path
stringlengths 26
26
| classname
stringclasses 6
values |
---|---|
audios/1004_IEO_ANG_HI.wav | anger |
audios/1053_IEO_FEA_MD.wav | neutral |
audios/1054_IEO_SAD_LO.wav | neutral |
audios/1012_IEO_SAD_HI.wav | fear |
audios/1038_IEO_ANG_HI.wav | anger |
audios/1076_ITH_SAD_XX.wav | fear |
audios/1030_DFA_HAP_XX.wav | happy |
audios/1028_IOM_NEU_XX.wav | neutral |
audios/1028_TAI_NEU_XX.wav | neutral |
audios/1058_WSI_ANG_XX.wav | anger |
audios/1017_IEO_DIS_LO.wav | sad |
audios/1058_IEO_SAD_LO.wav | neutral |
audios/1072_IEO_DIS_HI.wav | neutral |
audios/1007_TAI_FEA_XX.wav | neutral |
audios/1058_IOM_NEU_XX.wav | neutral |
audios/1042_ITH_NEU_XX.wav | neutral |
audios/1012_IWW_DIS_XX.wav | disgust |
audios/1031_IOM_HAP_XX.wav | neutral |
audios/1073_WSI_SAD_XX.wav | neutral |
audios/1079_IEO_SAD_MD.wav | neutral |
audios/1014_IOM_HAP_XX.wav | neutral |
audios/1024_WSI_ANG_XX.wav | neutral |
audios/1025_IWW_ANG_XX.wav | anger |
audios/1065_TIE_NEU_XX.wav | neutral |
audios/1002_IOM_SAD_XX.wav | neutral |
audios/1042_IWL_HAP_XX.wav | neutral |
audios/1076_IWW_DIS_XX.wav | fear |
audios/1040_WSI_FEA_XX.wav | neutral |
audios/1059_TAI_ANG_XX.wav | anger |
audios/1065_MTI_FEA_XX.wav | neutral |
audios/1002_WSI_HAP_XX.wav | anger |
audios/1075_IEO_SAD_MD.wav | neutral |
audios/1023_TSI_NEU_XX.wav | neutral |
audios/1019_IOM_NEU_XX.wav | neutral |
audios/1076_IEO_DIS_LO.wav | neutral |
audios/1001_ITS_ANG_XX.wav | disgust |
audios/1068_WSI_HAP_XX.wav | neutral |
audios/1030_IEO_HAP_LO.wav | neutral |
audios/1023_DFA_SAD_XX.wav | neutral |
audios/1085_IWL_ANG_XX.wav | anger |
audios/1013_IWW_NEU_XX.wav | neutral |
audios/1017_IWL_HAP_XX.wav | neutral |
audios/1004_TAI_DIS_XX.wav | disgust |
audios/1023_TIE_DIS_XX.wav | disgust |
audios/1053_TSI_NEU_XX.wav | neutral |
audios/1002_TAI_FEA_XX.wav | fear |
audios/1037_IEO_FEA_MD.wav | sad |
audios/1047_MTI_HAP_XX.wav | neutral |
audios/1047_DFA_NEU_XX.wav | neutral |
audios/1055_ITS_SAD_XX.wav | neutral |
audios/1060_IWW_SAD_XX.wav | sad |
audios/1001_TSI_HAP_XX.wav | fear |
audios/1082_IEO_FEA_HI.wav | sad |
audios/1019_IEO_ANG_LO.wav | anger |
audios/1034_ITH_DIS_XX.wav | disgust |
audios/1011_IEO_SAD_LO.wav | disgust |
audios/1011_WSI_NEU_XX.wav | neutral |
audios/1065_ITS_NEU_XX.wav | neutral |
audios/1091_IEO_HAP_MD.wav | disgust |
audios/1063_IOM_HAP_XX.wav | happy |
audios/1009_IWL_FEA_XX.wav | anger |
audios/1022_TIE_FEA_XX.wav | neutral |
audios/1070_WSI_HAP_XX.wav | anger |
audios/1064_IEO_DIS_LO.wav | disgust |
audios/1006_TSI_NEU_XX.wav | neutral |
audios/1023_IOM_DIS_XX.wav | fear |
audios/1059_ITH_HAP_XX.wav | happy |
audios/1071_IEO_FEA_LO.wav | neutral |
audios/1015_WSI_HAP_XX.wav | neutral |
audios/1025_MTI_FEA_XX.wav | neutral |
audios/1053_IOM_ANG_XX.wav | anger |
audios/1022_ITS_ANG_XX.wav | anger |
audios/1089_ITH_ANG_XX.wav | anger |
audios/1001_ITS_FEA_XX.wav | fear |
audios/1017_IEO_SAD_LO.wav | neutral |
audios/1073_IEO_HAP_LO.wav | neutral |
audios/1011_IEO_ANG_LO.wav | anger |
audios/1049_IWL_FEA_XX.wav | sad |
audios/1060_IEO_HAP_LO.wav | happy |
audios/1082_MTI_ANG_XX.wav | disgust |
audios/1086_IEO_HAP_MD.wav | anger |
audios/1015_DFA_FEA_XX.wav | anger |
audios/1028_IWL_HAP_XX.wav | happy |
audios/1016_IOM_HAP_XX.wav | neutral |
audios/1027_DFA_FEA_XX.wav | neutral |
audios/1020_WSI_SAD_XX.wav | sad |
audios/1090_IEO_ANG_MD.wav | anger |
audios/1030_TAI_ANG_XX.wav | anger |
audios/1027_TSI_FEA_XX.wav | neutral |
audios/1070_TAI_NEU_XX.wav | neutral |
audios/1052_IEO_DIS_MD.wav | neutral |
audios/1006_WSI_SAD_XX.wav | sad |
audios/1083_IWW_FEA_XX.wav | fear |
audios/1012_IWW_FEA_XX.wav | fear |
audios/1059_ITH_ANG_XX.wav | anger |
audios/1003_ITS_FEA_XX.wav | sad |
audios/1061_ITS_SAD_XX.wav | neutral |
audios/1038_ITH_NEU_XX.wav | neutral |
audios/1028_TSI_ANG_XX.wav | anger |
audios/1016_IEO_SAD_LO.wav | neutral |
End of preview. Expand
in Dataset Viewer.
CREMA-D
This is an audio classification dataset for Emotion Recognition.
Classes = 6 , Split = Train-Test
Structure
audios
folder contains audio files.train.csv
for training split andtest.csv
for the testing split.
Download
import os
import huggingface_hub
audio_datasets_path = "DATASET_PATH/Audio-Datasets"
if not os.path.exists(audio_datasets_path): print(f"Given {audio_datasets_path=} does not exist. Specify a valid path ending with 'Audio-Datasets' folder.")
huggingface_hub.snapshot_download(repo_id="MahiA/CREMA-D", repo_type="dataset", local_dir=os.path.join(audio_datasets_path, "CREMA-D"))
Acknowledgment
This dataset is a slightly processed/restructured version of data originally released by Source.
Please refer to the respective source for their licensing details and any additional information.
Contact
For questions or feedback, please create an issue.
- Downloads last month
- 32