problem
stringlengths 74
370
| solution
stringlengths 11
51
| answer
stringlengths 1
43
| choices
sequencelengths 4
4
| correct_choice_idx
int64 1
4
| level
stringclasses 3
values | source
stringlengths 24
30
|
---|---|---|---|---|---|---|
$\alpha$ and $\beta$ are the roots of the quadratic equation $ax^2 - ax - b = 0$, such that $3\beta^2 + 2\alpha^2 - \beta = 7$. What is the sum of the cubes of the roots? | $\boxed{4}$ | $4$ | [
"$6$",
"$11$",
"$9$",
"$4$"
] | 4 | hard | 1403_farvardin-Sabz_Riazi-3 |
A child has 3 rectangular blocks of the same size but different colors. In how many ways can he arrange them to form one or several stacks? | $\boxed{15}$ | $15$ | [
"$15$",
"$78$",
"$66$",
"$42$"
] | 1 | medium | 1403_ordibehesht-Riazi-22 |
A five-digit number is written using two consecutive digits less than $10$. If the sum of the digits of this number is $23n+1$, how many five-digit numbers with this property exist? | $\boxed{6}$ | $6$ | [
"$1$",
"$2$",
"$3$",
"$6$"
] | 4 | hard | 1403_ordibehesht-Riazi-37 |
A parallelepiped is generated by the vectors $\vec{a} = (2, -3, 4)$, $\vec{b} = (-1, 2, 3)$, and $\vec{c} = (3, -2, 1)$ and the plane $P$ includes the vectors $\vec{b}$ and $\vec{c}$. What is the height of this parallelepiped perpendicular to the plane $P$? | $\boxed{\sqrt{5}}$ | $\sqrt{5}$ | [
"$\\sqrt{5}$",
"$5\\sqrt{2}$",
"$\\frac{\\sqrt{5}}{5}$",
"$\\frac{5\\sqrt{2}}{2}$"
] | 1 | medium | 1403_ordibehesht-Riazi-36 |
Box $A$ contains 6 blue beads, 4 green beads, and 5 red beads. Box $B$ contains 5 blue beads, 3 green beads, and 6 red beads. A bead is randomly selected from box $A$ and placed in box $B$. Then a bead is randomly selected from box $B$. What is the probability that the selected bead from box $B$ is blue? | $\boxed{0.36}$ | $0.36$ | [
"$0.36$",
"$0.32$",
"$0.28$",
"$0.24$"
] | 1 | easy | 1403_ordibehesht-Tajrobi-132 |
By adding $4$ units to the first and second terms of an arithmetic sequence, the first and second terms of a new arithmetic sequence is formed. What is the difference of the $n$-th terms of the two sequences? | $\boxed{4}$ | $4$ | [
"$4$",
"$8$",
"$2$",
"$6$"
] | 1 | easy | 1403_ordibehesht-Tajrobi-138 |
Consider a statistical dataset with a standard deviation of $\frac{1}{5}$. If each data point in the dataset is first multiplied by three and then decreased by one, what is the variance of the resulting dataset? | $\boxed{\frac{20}{25}}$ | $\frac{20}{25}$ | [
"$\\frac{4}{5}$",
"$\\frac{6}{75}$",
"$\\frac{13}{5}$",
"$\\frac{20}{25}$"
] | 4 | easy | 1403_farvardin-Sabz_Riazi-26 |
Consider an arithmetic sequence with positive terms, denoted by $a_n$. Let $b_n = na_n$ define a new sequence such that the fourth term of the sequence $b_n$ is equal to the fifteenth term of the sequence $a_n$, and $a_1b_1 = 4$. What is the geometric mean between $a_{47}$ and $b_7$? | $\boxed{140}$ | $140$ | [
"$84$",
"$140$",
"$70$",
"$91$"
] | 2 | medium | 1403_farvardin-Sabz_Riazi-1 |
Consider the equation
$$
\sin x + \cos x = \frac{1}{2 \sin x}.
$$
Determine the ratio of the sum of the solutions to this equation to the smallest solution within interval $[0, 2\pi]$. | $\boxed{28}$ | $28$ | [
"$15$",
"$24$",
"$28$",
"$9$"
] | 3 | hard | 1403_ordibehesht-Sabz_Riazi-5 |
Consider the function $f(x) = 2x - \frac{1}{x}$. First, shift the graph of this function three units to the right and two units up. Then, reflect the resulting graph across the $y$-axis. Determine the $x$-coordinate of the point where this final graph intersects the line $y = -2x - 3$. | $\boxed{-2}$ | $-2$ | [
"$-1$",
"$-2$",
"$1$",
"$2$"
] | 2 | hard | 1403_ordibehesht-Sabz_Riazi-1 |
Consider the parabola given by $y = -mx^2 + mx + 1$ and the line given by $y = -m - x$. Determine the number of integer values of $m$ for which the parabola and the line do not intersect. | $\boxed{0}$ | $0$ | [
"$3$",
"$2$",
"$1$",
"$0$"
] | 4 | hard | 1403_ordibehesht-Tajrobi-111 |
Consider the quadratic function $f(x) = x^2 + a(x - b)$, where $a$ and $b$ are constants. The graph of $f(x)$ is tangent to its derivative at $x = 2$. Find the value of $f(a)$. | $\boxed{10}$ | $10$ | [
"$10$",
"$8$",
"$12$",
"$4$"
] | 1 | null | 1403_ordibehesht-Sabz_Riazi-14 |
Consider two propositions $A$ and $B$. Given that $\mathrm{P(A - B) + \mathrm{P(B)} = \mathrm{P(A' \cup B')} = 0.79}$, and $\mathrm{P(B \cap A')} = \mathrm{P(B)} (1 - \mathrm{P(A)})$, determine the probability of $\mathrm{P(A' | B)}$? If there are two possible answers, list them separated by a comma. | $\boxed{0.3 , 0.7}$ | $0.3$ , $0.7$ | [
"$0.3$ , $0.5$",
"$0.8$ , $0.5$",
"$0.3$ , $0.7$",
"$0.7$ , $0.5$"
] | 3 | hard | 1403_farvardin-Sabz_Riazi-24 |
Determine the number of natural numbers within the domain of the function $y = -\frac{1}{3-x}$ for which the graph of the function lies above $y = 0$ and below $y = -4$. | $\boxed{2}$ | $2$ | [
"$1$",
"$2$",
"$3$",
"$4$"
] | 2 | easy | 1403_ordibehesht-Tajrobi-114 |
Determine the number of three-digit positive integers $a$ for which the linear Diophantine equation $ax + 84y = 97$ has integer solutions. | $\boxed{258}$ | $258$ | [
"$258$",
"$367$",
"$543$",
"$533$"
] | 1 | hard | 1403_ordibehesht-Sabz_Riazi-28 |
Find the value of following
$$
\frac{\sin^4 \alpha + 4 \cos^2 \alpha}{1 + \cos^2 \alpha} - \frac{\cos^4 \alpha + 4 \sin^2 \alpha}{1 + \sin^2 \alpha}
$$? | $\boxed{\cos 2\alpha}$ | $\cos 2\alpha$ | [
"$1$",
"$2$",
"$\\cos 2\\alpha$",
"$\\sin 2\\alpha$"
] | 3 | easy | 1403_ordibehesht-Riazi-13 |
Find the value of following expression
$$
\frac{3 \cos(248^\circ) - 2 \sin(158^\circ)}{\sin(202^\circ) - \cos(292^\circ)}.
$$ | $\boxed{2.5}$ | $2.5$ | [
"$0.5$",
"$-0.5$",
"$-2.5$",
"$2.5$"
] | 4 | easy | 1403_ordibehesht-Tajrobi-119 |
For any real value of $a \neq 0$, the function $ f(x) = \begin{cases} bx + c & x < a \\ \frac{1}{x} & x \geq a \end{cases} $ is differentiable on $\mathbb{R}$. What is the value of $ac$? | $\boxed{2}$ | $2$ | [
"$-1$",
"$1$",
"$-2$",
"$2$"
] | 4 | easy | 1403_ordibehesht-Riazi-20 |
For how many integer values of $m$ is the function $ y = \frac{mx + 2}{x - 1 + m} $ decreasing on the interval $(1, +\infty)$ (with $ m \neq 2 $)? | $\boxed{2}$ | $2$ | [
"$1$",
"$2$",
"$3$",
"$4$"
] | 2 | medium | 1403_ordibehesht-Riazi-19 |
For how many single-digit integer $a$'s, does the equation $\sqrt{x} + \sqrt{x - a} = a$ have an integer solution for $x$? | $\boxed{6}$ | $6$ | [
"$4$",
"$5$",
"$6$",
"$7$"
] | 3 | medium | 1403_ordibehesht-Riazi-7 |
For the following data sets, the mean of the first quartile is 9 and the mean of the third quartile is 39. If the mean of the data between the first and third quartiles is 26, which value of $a$ makes the mean of the entire data set greater than the third quartile? Data: $9, 23, 29, 1, 3, 42, a, a, 2a + 1, 9, 23, 29, 1, 3, 42, 18$ | $\boxed{54.5}$ | $54.5$ | [
"$20$",
"$21.8$",
"$45$",
"$54.5$"
] | 4 | medium | 1403_ordibehesht-Tajrobi-129 |
For three real numbers $x, y$, and $z$, how many of the following statements cannot be proved by the method of contradiction? \n (a) $\frac{x}{y} + \frac{y}{x} \geq 2$ \n (b) $x^2 + y^2 + z^2 \geq xy + yz + zx$ \n (c) $x^2 + y^2 + 2 \geq (x+1)(y+1)$ \n (d) $x^2 + xz + z^2 \geq 0$ | $\boxed{1}$ | $1$ | [
"$0$",
"$1$",
"$2$",
"$3$"
] | 2 | hard | 1403_ordibehesht-Sabz_Riazi-19 |
For which value of $a$ does the inverse function of $f(x) = x^3 + 6x^2 + ax + 1$ intersect the line $y = -10x + 10$ at the point where $y = 1$? | $\boxed{12}$ | $12$ | [
"$15$",
"$12$",
"$9$",
"$5$"
] | 2 | easy | 1403_ordibehesht-Riazi-8 |
From a population, a sample of $11$, $9$, $8$, $8$, $7$, $6$, $5$, $5$, and $4$ has been taken. If the population standard deviation is half of the sample standard deviation, what is the 95\% confidence interval for the mean of this population? ($\sqrt{20} \approx 4/5$) | $\boxed{(6.25, 7.75)}$ | $(6.25, 7.75)$ | [
"$(6.25, 7.75)$",
"$(6, 8)$",
"$(5.5, 8.5)$",
"$(5, 9)$"
] | 1 | null | 1403_farvardin-Sabz_Riazi-28 |
Given $f(x) = \sqrt{x}(3x^2 + 5)$, find the value of
$$
\lim_{h \to 0} \frac{f^2(1-h) - f^2(1+2h)}{h}.
$$ | $\boxed{-480}$ | $-480$ | [
"$-480$",
"$-48$",
"$360$",
"$72$"
] | 1 | hard | 1403_ordibehesht-Sabz_Riazi-12 |
Given that the polynomial $f(x) = x^3 + ax^2 + bx + 1$ is divisible by both $x - 1$ and $x + 2$. Determine the remainder when $f(x + 2a) + f(x + 2b)$ is divided by $x - 2$? | $\boxed{11}$ | $11$ | [
"$16$",
"$18$",
"$12$",
"$11$"
] | 4 | hard | 1403_ordibehesht-Sabz_Riazi-2 |
Given the function $f(x) = a + \sqrt{2a - 3 - x}$, determine the value of $f^{-1}(6)$ if the equation $f^{-1} \circ f(x) = f \circ f^{-1}(x)$ has exactly one solution. | $\boxed{-6}$ | $-6$ | [
"$-8$",
"$-9$",
"$-4$",
"$-6$"
] | 4 | hard | 1403_farvardin-Sabz_Riazi-13 |
Given the function $y = f(x)$, the asymptotes intersect only at the point $A=(2, a)$. For the function $y = 2 - 3f\left(\frac{x}{2}\right)$, the asymptotes intersect at the point $A'=(b, -3)$. Determine the value of $a + b$. | $\boxed{\frac{17}{3}}$ | $\frac{17}{3}$ | [
"$\\frac{11}{3}$",
"$\\frac{14}{3}$",
"$\\frac{17}{3}$",
"$\\frac{19}{3}$"
] | 3 | hard | 1403_ordibehesht-Sabz_Riazi-11 |
Given the functions $f(x) = x^2 - 3|x|$ and $g(x) = x^3 + 2|x|$, determine the ratio of the derivative of $f \circ g^\prime$ to the derivative of $g \circ f^\prime$ evaluated at $x = -1$. | $\boxed{3}$ | $3$ | [
"$5$",
"$-1$",
"$3$",
"$-2$"
] | 3 | null | 1403_ordibehesht-Sabz_Riazi-13 |
Given the linear function $f(x) = ax + b$, where $a$ and $b$ are constants, determine the value of $f^{-1}(-a)$ if the graph of the function $\frac{f}{f \circ f}$ coincides with the graph of its inverse function. | $\boxed{b}$ | $b$ | [
"$-b$",
"$b$",
"$\\frac{1}{b}$",
"$-\\frac{1}{b}$"
] | 2 | medium | 1403_farvardin-Sabz_Riazi-12 |
Given the quadratic function $y = 25\alpha x^2 + 4x + \beta$, where $\alpha$ and $\beta$ are the roots and $\beta > \alpha$, determine the $i$-th quadrant of the plane in which the vertex of this parabola | $\boxed{1}$ | $1$ | [
"$1$",
"$2$",
"$3$",
"$4$"
] | 1 | medium | 1403_ordibehesht-Tajrobi-113 |
How many solutions does the trigonometric equation $ \sin 2x - 4 \sin^2 x \cos x = 0 $ have in the interval $(-\pi, \pi)$? | $\boxed{5}$ | $5$ | [
"$4$",
"$5$",
"$6$",
"$7$"
] | 2 | easy | 1403_ordibehesht-Tajrobi-120 |
How many surjective functions can be written from the set $A = \{1, 2, 3, 4\}$ to the set $B'$ such that $B' \subseteq A$? | $\boxed{256}$ | $256$ | [
"$256$",
"$150$",
"$120$",
"$75$"
] | 1 | hard | 1403_ordibehesht-Sabz_Riazi-27 |
If
$$
\frac{1}{\sin^2 x} - \frac{1}{\cos^2 x} = \frac{3}{2},
$$
what is the value of $\cos 4x$? | $\boxed{-\frac{7}{9}}$ | $-\frac{7}{9}$ | [
"$-\\frac{2}{9}$",
"$\\frac{2}{9}$",
"$\\frac{8}{9}$",
"$-\\frac{7}{9}$"
] | 4 | medium | 1403_farvardin-Sabz_Riazi-14 |
If $\lim_{{x \to \frac{1}{2}}^+} \frac{a + 3 \left\lfloor -x \right\rfloor}{1 - 2x} = -\infty$ what is the value of $\lim_{{x \to \frac{1}{2}}} \left\lfloor \frac{x}{a} - x \right\rfloor$? | $\boxed{-1}$ | $-1$ | [
"$0$",
"$-2$",
"$1$",
"$-1$"
] | 4 | hard | 1403_ordibehesht-Tajrobi-123 |
If $ f(x) = \begin{cases} (1-a) \lfloor x \rfloor + (3a^2 - 1) \lfloor -x \rfloor & x \notin \mathbb{Z} \\ b \sin \left( \frac{\pi}{a} \right) & x \in \mathbb{Z} \end{cases} $ is continuous on the set of real numbers, what is the value of $\frac{a}{b}$? | $\boxed{2}$ | $2$ | [
"$0$",
"$1$",
"$2$",
"$3$"
] | 3 | hard | 1403_ordibehesht-Riazi-17 |
If $ f(x) = \sqrt{x + 8} - \sqrt{x} $ and $ g(x) = \frac{1}{\sqrt{x + 8} + \sqrt{x}} $, what is the value of the expression $ f'(1) g(1) - g'(1) f(1) $? | $\boxed{0}$ | $0$ | [
"$0$",
"$1$",
"$3$",
"$2$"
] | 1 | medium | 1403_ordibehesht-Riazi-18 |
If $\alpha$ is the larger root and $\beta$ is the smaller root of the equation $\sqrt{2x+6} = 4|x|-3$ (where $\beta < 0$, $\alpha > 0$), what is the result of $8\beta^2 + 11\beta - \alpha$? | $\boxed{-3}$ | $-3$ | [
"$-4$",
"$-1$",
"$-3$",
"$-2$"
] | 3 | hard | 1403_farvardin-Sabz_Riazi-5 |
If $\log_{2}(x^2 + 2x + 4) + \log_{2}(x - 2) = 3$, what is the value of $\log_{\sqrt[3]{2}}x$? | $\boxed{4}$ | $4$ | [
"$\\frac{3}{2}$",
"$\\frac{4}{3}$",
"$3$",
"$4$"
] | 4 | easy | 1403_ordibehesht-Riazi-9 |
If $\vec{a} = (1, -3, 4)$, $\vec{b} = (3, -4, 2)$, and $\vec{c} = (-1, 1, 4)$, and the orthogonal projection of $\vec{a}$ onto the span of $\vec{b} + \vec{c}$ is $\vec{p}i + \vec{q}j + \vec{r}k$, what is the value of $\vec{p} + \vec{q} + \vec{r}$? | $\boxed{3\frac{4}{7}}$ | $3\frac{4}{7}$ | [
"$3\\frac{1}{7}$",
"$3\\frac{2}{7}$",
"$3\\frac{3}{7}$",
"$3\\frac{4}{7}$"
] | 4 | hard | 1403_ordibehesht-Sabz_Riazi-39 |
If $\vec{a} = \vec{i} \times (\vec{i} \times \vec{j}) - 3\vec{j} \times (\vec{j} \times \vec{k}) + 2\vec{k} \times (\vec{k} \times \vec{i})$, what is the value of the cosine of the angle that $\vec{a}$ makes with the positive direction of the $z$-axis? | $\boxed{\frac{3}{\sqrt{14}}}$ | $\frac{3}{\sqrt{14}}$ | [
"$\\frac{1}{\\sqrt{14}}$",
"$\\frac{-1}{\\sqrt{14}}$",
"$\\frac{3}{\\sqrt{14}}$",
"$\\frac{-3}{\\sqrt{14}}$"
] | 3 | hard | 1403_ordibehesht-Sabz_Riazi-40 |
If $A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 0 & 1 \\ -1 & 1 & 2 \end{bmatrix}$, what is the value of $|A||A|$? | $\boxed{256}$ | $256$ | [
"$16$",
"$256$",
"$64$",
"$1296$"
] | 2 | easy | 1403_ordibehesht-Sabz_Riazi-32 |
If $A = \begin{bmatrix} 1 & 1 & -1 \\ 0 & 2 & 0 \\ -2 & 1 & 1 \end{bmatrix}$, which one is the third row of the matrix $A^3$? | $\boxed{\begin{bmatrix} -10 & 1 & 7 \end{bmatrix}}$ | $\begin{bmatrix} -10 & 1 & 7 \end{bmatrix}$ | [
"$\\begin{bmatrix} -10 & 1 & 5 \\end{bmatrix}$",
"$\\begin{bmatrix} -10 & 1 & 7 \\end{bmatrix}$",
"$\\begin{bmatrix} 7 & 5 & -5 \\end{bmatrix}$",
"$\\begin{bmatrix} 7 & 5 & -2 \\end{bmatrix}$"
] | 2 | medium | 1403_ordibehesht-Riazi-34 |
If $A = \begin{bmatrix} x & 1 & 3 \\ 0 & 1 & -1 \\ -1 & 1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 2 & 3 \\ 2 & -1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} $, what is the value of $x$ so the sum of the elements on the main diagonal of matrix $A$ equal to the sum of the elements in its third column? | $\boxed{2}$ | $2$ | [
"$1$",
"$-1$",
"$2$",
"$-2$"
] | 3 | hard | 1403_ordibehesht-Sabz_Riazi-30 |
If $A^3 = \begin{bmatrix} 3 & 2 \\ 2 & 1 \end{bmatrix}$ and $A^2 = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$, what is the sum of the elements of matrix $A$? | $\boxed{3}$ | $3$ | [
"$2$",
"$-2$",
"$-3$",
"$3$"
] | 4 | medium | 1403_ordibehesht-Sabz_Riazi-31 |
If $A$ and $B$ are two rank-2 square matrices and $AB = \begin{bmatrix} 3 & 2 \\ \frac{1}{2} & \frac{1}{3} \end{bmatrix}$, what is the product of the non-diagonal entries of the matrix $A \begin{bmatrix} 0 & 3 \\ -6 & -1 \end{bmatrix} B - \frac{3}{2}A \begin{bmatrix} 2 & 2 \\ -4 & \frac{4}{3} \end{bmatrix} B$? | $\boxed{9}$ | 9 | [
"3",
"-3",
"9",
"-9"
] | 3 | medium | 1403_ordibehesht-Riazi-33 |
If $B = \frac{\frac{2}{\sqrt{2}} + \sqrt{14}}{\frac{8}{\sqrt{2}} + \sqrt{14}}$, what is the value of $3B + 1$? | $\boxed{\sqrt{7}}$ | $\sqrt{7}$ | [
"$\\sqrt{2}$",
"$\\sqrt{7}$",
"$2\\sqrt{2}$",
"$2\\sqrt{7}$"
] | 2 | easy | 1403_ordibehesht-Tajrobi-136 |
If $b$ is a real number and $\lim_{x \to \pi^+} \frac{\sqrt{a + \cos x}}{\sin 2x} = b$, what is the value of $ab\sqrt{2}$? | $\boxed{\frac{1}{2}}$ | $\frac{1}{2}$ | [
"$2$",
"$\\frac{1}{2}$",
"$-\\frac{1}{2}$",
"$-2$"
] | 2 | medium | 1403_farvardin-Sabz_Riazi-17 |
If $f(x) = \begin{cases} \sqrt{x^2 + 3} + 2a & \text{if } |x| \leq 1 \\ ax^2 + 5 & \text{if } |x| \geq 1 \end{cases}$ is a function, what is the value of $f(a)$? | $\boxed{32}$ | $32$ | [
"$46$",
"$32$",
"$25$",
"$14$"
] | 2 | easy | 1403_ordibehesht-Tajrobi-139 |
If $f(x) = \frac{4}{x^2 + 2x - 3}$ and $g(x) = \frac{1}{x-1}$, what is the point of intersection of the asymptotes of the graphs of $f - g$? | $\boxed{(-3, 0)}$ | $(-3, 0)$ | [
"$(-1, 1)$",
"$(-3, 0)$",
"$(3, 1)$",
"$(1, 0)$"
] | 2 | easy | 1403_ordibehesht-Riazi-16 |
If $f(x) = \left\{ \left( \frac{1}{9}, -1 \right), \left( \frac{1}{3}, 1 \right), \left( -\frac{1}{4}, 3 \right), \left( \frac{1}{4}, -3 \right) \right\}$ and $g(x) = -|x|\sqrt{x}$ and $\left( f \circ g \right)^{-1}(a) = -3$, find the value of $a$? | $\boxed{-\frac{1}{8}}$ | $-\frac{1}{8}$ | [
"$-\\frac{1}{9}$",
"$\\frac{1}{9}$",
"$-\\frac{1}{8}$",
"$\\frac{1}{8}$"
] | 3 | easy | 1403_ordibehesht-Tajrobi-112 |
If $f(x) = x^2 - \lfloor x \rfloor$ and $f(af(\sqrt{5})) = 2$, find the values of $a$? | $\boxed{-\frac{1}{3}}$ | $-\frac{1}{3}$ | [
"$\\frac{1}{3}$",
"$-\\frac{1}{3}$",
"$\\frac{1}{5}$",
"$-\\frac{1}{5}$"
] | 2 | easy | 1403_ordibehesht-Riazi-6 |
If $m$ is the smallest positive member of the set $\{407r + 592s \mid r, s \in \mathbb{Z}\}$, what is the sum of the digits of $m$? | $\boxed{10}$ | $10$ | [
"$2$",
"$7$",
"$10$",
"$11$"
] | 3 | medium | 1403_ordibehesht-Riazi-38 |
If $n(A \cup B) = 57$ and $n(A \cap B) = 3n(A - B) = 4n(B - A)$, what is the number of elements in set $A$? | $\boxed{48}$ | $48$ | [
"$33$",
"$36$",
"$45$",
"$48$"
] | 4 | easy | 1403_ordibehesht-Tajrobi-137 |
If $x > 1$, determine the minimum value of $A = \log_9 x + 2\log_{x^2} 3$. | $\boxed{\sqrt{2}}$ | $\sqrt{2}$ | [
"$2$",
"$\\sqrt{2}$",
"$2\\sqrt{2}$",
"$\\frac{\\sqrt{2}}{2}$"
] | 2 | medium | 1403_farvardin-Sabz_Riazi-9 |
If $y = \frac{x+2}{4} - \frac{\sqrt{x+1}}{2}$ is the inverse of the function $y = ax + a \sqrt{x}$, find the value of $a$. | $\boxed{4}$ | $4$ | [
"$2$",
"$3$",
"$4$",
"$9$"
] | 3 | easy | 1403_ordibehesht-Tajrobi-117 |
If the function $f(x) = b[x^2 - ax] - 2a$ is non-zero and continuous in $\mathbb{R}$, what is the value of $\frac{a}{f(b)}$? | $\boxed{-\frac{1}{2}}$ | -\frac{1}{2}$ | [
"-\\frac{1}{2}$",
"$-\\frac{1}{4}$",
"$1$",
"$0$"
] | 1 | easy | 1403_ordibehesht-Tajrobi-124 |
If the statement $p$ is true, the statement $q$ is false, and $r$ is an arbitrary statement, which statement is logically equivalent to $(p \Rightarrow r) \Rightarrow (r \Rightarrow q)$? | $\boxed{\sim r}$ | $\sim r$ | [
"$r$",
"$T$",
"$\\sim r$",
"$\\sim T$"
] | 3 | easy | 1403_ordibehesht-Riazi-2 |
In a $k$-regular graph of order 5, what is the minimum possible number of odd-length cycles in the complement of this graph? | $\boxed{1}$ | $1$ | [
"$0$",
"$1$",
"$10$",
"$11$"
] | 2 | hard | 1403_ordibehesht-Sabz_Riazi-23 |
In an isosceles triangle with a base length of 16 and the length of the median to the base equal to half the base, what is the length of median corresponding to each leg of the triangle? | $\boxed{4\sqrt{10}}$ | $4\sqrt{10}$ | [
"$\\frac{11\\sqrt{5}}{2}$",
"$\\frac{7\\sqrt{10}}{2}$",
"$6\\sqrt{5}$",
"$4\\sqrt{10}$"
] | 4 | medium | 1403_ordibehesht-Riazi-32 |
In graph $G$, $|V(G)|=8$ and $|E(G)|=24$. What is the minimum possible value of $\delta(G)$? | $\boxed{3}$ | $3$ | [
"$1$",
"$2$",
"$3$",
"$4$"
] | 3 | easy | 1403_ordibehesht-Riazi-40 |
In how many subsets of the set $A = \{ x \in \mathbb{N} \mid \frac{1}{x} > 0.1 \}$, the difference between the largest and smallest element less than 5? | $\boxed{416}$ | $416$ | [
"$208$",
"$312$",
"$416$",
"$624$"
] | 3 | hard | 1403_farvardin-Sabz_Riazi-20 |
In how many ways can the set $A = \{a, b, c, d, e\}$ be partitioned into three subsets? | $\boxed{25}$ | $25$ | [
"$20$",
"$25$",
"$30$",
"$35$"
] | 2 | easy | 1403_farvardin-Sabz_Riazi-25 |
In the graph $G$ with the vertex set $V(G) = \{a, b, c, d, e, f\}$, we have: $N_G(a) = \{b, c, d\}$, $N_G(b) = \{a, c\}$, $N_G(c) = \{a, b\}$, $N_G(d) = \{a, f\}$, $N_G(e) = \{\}$, $N_G(f) = \{d\}$. How many natural-length paths are there in this graph? | $\boxed{17}$ | $17$ | [
"$14$",
"$15$",
"$16$",
"$17$"
] | 4 | hard | 1403_ordibehesht-Sabz_Riazi-22 |
Line $3y +2x = 9$ is tangent to the circle $x^2 + y^2 + 3x + ay = c$ at the point $(0, 3)$. What is the value of $a$? | $\boxed{-1.5}$ | $-1.5$ | [
"$3.5$",
"$-3.5$",
"$1.5$",
"$-1.5$"
] | 4 | medium | 1403_ordibehesht-Tajrobi-140 |
Point $A'$ is the image of point $A$ reflected across line $d$. If $AA' = 6$ and $O$ is a point on line $d$ such that $OA = 5$, then what is the distance of point $A$ from line $OA'$? | $\boxed{4.8}$ | $4.8$ | [
"$3.6$",
"$4$",
"$4.4$",
"$4.8$"
] | 4 | hard | 1403_farvardin-Sabz_Riazi-37 |
Point $A$ is located on the circle $C(O,4)$. In a homothety with center $A$ and ratio $-\frac{1}{2}$, circle $C$ is transformed into circle $C'(O',R')$. In a counterclockwise rotation with center $O$ and angle $60^\circ$, circle $C'$ is transformed into circle $C''(O'',R')$. What is the length of the internal common tangent of circles $C'$ and $C''$? | $\boxed{2\sqrt{5}}$ | $2\sqrt{5}$ | [
"$5$",
"$4$",
"$3\\sqrt{3}$",
"$2\\sqrt{5}$"
] | 4 | hard | 1403_farvardin-Sabz_Riazi-38 |
Reflect the graph of the function
$$
f(x) =
\begin{cases}
(x - 1)^3 & \text{if } x \geq 0 \\
-1 + \sqrt[3]{-x} & \text{if } x < 0
\end{cases}
$$
across the $y$-axis. Then, shift the resulting graph two units to the right and one unit down. Determine the distance between the points where the transformed graph intersects the $x$-axis. | $\boxed{10}$ | $10$ | [
"$6$",
"$8$",
"$10$",
"$12$"
] | 3 | hard | 1403_ordibehesht-Sabz_Riazi-3 |
Seven people with names $A_1, A_2, \ldots, A_7$ want to compete in a shooting contest. What is the probability that exactly two people stand between $A_1$ and $A_2$? | $\boxed{\frac{4}{21}}$ | $\frac{4}{21}$ | [
"$\\frac{1}{7}$",
"$\\frac{4}{21}$",
"$\\frac{5}{21}$",
"$\\frac{2}{7}$"
] | 2 | hard | 1403_farvardin-Sabz_Riazi-22 |
Students from two schools, $A$ and $B$, took part in an exam. $60\%$ of the students from school $A$ and $70\%$ of the students from school $B$ passed the exam. If the number of students from school $A$ is $\frac{3}{2}$ times the number of students from school $B$, what is the probability that a randomly selected student who passed the exam is from school $A$? | $\boxed{\frac{9}{16}}$ | $\frac{9}{16}$ | [
"$\\frac{9}{16}$",
"$\\frac{7}{16}$",
"$\\frac{5}{8}$",
"$\\frac{3}{8}$"
] | 1 | easy | 1403_ordibehesht-Riazi-25 |
The area of a cross-section of a right circular cylinder that passes through its axis is twice the area of a cross-section perpendicular to its height. What is the ratio of the lateral surface area to the total surface area of the cylinder? | $\boxed{\frac{\pi}{\pi + 1}}$ | $\frac{\pi}{\pi + 1}$ | [
"$\\frac{\\pi}{\\pi + 1}$",
"$\\frac{\\pi}{\\pi + 2}$",
"$\\frac{\\pi}{4}$",
"$\\frac{2}{\\pi}$"
] | 1 | hard | 1403_farvardin-Sabz_Riazi-34 |
The average rate of change of the function $f(x) = (x^2 + 1)^3(ax + 1)$ over the interval $[-1, 0]$ is equal to $-11$. What is the rate of change of this function at the point $x = -2a$? | $\boxed{8}$ | $8$ | [
"$1$",
"$-1$",
"$8$",
"$-8$"
] | 3 | medium | 1403_ordibehesht-Tajrobi-126 |
The average rate of change of the function $f(x) = x\sqrt{x-4}$ over the interval $[4, 8]$ is how many times the instantaneous rate of change of the function at $x = 8$? | $\boxed{1}$ | $1$ | [
"$1$",
"$2$",
"$\\frac{3}{2}$",
"$\\frac{4}{3}$"
] | 1 | hard | 1403_ordibehesht-Sabz_Riazi-15 |
The difference between the roots of the equation $x^2 + 2kx + 5 = 0$ is equal to $\frac{4k}{3}$. What is the value of $\lfloor\frac{k^2}{2}\rfloor$? | $\boxed{4}$ | $4$ | [
"$0$",
"$1$",
"$3$",
"$4$"
] | 4 | medium | 1403_ordibehesht-Riazi-4 |
The distance of point $A(a, a+3, 4)$ from the plane $P: x=2$ is $5$ units. What is the minimum distance from $A$ to the origin? | $\boxed{5}$ | $5$ | [
"$5$",
"$6$",
"$12$",
"$13$"
] | 1 | hard | 1403_ordibehesht-Sabz_Riazi-38 |
The foci of an ellipse are on the $x$-axis at $x = 3$ and $x = -3$. If the eccentricity of the ellipse is $\frac{1}{3}$, what is the length of the minor axis of this ellipse? | $\boxed{12\sqrt{2}}$ | $12\sqrt{2}$ | [
"$15\\sqrt{2}$",
"$12\\sqrt{2}$",
"$8\\sqrt{2}$",
"$6\\sqrt{2}$"
] | 2 | easy | 1403_ordibehesht-Riazi-35 |
The foci of an ellipse are the points $(1,3)$ and $(1,-5)$. If the length of the minor axis of this ellipse is $6$, what is its eccentricity? | $\boxed{0.8}$ | $0.8$ | [
"$0.8$",
"$0.6$",
"$0.5$",
"$0.4$"
] | 1 | hard | 1403_ordibehesht-Sabz_Riazi-29 |
The focus of the parabola $y^2 = 2x - 4y$ and its intersection points with the y axis form the vertices of a triangle. What is the area of this triangle? | $\boxed{3}$ | $3$ | [
"$1$",
"$1.5$",
"$2$",
"$3$"
] | 4 | hard | 1403_ordibehesht-Sabz_Riazi-35 |
The function $f(x) = x^2 - 2|x - 1|$ is strictly monotonic in the interval $(a, +\infty)$. What is the minimum value of $a$? | $\boxed{-1}$ | $-1$ | [
"$1$",
"$2$",
"$-1$",
"$-1$"
] | 3 | hard | 1403_ordibehesht-Sabz_Riazi-16 |
The function $y = (x-1) \left| x \right|$ is strictly decreasing in the interval $(a,b)$. What is the value of $a + b$? | $\boxed{\frac{1}{2}}$ | $\frac{1}{2}$ | [
"$\\frac{1}{4}$",
"$\\frac{1}{2}$",
"$\\frac{3}{2}$",
"$\\frac{3}{4}$"
] | 2 | easy | 1403_ordibehesht-Tajrobi-115 |
The length of the longest side of a right-angled triangle is $a$, and its smallest angle measures $30^\circ$. The volume of the solid formed by rotating this triangle around its shortest side is how many times $\pi a^3$? | $\boxed{\frac{1}{8}}$ | $\frac{1}{8}$ | [
"$\\frac{1}{8}$",
"$\\frac{\\sqrt{3}}{24}$",
"$\\frac{1}{16}$",
"$\\frac{\\sqrt{3}}{16}$"
] | 1 | medium | 1403_farvardin-Sabz_Riazi-33 |
The line $7y - x = 5$ is tangent to the curve $y = \frac{ax - 1}{3x + 1}$ in the first quadrant of the coordinate plane. What is the value of $a$? | $\boxed{4}$ | $4$ | [
"$3$",
"$4$",
"$\\frac{4}{7}$",
"$\\frac{9}{7}$"
] | 2 | medium | 1403_ordibehesht-Tajrobi-125 |
The mean of the first set with 4 data points is equal to the mean of the second set of data, which has 5 data points. If we exchange one data point from the first set with one data point from the second set, the new means of the sets will be equal. If the variance of the first set before the exchange is $1.25$, what is the variance of the first set after the exchange? | $\boxed{1.25}$ | $1.25$ | [
"$1.25$",
"$2.5$",
"$3.75$",
"$4.5$"
] | 1 | easy | 1403_ordibehesht-Riazi-24 |
The members of the set $A = \{1, 5, 9, \ldots, 85\}$ form an arithmetic sequence. What is the minimum number of elements that can be selected from this set such the sum of at least two element of this subset is 90? | $\boxed{13}$ | $13$ | [
"$11$",
"$12$",
"$13$",
"$14$"
] | 3 | hard | 1403_ordibehesht-Sabz_Riazi-26 |
The number $a$ is the smallest three-digit number that, when divided by the numbers 7 and 8, the remainders are 5 and 7, respectively. What is the sum of the digits of $a$? | $\boxed{4}$ | $4$ | [
"$4$",
"$6$",
"$8$",
"$10$"
] | 1 | hard | 1403_ordibehesht-Sabz_Riazi-20 |
The points $(-4, 3)$ and $(-1.5, -4)$ lie on a quadratic function. What is the sum of the roots of this function? | $\boxed{\frac{3}{2}}$ | $\frac{3}{2}$ | [
"$\\frac{3}{2}$",
"$\\frac{3}{4}$",
"$\\frac{5}{2}$",
"$\\frac{5}{4}$"
] | 1 | easy | 1403_ordibehesht-Riazi-3 |
The roots of the function $f(x) = 2mx^2 + (4+m)x - m + 4$ and the intersection point of the function with the $y$-axis are the vertices of a triangle with an area of $\frac{1}{2}$. What is the product of different values of $m$ for $m > 0.$ | $\boxed{\frac{256}{9}}$ | $\frac{256}{9}$ | [
"$\\frac{256}{9}$",
"$\\frac{16}{3}$",
"$\\frac{3}{16}$",
"$\\frac{9}{256}$"
] | 1 | hard | 1403_farvardin-Sabz_Riazi-2 |
The tangent line to the curve $ y = x^3 + ax^2 + bx - 1 $ at the point $ (-1, -4) $ intersects the curve. What is the result of $\frac{a}{b}$? | $\boxed{0.6}$ | $0.6$ | [
"$0.3$",
"$0.4$",
"$0.6$",
"$0.8$"
] | 3 | medium | 1403_ordibehesht-Riazi-21 |
The values $a$, $1 + 2a$, and $5 - a$ are in arithmetic progression. If $a$ is the first term of this sequence, what is the ninth term of the sequence? | $\boxed{14.75}$ | $14.75$ | [
"$2.75$",
"$4.25$",
"$12.25$",
"$14.75$"
] | 4 | easy | 1403_ordibehesht-Riazi-1 |
We consider the line segment $AB = 2$ in the plane. How many points are at a distance of $\sqrt{2}$ from $A$ such that their distance from $B$ is equal to $2\sqrt{2}$? | $\boxed{2}$ | $2$ | [
"$0$",
"$1$",
"$2$",
"$3$"
] | 3 | medium | 1403_farvardin-Sabz_Riazi-29 |
What is the minimum number of elements we need to choose from the set $\{3, 4, \cdots, 9, 12, 13, \cdots, 20\}$ to be sure that at least two of them have a common divisor which is not $1$? | $\boxed{8}$ | $8$ | [
"$9$",
"$8$",
"$7$",
"$6$"
] | 2 | medium | 1403_ordibehesht-Riazi-39 |
What is the number of non-negative and real solutions of the equation $x_1 + \sqrt{x_2} + x_3 + x_4 = 3$? | $\boxed{20}$ | $20$ | [
"$18$",
"$19$",
"$20$",
"$21$"
] | 3 | hard | 1403_ordibehesht-Sabz_Riazi-25 |
What is the probability that the statement $(p \lor q) \Rightarrow (r \lor s)$ is true? | $\boxed{\frac{13}{16}}$ | $\frac{13}{16}$ | [
"$\\frac{13}{16}$",
"$\\frac{11}{16}$",
"$\\frac{9}{16}$",
"$\\frac{7}{16}$"
] | 1 | hard | 1403_farvardin-Sabz_Riazi-21 |
What is the solution of $\lim_{x \to 1} \frac{\sqrt[3]{\sqrt[3]{x} -2} + 1}{\sqrt{\sqrt{x} + 3} - 2}$? | $\boxed{\frac{8}{9}}$ | $\frac{8}{9}$ | [
"$-\\frac{4}{3}$",
"$\\frac{4}{9}$",
"$\\frac{8}{9}$",
"$-\\frac{8}{3}$"
] | 3 | hard | 1403_farvardin-Sabz_Riazi-16 |
What is the sum of the left-hand and right-hand limits of the function $ f(x) = \frac{x-2}{x^2-\lfloor x^2 \rfloor} $ at the point $ x = 2 $? | $\boxed{\frac{1}{4}}$ | $\frac{1}{4}$ | [
"$\\frac{1}{4}$",
"$\\frac{1}{2}$",
"$1$",
"$0$"
] | 1 | easy | 1403_ordibehesht-Riazi-15 |
What is the sum of the roots of the equation $(\sqrt[3]{x} - 1 + \sqrt[3]{x^{-1}})(\sqrt[3]{x} + 1) = 6x\sqrt[3]{x^2}$? | $\boxed{\frac{1}{6}}$ | $\frac{1}{6}$ | [
"$\\frac{1}{6}$",
"$\\frac{1}{2}$",
"$\\frac{1}{3}$",
"$\\frac{1}{4}$"
] | 1 | hard | 1403_farvardin-Sabz_Riazi-4 |
What is the sum of the solutions of the equation $ \cos 2x + \sin^2 x = 0 $ in the interval $ [-3\pi, \pi] $? | $\boxed{-4\pi}$ | $-4\pi$ | [
"$0$",
"$-\\pi$",
"$-3\\pi$",
"$-4\\pi$"
] | 4 | easy | 1403_ordibehesht-Riazi-14 |
What is the sum of the values of $m$ for which the line $y = mx$ is tangent to the circle $x^2 + y^2 - 10x - 10y + 49 = 0$? | $\boxed{\frac{25}{12}}$ | $\frac{25}{12}$ | [
"$\\frac{25}{24}$",
"$\\frac{25}{20}$",
"$\\frac{25}{12}$",
"$\\frac{25}{10}$"
] | 3 | hard | 1403_ordibehesht-Sabz_Riazi-36 |
What is the value of the following expression when $x = \frac{\pi}{12}$?
$$
3 \cos 4x + \sqrt{2} \sin x - \sqrt{2} \cos x
$$ | $\boxed{\frac{1}{2}}$ | $\frac{1}{2}$ | [
"$1$",
"$\\frac{1}{2}$",
"$\\sqrt{2}$",
"$\\frac{\\sqrt{2}}{2}$"
] | 2 | medium | 1403_ordibehesht-Riazi-12 |
What is the value of the relative minimum of the function $ y = x^3 - 12x + 2 $? | $\boxed{-14}$ | $-14$ | [
"$-14$",
"$-11$",
"$-9$",
"$-7$"
] | 1 | easy | 1403_ordibehesht-Tajrobi-127 |
End of preview. Expand
in Dataset Viewer.
README.md exists but content is empty.
- Downloads last month
- 36