], np.float_) .reshape((3,3))) from_values = staticmethod(from_values) def get_matrix(self): """ Get the underlying transformation matrix as a 3x3 numpy array:: a c e b d f 0 0 1 """ self._invalid = 0 return self._mtx def set_matrix(self, mtx): """ Set the underlying transformation matrix from a 3x3 numpy array:: a c e b d f 0 0 1 """ self._mtx = mtx self.invalidate() def set(self, other): """ Set this transformation from the frozen copy of another :class:`Affine2DBase` object. """ assert isinstance(other, Affine2DBase) self._mtx = other.get_matrix() self.invalidate() #@staticmethod def identity(): """ (staticmethod) Return a new :class:`Affine2D` object that is the identity transform. Unless this transform will be mutated later on, consider using the faster :class:`IdentityTransform` class instead. """ return Affine2D(np.identity(3)) identity = staticmethod(identity) def clear(self): """ Reset the underlying matrix to the identity transform. """ self._mtx = np.identity(3) self.invalidate() return self def rotate(self, theta): """ Add a rotation (in radians) to this transform in place. Returns *self*, so this method can easily be chained with more calls to :meth:`rotate`, :meth:`rotate_deg`, :meth:`translate` and :meth:`scale`. """ a = np.cos(theta) b = np.sin(theta) rotate_mtx = np.array( [[a, -b, 0.0], [b, a, 0.0], [0.0, 0.0, 1.0]], np.float_) self._mtx = np.dot(rotate_mtx, self._mtx) self.invalidate() return self def rotate_deg(self, degrees): """ Add a rotation (in degrees) to this transform in place. Returns *self*, so this method can easily be chained with more calls to :meth:`rotate`, :meth:`rotate_deg`, :meth:`translate` and :meth:`scale`. """ return self.rotate(degrees*np.pi/180.) def rotate_around(self, x, y, theta): """ Add a rotation (in radians) around the point (x, y) in place. Returns *self*, so this method can easily be chained with more calls to :meth:`rotate`, :meth:`rotate_deg`, :meth:`translate` and :meth:`scale`. """ return self.translate(-x, -y).rotate(theta).translate(x, y) def rotate_deg_around(self, x, y, degrees): """ Add a rotation (in degrees) around the point (x, y) in place. Returns *self*, so this method can easily be chained with more calls to :meth:`rotate`, :meth:`rotate_deg`, :meth:`translate` and :meth:`scale`. """ return self.translate(-x, -y).rotate_deg(degrees).translate(x, y) def translate(self, tx, ty): """ Adds a translation in place. Returns *self*, so this method can easily be chained with more calls to :meth:`rotate`, :meth:`rotate_deg`, :meth:`translate` and :meth:`scale`. """ translate_mtx = np.array( [[1.0, 0.0, tx], [0.0, 1.0, ty], [0.0, 0.0, 1.0]], np.float_) self._mtx = np.dot(translate_mtx, self._mtx) self.invalidate() return self def scale(self, sx, sy=None): """ Adds a scale in place. If *sy* is None, the same scale is applied in both the *x*- and *y*-directions. Returns *self*, so this method can easily be chained with more calls to :meth:`rotate`, :meth:`rotate_deg`, :meth:`translate` and :meth:`scale`. """ if sy is None: sy = sx scale_mtx = np.array( [[sx, 0.0, 0.0], [0.0, sy, 0.0], [0.0, 0.0, 1.0]], np.float_) self._mtx = np.dot(scale_mtx, self._mtx) self.invalidate() return self def _get_is_separable(self): mtx = self.get_matrix() return mtx[0, 1] == 0.0 and mtx[1, 0] == 0.0 is_separable = property(_get_is_separable) class IdentityTransform(Affine2DBase): """ A special class that does on thing, the identity transform, in a fast way. """ _mtx = np.identity(3) def frozen(self): return self frozen.__doc__ = Affine2DBase.frozen.__doc__ def __repr__(self): return "IdentityTransform()" __str__ = __repr__ def get_matrix(self): return self._mtx get_matrix.__doc__ = Affine2DBase.get_matrix.__doc__ def transform(self, points): return points transform.__doc__ = Affine2DBase.transform.__doc__ transform_affine = transform transform_affine.__doc__ = Affine2DBase.transform_affine.__doc__ transform_non_affine = transform transform_non_affine.__doc__ = Affine2DBase.transform_non_affine.__doc__ def transform_path(self, path): return path transform_path.__doc__ = Affine2DBase.transform_path.__doc__ transform_path_affine = transform_path transform_path_affine.__doc__ = Affine2DBase.transform_path_affine.__doc__ transform_path_non_affine = transform_path transform_path_non_affine.__doc__ = Affine2DBase.transform_path_non_affine.__doc__ def get_affine(self): return self get_affine.__doc__ = Affine2DBase.get_affine.__doc__ inverted = get_affine inverted.__doc__ = Affine2DBase.inverted.__doc__ class BlendedGenericTransform(Transform): """ A "blended" transform uses one transform for the *x*-direction, and another transform for the *y*-direction. This "generic" version can handle any given child transform in the *x*- and *y*-directions. """ input_dims = 2 output_dims = 2 is_separable = True pass_through = True def __init__(self, x_transform, y_transform): """ Create a new "blended" transform using *x_transform* to transform the *x*-axis and *y_transform* to transform the *y*-axis. You will generally not call this constructor directly but use the :func:`blended_transform_factory` function instead, which can determine automatically which kind of blended transform to create. """ # Here we ask: "Does it blend?" Transform.__init__(self) self._x = x_transform self._y = y_transform self.set_children(x_transform, y_transform) self._affine = None def _get_is_affine(self): return self._x.is_affine and self._y.is_affine is_affine = property(_get_is_affine) def frozen(self): return blended_transform_factory(self._x.frozen(), self._y.frozen()) frozen.__doc__ = Transform.frozen.__doc__ def __repr__(self): return "BlendedGenericTransform(%s,%s)" % (self._x, self._y) __str__ = __repr__ def transform(self, points): x = self._x y = self._y if x is y and x.input_dims == 2: return x.transform(points) if x.input_dims == 2: x_points = x.transform(points)[:, 0:1] else: x_points = x.transform(points[:, 0]) x_points = x_points.reshape((len(x_points), 1)) if y.input_dims == 2: y_points = y.transform(points)[:, 1:] else: y_points = y.transform(points[:, 1]) y_points = y_points.reshape((len(y_points), 1)) if isinstance(x_points, MaskedArray) or isinstance(y_points, MaskedArray): return ma.concatenate((x_points, y_points), 1) else: return np.concatenate((x_points, y_points), 1) transform.__doc__ = Transform.transform.__doc__ def transform_affine(self, points): return self.get_affine().transform(points) transform_affine.__doc__ = Transform.transform_affine.__doc__ def transform_non_affine(self, points): if self._x.is_affine and self._y.is_affine: return points return self.transform(points) transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__ def inverted(self): return BlendedGenericTransform(self._x.inverted(), self._y.inverted()) inverted.__doc__ = Transform.inverted.__doc__ def get_affine(self): if self._invalid or self._affine is None: if self._x.is_affine and self._y.is_affine: if self._x == self._y: self._affine = self._x.get_affine() else: x_mtx = self._x.get_affine().get_matrix() y_mtx = self._y.get_affine().get_matrix() # This works because we already know the transforms are # separable, though normally one would want to set b and # c to zero. mtx = np.vstack((x_mtx[0], y_mtx[1], [0.0, 0.0, 1.0])) self._affine = Affine2D(mtx) else: self._affine = IdentityTransform() self._invalid = 0 return self._affine get_affine.__doc__ = Transform.get_affine.__doc__ class BlendedAffine2D(Affine2DBase): """ A "blended" transform uses one transform for the *x*-direction, and another transform for the *y*-direction. This version is an optimization for the case where both child transforms are of type :class:`Affine2DBase`. """ is_separable = True def __init__(self, x_transform, y_transform): """ Create a new "blended" transform using *x_transform* to transform the *x*-axis and *y_transform* to transform the *y*-axis. Both *x_transform* and *y_transform* must be 2D affine transforms. You will generally not call this constructor directly but use the :func:`blended_transform_factory` function instead, which can determine automatically which kind of blended transform to create. """ assert x_transform.is_affine assert y_transform.is_affine assert x_transform.is_separable assert y_transform.is_separable Transform.__init__(self) self._x = x_transform self._y = y_transform self.set_children(x_transform, y_transform) Affine2DBase.__init__(self) self._mtx = None def __repr__(self): return "BlendedAffine2D(%s,%s)" % (self._x, self._y) __str__ = __repr__ def get_matrix(self): if self._invalid: if self._x == self._y: self._mtx = self._x.get_matrix() else: x_mtx = self._x.get_matrix() y_mtx = self._y.get_matrix() # This works because we already know the transforms are # separable, though normally one would want to set b and # c to zero. self._mtx = np.vstack((x_mtx[0], y_mtx[1], [0.0, 0.0, 1.0])) self._inverted = None self._invalid = 0 return self._mtx get_matrix.__doc__ = Affine2DBase.get_matrix.__doc__ def blended_transform_factory(x_transform, y_transform): """ Create a new "blended" transform using *x_transform* to transform the *x*-axis and *y_transform* to transform the *y*-axis. A faster version of the blended transform is returned for the case where both child transforms are affine. """ if (isinstance(x_transform, Affine2DBase) and isinstance(y_transform, Affine2DBase)): return BlendedAffine2D(x_transform, y_transform) return BlendedGenericTransform(x_transform, y_transform) class CompositeGenericTransform(Transform): """ A composite transform formed by applying transform *a* then transform *b*. This "generic" version can handle any two arbitrary transformations. """ pass_through = True def __init__(self, a, b): """ Create a new composite transform that is the result of applying transform *a* then transform *b*. You will generally not call this constructor directly but use the :func:`composite_transform_factory` function instead, which can automatically choose the best kind of composite transform instance to create. """ assert a.output_dims == b.input_dims self.input_dims = a.input_dims self.output_dims = b.output_dims Transform.__init__(self) self._a = a self._b = b self.set_children(a, b) def frozen(self): self._invalid = 0 frozen = composite_transform_factory(self._a.frozen(), self._b.frozen()) if not isinstance(frozen, CompositeGenericTransform): return frozen.frozen() return frozen frozen.__doc__ = Transform.frozen.__doc__ def _get_is_affine(self): return self._a.is_affine and self._b.is_affine is_affine = property(_get_is_affine) def _get_is_separable(self): return self._a.is_separable and self._b.is_separable is_separable = property(_get_is_separable) def __repr__(self): return "CompositeGenericTransform(%s, %s)" % (self._a, self._b) __str__ = __repr__ def transform(self, points): return self._b.transform( self._a.transform(points)) transform.__doc__ = Transform.transform.__doc__ def transform_affine(self, points): return self.get_affine().transform(points) transform_affine.__doc__ = Transform.transform_affine.__doc__ def transform_non_affine(self, points): if self._a.is_affine and self._b.is_affine: return points return self._b.transform_non_affine( self._a.transform(points)) transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__ def transform_path(self, path): return self._b.transform_path( self._a.transform_path(path)) transform_path.__doc__ = Transform.transform_path.__doc__ def transform_path_affine(self, path): return self._b.transform_path_affine( self._a.transform_path(path)) transform_path_affine.__doc__ = Transform.transform_path_affine.__doc__ def transform_path_non_affine(self, path): if self._a.is_affine and self._b.is_affine: return path return self._b.transform_path_non_affine( self._a.transform_path(path)) transform_path_non_affine.__doc__ = Transform.transform_path_non_affine.__doc__ def get_affine(self): if self._a.is_affine and self._b.is_affine: return Affine2D(np.dot(self._b.get_affine().get_matrix(), self._a.get_affine().get_matrix())) else: return self._b.get_affine() get_affine.__doc__ = Transform.get_affine.__doc__ def inverted(self): return CompositeGenericTransform(self._b.inverted(), self._a.inverted()) inverted.__doc__ = Transform.inverted.__doc__ class CompositeAffine2D(Affine2DBase): """ A composite transform formed by applying transform *a* then transform *b*. This version is an optimization that handles the case where both *a* and *b* are 2D affines. """ def __init__(self, a, b): """ Create a new composite transform that is the result of applying transform *a* then transform *b*. Both *a* and *b* must be instances of :class:`Affine2DBase`. You will generally not call this constructor directly but use the :func:`composite_transform_factory` function instead, which can automatically choose the best kind of composite transform instance to create. """ assert a.output_dims == b.input_dims self.input_dims = a.input_dims self.output_dims = b.output_dims assert a.is_affine assert b.is_affine Affine2DBase.__init__(self) self._a = a self._b = b self.set_children(a, b) self._mtx = None def __repr__(self): return "CompositeAffine2D(%s, %s)" % (self._a, self._b) __str__ = __repr__ def get_matrix(self): if self._invalid: self._mtx = np.dot( self._b.get_matrix(), self._a.get_matrix()) self._inverted = None self._invalid = 0 return self._mtx get_matrix.__doc__ = Affine2DBase.get_matrix.__doc__ def composite_transform_factory(a, b): """ Create a new composite transform that is the result of applying transform a then transform b. Shortcut versions of the blended transform are provided for the case where both child transforms are affine, or one or the other is the identity transform. Composite transforms may also be created using the '+' operator, e.g.:: c = a + b """ if isinstance(a, IdentityTransform): return b elif isinstance(b, IdentityTransform): return a elif isinstance(a, AffineBase) and isinstance(b, AffineBase): return CompositeAffine2D(a, b) return CompositeGenericTransform(a, b) class BboxTransform(Affine2DBase): """ :class:`BboxTransform` linearly transforms points from one :class:`Bbox` to another :class:`Bbox`. """ is_separable = True def __init__(self, boxin, boxout): """ Create a new :class:`BboxTransform` that linearly transforms points from *boxin* to *boxout*. """ assert boxin.is_bbox assert boxout.is_bbox Affine2DBase.__init__(self) self._boxin = boxin self._boxout = boxout self.set_children(boxin, boxout) self._mtx = None self._inverted = None def __repr__(self): return "BboxTransform(%s, %s)" % (self._boxin, self._boxout) __str__ = __repr__ def get_matrix(self): if self._invalid: inl, inb, inw, inh = self._boxin.bounds outl, outb, outw, outh = self._boxout.bounds x_scale = outw / inw y_scale = outh / inh if DEBUG and (x_scale == 0 or y_scale == 0): raise ValueError("Transforming from or to a singular bounding box.") self._mtx = np.array([[x_scale, 0.0 , (-inl*x_scale+outl)], [0.0 , y_scale, (-inb*y_scale+outb)], [0.0 , 0.0 , 1.0 ]], np.float_) self._inverted = None self._invalid = 0 return self._mtx get_matrix.__doc__ = Affine2DBase.get_matrix.__doc__ class BboxTransformTo(Affine2DBase): """ :class:`BboxTransformTo` is a transformation that linearly transforms points from the unit bounding box to a given :class:`Bbox`. """ is_separable = True def __init__(self, boxout): """ Create a new :class:`BboxTransformTo` that linearly transforms points from the unit bounding box to *boxout*. """ assert boxout.is_bbox Affine2DBase.__init__(self) self._boxout = boxout self.set_children(boxout) self._mtx = None self._inverted = None def __repr__(self): return "BboxTransformTo(%s)" % (self._boxout) __str__ = __repr__ def get_matrix(self): if self._invalid: outl, outb, outw, outh = self._boxout.bounds if DEBUG and (outw == 0 or outh == 0): raise ValueError("Transforming to a singular bounding box.") self._mtx = np.array([[outw, 0.0, outl], [ 0.0, outh, outb], [ 0.0, 0.0, 1.0]], np.float_) self._inverted = None self._invalid = 0 return self._mtx get_matrix.__doc__ = Affine2DBase.get_matrix.__doc__ class BboxTransformFrom(Affine2DBase): """ :class:`BboxTransformFrom` linearly transforms points from a given :class:`Bbox` to the unit bounding box. """ is_separable = True def __init__(self, boxin): assert boxin.is_bbox Affine2DBase.__init__(self) self._boxin = boxin self.set_children(boxin) self._mtx = None self._inverted = None def __repr__(self): return "BboxTransformFrom(%s)" % (self._boxin) __str__ = __repr__ def get_matrix(self): if self._invalid: inl, inb, inw, inh = self._boxin.bounds if DEBUG and (inw == 0 or inh == 0): raise ValueError("Transforming from a singular bounding box.") x_scale = 1.0 / inw y_scale = 1.0 / inh self._mtx = np.array([[x_scale, 0.0 , (-inl*x_scale)], [0.0 , y_scale, (-inb*y_scale)], [0.0 , 0.0 , 1.0 ]], np.float_) self._inverted = None self._invalid = 0 return self._mtx get_matrix.__doc__ = Affine2DBase.get_matrix.__doc__ class ScaledTranslation(Affine2DBase): """ A transformation that translates by *xt* and *yt*, after *xt* and *yt* have been transformad by the given transform *scale_trans*. """ def __init__(self, xt, yt, scale_trans): Affine2DBase.__init__(self) self._t = (xt, yt) self._scale_trans = scale_trans self.set_children(scale_trans) self._mtx = None self._inverted = None def __repr__(self): return "ScaledTranslation(%s)" % (self._t,) __str__ = __repr__ def get_matrix(self): if self._invalid: xt, yt = self._scale_trans.transform_point(self._t) self._mtx = np.array([[1.0, 0.0, xt], [0.0, 1.0, yt], [0.0, 0.0, 1.0]], np.float_) self._invalid = 0 self._inverted = None return self._mtx get_matrix.__doc__ = Affine2DBase.get_matrix.__doc__ class TransformedPath(TransformNode): """ A :class:`TransformedPath` caches a non-affine transformed copy of the :class:`~matplotlib.path.Path`. This cached copy is automatically updated when the non-affine part of the transform changes. """ def __init__(self, path, transform): """ Create a new :class:`TransformedPath` from the given :class:`~matplotlib.path.Path` and :class:`Transform`. """ assert isinstance(transform, Transform) TransformNode.__init__(self) self._path = path self._transform = transform self.set_children(transform) self._transformed_path = None self._transformed_points = None def _revalidate(self): if ((self._invalid & self.INVALID_NON_AFFINE == self.INVALID_NON_AFFINE) or self._transformed_path is None): self._transformed_path = \ self._transform.transform_path_non_affine(self._path) self._transformed_points = \ Path(self._transform.transform_non_affine(self._path.vertices)) self._invalid = 0 def get_transformed_points_and_affine(self): """ Return a copy of the child path, with the non-affine part of the transform already applied, along with the affine part of the path necessary to complete the transformation. Unlike :meth:`get_transformed_path_and_affine`, no interpolation will be performed. """ self._revalidate() return self._transformed_points, self.get_affine() def get_transformed_path_and_affine(self): """ Return a copy of the child path, with the non-affine part of the transform already applied, along with the affine part of the path necessary to complete the transformation. """ self._revalidate() return self._transformed_path, self.get_affine() def get_fully_transformed_path(self): """ Return a fully-transformed copy of the child path. """ if ((self._invalid & self.INVALID_NON_AFFINE == self.INVALID_NON_AFFINE) or self._transformed_path is None): self._transformed_path = \ self._transform.transform_path_non_affine(self._path) self._invalid = 0 return self._transform.transform_path_affine(self._transformed_path) def get_affine(self): return self._transform.get_affine() def nonsingular(vmin, vmax, expander=0.001, tiny=1e-15, increasing=True): ''' Ensure the endpoints of a range are finite and not too close together. "too close" means the interval is smaller than 'tiny' times the maximum absolute value. If they are too close, each will be moved by the 'expander'. If 'increasing' is True and vmin > vmax, they will be swapped, regardless of whether they are too close. If either is inf or -inf or nan, return - expander, expander. ''' if (not np.isfinite(vmin)) or (not np.isfinite(vmax)): return -expander, expander swapped = False if vmax < vmin: vmin, vmax = vmax, vmin swapped = True if vmax - vmin <= max(abs(vmin), abs(vmax)) * tiny: if vmin == 0.0: vmin = -expander vmax = expander else: vmin -= expander*abs(vmin) vmax += expander*abs(vmax) if swapped and not increasing: vmin, vmax = vmax, vmin return vmin, vmax def interval_contains(interval, val): a, b = interval return ( ((a < b) and (a <= val and b >= val)) or (b <= val and a >= val)) def interval_contains_open(interval, val): a, b = interval return ( ((a < b) and (a < val and b > val)) or (b < val and a > val)) def offset_copy(trans, fig, x=0.0, y=0.0, units='inches'): ''' Return a new transform with an added offset. args: trans is any transform kwargs: fig is the current figure; it can be None if units are 'dots' x, y give the offset units is 'inches', 'points' or 'dots' ''' if units == 'dots': return trans + Affine2D().translate(x, y) if fig is None: raise ValueError('For units of inches or points a fig kwarg is needed') if units == 'points': x /= 72.0 y /= 72.0 elif not units == 'inches': raise ValueError('units must be dots, points, or inches') return trans + ScaledTranslation(x, y, fig.dpi_scale_trans)
agpl-3.0
agartland/utils
ics/.ipynb_checkpoints/plotting-checkpoint.py
1
12289
import pandas as pd import numpy as np import matplotlib.pyplot as plt import palettable import itertools from hclusterplot import plotHCluster import re from myboxplot import myboxplot import networkx as nx import seaborn as sns sns.set(style='darkgrid', palette='muted', font_scale=1.5) __all__ = ['icsTicks', 'icsTickLabels', 'swarmBox'] from .loading import * from .analyzing import * icsTicks = np.log10([0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1]) icsTickLabels = ['0.01', '0.025', '0.05', '0.1', '0.25', '0.5', '1'] # icsTicks = np.log10([0.01, 0.025, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1]) #icsTickLabels = ['0.01','0.025', '0.05', '0.1','0.2','0.4','0.6','0.8', '1'] def prepPlotDf(jDf, antigen, rxIDs, visitno, tcellsubset='CD4+', column='pvalue', cutoff='pvalue', pAdjust=True, allSubsets=False): cytokineSubsets = jDf.cytokine.unique() subset = cytokineSubsets[0].replace('-', '+').split('+')[:-1] cyCols = [c for c in cytokineSubsets if not c == '-'.join(subset)+'-'] ind = (jDf.tcellsub == tcellsubset) & (jDf.visitno == visitno) & (jDf.TreatmentGroupID.isin(rxIDs)) agInd = (jDf.antigen == antigen) & ind pvalueDf = pivotPvalues(jDf.loc[agInd], adjust=pAdjust) """Use cutoff from HVTN ICS SAP, p < 0.00001""" responseAlpha = 1e-5 callDf = (pvalueDf < responseAlpha).astype(float) magDf = jDf.loc[agInd].pivot(index='sample', columns='cytokine', values='mag') magAdjDf = jDf.loc[agInd].pivot(index='sample', columns='cytokine', values='mag_adj') bgDf = jDf.loc[agInd].pivot(index='sample', columns='cytokine', values='bg') """Positive subsets (to-be plotted) includes all columns unless a cutoff is specified""" if cutoff == 'mag': posSubsets = pvalueDf[cyCols].columns[(magDf[cyCols] > 0.00025).any(axis=0)] elif cutoff == 'mag_adj': posSubsets = pvalueDf[cyCols].columns[(magAdjDf[cyCols] > 0.00025).any(axis=0)] elif cutoff == 'bg': posSubsets = pvalueDf[cyCols].columns[(bgDf[cyCols] > 0).any(axis=0)] elif cutoff == 'pvalue': posSubsets = pvalueDf[cyCols].columns[(callDf[cyCols] > 0).any(axis=0)] else: posSubsets = pvalueDf[cyCols].columns if allSubsets: posSubsets = sorted(cytokineSubsets, key=lambda s: s.count('+'), reverse=True) else: posSubsets = sorted(posSubsets, key=lambda s: s.count('+'), reverse=True) if column == 'pvalue': plotDf = callDf elif column == 'mag': plotDf = magDf.applymap(np.log) elif column == 'mag_adj': plotDf = magAdjDf.applymap(np.log) elif column == 'bg': plotDf = bgDf.applymap(np.log) """Give labels a more readable look""" plotDf = plotDf.rename_axis(cytokineSubsetLabel, axis=1) posSubsets = list(map(cytokineSubsetLabel, posSubsets)) return plotDf[posSubsets] def plotPolyBP(jDf, antigen, rxIDs, visitno, tcellsubset='CD4+', column='pvalue', cutoff='pvalue', pAdjust=True, allSubsets=False, plotSubsets=None, returnPlotSubsets=False): if plotSubsets is None: plotDf = prepPlotDf(jDf, antigen, rxIDs, visitno, tcellsubset=tcellsubset, column=column, cutoff=cutoff, pAdjust=pAdjust, allSubsets=allSubsets) posSubsets = plotDf.columns else: plotDf = prepPlotDf(jDf, antigen, rxIDs, visitno, tcellsubset=tcellsubset, column=column, cutoff=cutoff, pAdjust=pAdjust, allSubsets=True) posSubsets = plotSubsets cbt = np.log([0.0001, 0.00025, 0.0005, 0.001, 0.002, 0.004, 0.006, 0.008, 0.01]) cbtl = ['0.01', '0.025', '0.05', '0.1', '0.2', '0.4', '0.6', '0.8', '1'] plt.clf() plotDf = pd.DataFrame(plotDf.stack().reset_index()) plotDf = plotDf.set_index('sample') plotDf = plotDf.join(ptidDf[['TreatmentGroupID', 'TreatmentGroupName']], how='left').sort_values(by='TreatmentGroupID') if column == 'mag' or column == 'mag_adj': plotDf[0].loc[(plotDf[0] < np.log(0.00025)) | plotDf[0].isnull()] = np.log(0.00025) yl = np.log([0.0002, 0.01]) elif column == 'bg': plotDf[0].loc[(plotDf[0] < np.log(0.00001)) | plotDf[0].isnull()] = np.log(0.00001) yl = np.log([0.00001, 0.01]) else: print('Must specify mag, mag_adj or bg (not %s)' % column) axh = plt.subplot(111) sns.boxplot(x='cytokine', y=0, data=plotDf, hue='TreatmentGroupName', fliersize=0, ax=axh, order=posSubsets) sns.stripplot(x='cytokine', y=0, data=plotDf, hue='TreatmentGroupName', jitter=True, ax=axh, order=posSubsets) plt.yticks(cbt, cbtl) plt.ylim(yl) plt.xticks(list(range(len(posSubsets))), posSubsets, fontsize='large', fontname='Consolas') plt.ylabel('% cytokine expressing cells') handles, labels = axh.get_legend_handles_labels() l = plt.legend(handles[len(rxIDs):], labels[len(rxIDs):], loc='upper right') if returnPlotSubsets: return axh, posSubsets else: return axh def plotPolyHeat(jDf, antigen, rxIDs, visitno, tcellsubset='CD4+', cluster=False, column='pvalue', cutoff='pvalue', pAdjust=True, allSubsets=False): plotDf = prepPlotDf(jDf, antigen, rxIDs, visitno, tcellsubset=tcellsubset, column=column, cutoff=cutoff, pAdjust=pAdjust, allSubsets=allSubsets) posSubsets = plotDf.columns plotDf = plotDf.join(ptidDf[['TreatmentGroupID', 'TreatmentGroupName']], how='left').sort_values(by='TreatmentGroupID') cbt = np.log([0.0001, 0.00025, 0.0005, 0.001, 0.002, 0.004, 0.006, 0.008, 0.01]) cbtl = ['0.01', '0.025', '0.05', '0.1', '0.2', '0.4', '0.6', '0.8', '1'] if cluster: clusterBool = [True, True] else: clusterBool = [False, False] if column == 'pvalue': vRange = [0, 2] elif column == 'mag': vRange = np.log([0.0001, 0.01]) elif column == 'mag_adj': vRange = np.log([0.0001, 0.01]) elif column == 'bg': vRange = np.log([0.0001, 0.01]) #valVec = tmp[posSubsets].values.flatten() #vRange = [log(valVec[valVec>0].min()),log(valVec.max())] ptidInd, cyColInd, handles = plotHCluster(plotDf[posSubsets], row_labels=plotDf.TreatmentGroupID, cmap=palettable.colorbrewer.sequential.YlOrRd_9.mpl_colormap, yTickSz=None, xTickSz='large', clusterBool=clusterBool, vRange=vRange) if column == 'pvalue': handles['cb'].remove() else: handles['cb'].set_ticks(cbt) handles['cb'].set_ticklabels(cbtl) handles['cb'].set_label('% cells') for xh in handles['xlabelsL']: xh.set_rotation(0) handles['heatmapAX'].grid(b=None) #handles['heatmapGS'].tight_layout(handles['fig'], h_pad=0.1, w_pad=0.5) return handles def plotResponsePattern(jDf, antigen, rxIDs, visitno, tcellsubset='CD4+', column='pvalue', cluster=False, cutoff='pvalue', pAdjust=True, boxplot=False, allSubsets=False): if column == 'pvalue' and boxplot: boxplot = False print('Forced heatmap for p-value plotting.') if boxplot: axh = plotPolyBP(jDf, antigen, rxIDs, visitno, tcellsubset=tcellsubset, column=column, cutoff=cutoff, pAdjust=pAdjust, allSubsets=allSubsets) else: axh = plotPolyHeat(jDf, antigen, rxIDs, visitno, tcellsubset=tcellsubset, cluster=cluster, column=column, cutoff=cutoff, pAdjust=pAdjust, allSubsets=allSubsets) return axh def _szscale(vec, mx=np.inf, mn=1): """Normalize values of vec to [mn, mx] interval such that sz ratios remain representative.""" factor = mn/np.nanmin(vec) vec = vec*factor vec[vec > mx] = mx vec[np.isnan(vec)] = mn return vec def plotPolyFunNetwork(cdf): """This visualization isn't promising, but its also the start to how I'd think about defining a pairwise sample distance matrix. Instead of considering each subset as independent they could be related by their distance on this graph (just the sum of the binayr vector representation), then the distance would be somekind of earth over's distance between the two graphs""" binSubsets = np.concatenate([m[None, :] for m in map(_subset2vec, cdf.cytokine.unique())], axis=0) nColors = (np.unique(binSubsets.sum(axis=1)) > 0).sum() cmap = sns.light_palette('red', as_cmap=True, n_colors=nColors) freqDf = cdf.groupby('cytokine')['mag'].agg(np.mean) freqDf = freqDf.drop(vec2subset([0]*len(binSubsets)), axis=0) g = nx.Graph() for ss,f in freqDf.iteritems(): g.add_node(ss, freq=f, fscore=subset2vec(ss).sum()) for ss1, ss2 in itertools.product(freqDf.index, freqDf.index): if np.abs(subset2vec(ss1) - subset2vec(ss2)).sum() <= 1: g.add_edge(ss1, ss2) nodesize = np.array([d['freq'] for n, d in g.nodes(data=True)]) nodecolor = np.array([d['fscore'] for n, d in g.nodes(data=True)]) nodecolor = (nodecolor - nodecolor.min() + 1) / (nodecolor.max() - nodecolor.min() + 1) freq = {n:d['freq'] for n, d in g.nodes(data=True)} pos = nx.nx_pydot.graphviz_layout(g, prog=layout, root=max(list(freq.keys()), key=freq.get)) #pos = spring_layout(g) #pos = spectral_layout(g) #layouts = ['twopi', 'fdp', 'circo', 'neato', 'dot', 'spring', 'spectral'] #pos = nx.graphviz_layout(g, prog=layout) plt.clf() figh = plt.gcf() axh = figh.add_axes([0.04, 0.04, 0.92, 0.92]) axh.axis('off') figh.set_facecolor('white') #nx.draw_networkx_edges(g,pos,alpha=0.5,width=sznorm(edgewidth,mn=0.5,mx=10), edge_color='k') #nx.draw_networkx_nodes(g,pos,node_size=sznorm(nodesize,mn=500,mx=5000),node_color=nodecolors,alpha=1) for e in g.edges_iter(): x1, y1=pos[e[0]] x2, y2=pos[e[1]] props = dict(color='black', alpha=0.4, zorder=1) plt.plot([x1, x2], [y1, y2], '-', lw=2, **props) plt.scatter(x=[pos[s][0] for s in g.nodes()], y=[pos[s][1] for s in g.nodes()], s=_szscale(nodesize, mn=20, mx=200), #Units for scatter is (size in points)**2 c=nodecolor, alpha=1, zorder=2, cmap=cmap) for n, d in g.nodes(data=True): if d['freq'] >= 0: plt.annotate(n, xy=pos[n], fontname='Arial', size=10, weight='bold', color='black', va='center', ha='center') def swarmBox(data, x, y, hue, palette=None, order=None, hue_order=None, connect=False): """Depends on plot order of the swarm plot which does not seem dependable at the moment. Better idea would be to adopt code from the actual swarm function for this, adding boxplots separately""" if palette is None: palette = sns.color_palette('Set2', n_colors=data[hue].unique().shape[0]) if hue_order is None: hue_order = sorted(data[hue].unique()) if order is None: order = sorted(data[x].unqiue()) params = dict(data=data, x=x, y=y, hue=hue, palette=palette, order=order, hue_order=hue_order) sns.boxplot(**params, fliersize=0, linewidth=0.5) swarm = sns.swarmplot(**params, linewidth=0.5, edgecolor='black', dodge=True) if connect: zipper = [order] + [swarm.collections[i::len(hue_order)] for i in range(len(hue_order))] for z in zip(*zipper): curx = z[0] collections = z[1:] offsets = [] for c,h in zip(collections, hue_order): ind = (data[x] == curx) & (data[hue] == h) sortii = np.argsort(np.argsort(data.loc[ind, y])) offsets.append(c.get_offsets()[sortii,:]) for zoffsets in zip(*offsets): xvec = [o[0] for o in zoffsets] yvec = [o[1] for o in zoffsets] plt.plot(xvec, yvec, '-', color='gray', linewidth=0.5) plt.legend([plt.Circle(1, color=c) for c in palette], hue_order, title=hue)
mit
HolgerPeters/scikit-learn
examples/ensemble/plot_forest_iris.py
335
6271
""" ==================================================================== Plot the decision surfaces of ensembles of trees on the iris dataset ==================================================================== Plot the decision surfaces of forests of randomized trees trained on pairs of features of the iris dataset. This plot compares the decision surfaces learned by a decision tree classifier (first column), by a random forest classifier (second column), by an extra- trees classifier (third column) and by an AdaBoost classifier (fourth column). In the first row, the classifiers are built using the sepal width and the sepal length features only, on the second row using the petal length and sepal length only, and on the third row using the petal width and the petal length only. In descending order of quality, when trained (outside of this example) on all 4 features using 30 estimators and scored using 10 fold cross validation, we see:: ExtraTreesClassifier() # 0.95 score RandomForestClassifier() # 0.94 score AdaBoost(DecisionTree(max_depth=3)) # 0.94 score DecisionTree(max_depth=None) # 0.94 score Increasing `max_depth` for AdaBoost lowers the standard deviation of the scores (but the average score does not improve). See the console's output for further details about each model. In this example you might try to: 1) vary the ``max_depth`` for the ``DecisionTreeClassifier`` and ``AdaBoostClassifier``, perhaps try ``max_depth=3`` for the ``DecisionTreeClassifier`` or ``max_depth=None`` for ``AdaBoostClassifier`` 2) vary ``n_estimators`` It is worth noting that RandomForests and ExtraTrees can be fitted in parallel on many cores as each tree is built independently of the others. AdaBoost's samples are built sequentially and so do not use multiple cores. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import clone from sklearn.datasets import load_iris from sklearn.ensemble import (RandomForestClassifier, ExtraTreesClassifier, AdaBoostClassifier) from sklearn.externals.six.moves import xrange from sklearn.tree import DecisionTreeClassifier # Parameters n_classes = 3 n_estimators = 30 plot_colors = "ryb" cmap = plt.cm.RdYlBu plot_step = 0.02 # fine step width for decision surface contours plot_step_coarser = 0.5 # step widths for coarse classifier guesses RANDOM_SEED = 13 # fix the seed on each iteration # Load data iris = load_iris() plot_idx = 1 models = [DecisionTreeClassifier(max_depth=None), RandomForestClassifier(n_estimators=n_estimators), ExtraTreesClassifier(n_estimators=n_estimators), AdaBoostClassifier(DecisionTreeClassifier(max_depth=3), n_estimators=n_estimators)] for pair in ([0, 1], [0, 2], [2, 3]): for model in models: # We only take the two corresponding features X = iris.data[:, pair] y = iris.target # Shuffle idx = np.arange(X.shape[0]) np.random.seed(RANDOM_SEED) np.random.shuffle(idx) X = X[idx] y = y[idx] # Standardize mean = X.mean(axis=0) std = X.std(axis=0) X = (X - mean) / std # Train clf = clone(model) clf = model.fit(X, y) scores = clf.score(X, y) # Create a title for each column and the console by using str() and # slicing away useless parts of the string model_title = str(type(model)).split(".")[-1][:-2][:-len("Classifier")] model_details = model_title if hasattr(model, "estimators_"): model_details += " with {} estimators".format(len(model.estimators_)) print( model_details + " with features", pair, "has a score of", scores ) plt.subplot(3, 4, plot_idx) if plot_idx <= len(models): # Add a title at the top of each column plt.title(model_title) # Now plot the decision boundary using a fine mesh as input to a # filled contour plot x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step), np.arange(y_min, y_max, plot_step)) # Plot either a single DecisionTreeClassifier or alpha blend the # decision surfaces of the ensemble of classifiers if isinstance(model, DecisionTreeClassifier): Z = model.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, cmap=cmap) else: # Choose alpha blend level with respect to the number of estimators # that are in use (noting that AdaBoost can use fewer estimators # than its maximum if it achieves a good enough fit early on) estimator_alpha = 1.0 / len(model.estimators_) for tree in model.estimators_: Z = tree.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, alpha=estimator_alpha, cmap=cmap) # Build a coarser grid to plot a set of ensemble classifications # to show how these are different to what we see in the decision # surfaces. These points are regularly space and do not have a black outline xx_coarser, yy_coarser = np.meshgrid(np.arange(x_min, x_max, plot_step_coarser), np.arange(y_min, y_max, plot_step_coarser)) Z_points_coarser = model.predict(np.c_[xx_coarser.ravel(), yy_coarser.ravel()]).reshape(xx_coarser.shape) cs_points = plt.scatter(xx_coarser, yy_coarser, s=15, c=Z_points_coarser, cmap=cmap, edgecolors="none") # Plot the training points, these are clustered together and have a # black outline for i, c in zip(xrange(n_classes), plot_colors): idx = np.where(y == i) plt.scatter(X[idx, 0], X[idx, 1], c=c, label=iris.target_names[i], cmap=cmap) plot_idx += 1 # move on to the next plot in sequence plt.suptitle("Classifiers on feature subsets of the Iris dataset") plt.axis("tight") plt.show()
bsd-3-clause
valexandersaulys/prudential_insurance_kaggle
venv/lib/python2.7/site-packages/pandas/core/series.py
9
95521
"\"\"\"\nData structure for 1-dimensional cross-sectional and time series data\n\"\"\"\nfrom __futur(...TRUNCATED)
gpl-2.0
Limags/MissionPlanner
Lib/site-packages/numpy/lib/twodim_base.py
70
23431
"\"\"\" Basic functions for manipulating 2d arrays\n\n\"\"\"\n\n__all__ = ['diag','diagflat','eye','(...TRUNCATED)
gpl-3.0
dsm054/pandas
pandas/tests/arrays/categorical/test_repr.py
2
25897
"# -*- coding: utf-8 -*-\n\nimport numpy as np\n\nfrom pandas.compat import PY3, u\n\nfrom pandas im(...TRUNCATED)
bsd-3-clause
dopplershift/MetPy
examples/gridding/Point_Interpolation.py
6
5187
"# Copyright (c) 2016 MetPy Developers.\n# Distributed under the terms of the BSD 3-Clause License.\(...TRUNCATED)
bsd-3-clause
lenovor/scikit-learn
sklearn/calibration.py
137
18876
"\"\"\"Calibration of predicted probabilities.\"\"\"\n\n# Author: Alexandre Gramfort <alexandre.gram(...TRUNCATED)
bsd-3-clause
MJJoyce/climate
mccsearch/code/mainProgTemplate.py
5
4713
"#\n# Licensed to the Apache Software Foundation (ASF) under one or more\n# contributor license ag(...TRUNCATED)
apache-2.0
samehuman/fast-rcnn
lib/roi_data_layer/minibatch.py
44
7337
"# --------------------------------------------------------\n# Fast R-CNN\n# Copyright (c) 2015 Micr(...TRUNCATED)
mit

Dataset Card for "codeparrot_10000_rows"

More Information needed

Downloads last month
40