pearl_benchmark / README.md
Lihuchen's picture
Update README.md
a5a89a6 verified
metadata
license: cc-by-sa-4.0
dataset_info:
  - config_name: bc5cdr
    features:
      - name: entity
        dtype: string
      - name: label
        dtype: string
configs:
  - config_name: bird
    data_files:
      - split: test
        path: data/bird/bird.tsv
  - config_name: turney
    data_files:
      - split: test
        path: data/turney/turney.tsv
  - config_name: conll
    data_files:
      - split: test
        path: data/conll/conll.tsv
  - config_name: bc5cdr
    data_files:
      - split: test
        path: data/bc5cdr/bc5cdr.tsv
  - config_name: autofj
    data_files:
      - split: test
        path: data/autofj/autofj.tsv
  - config_name: ppdb
    data_files:
      - split: test
        path: data/ppdb/ppdb.tsv
  - config_name: ppdb_filtered
    data_files:
      - split: test
        path: data/ppdb/ppdb_filtered.tsv
  - config_name: yago
    data_files:
      - split: test
        path: data/yago/yago_test_samples.tsv
  - config_name: umls
    data_files:
      - split: umls
        path: data/umls/umls_test_samples.tsv
  - config_name: kb
    data_files:
      - split: umls
        path: data/kb/umls_kb.tsv
      - split: yago
        path: data/kb/yago_kb.tsv
language:
  - en
tags:
  - pearl benchmark
  - phrase embeddings
  - entity retrieval
  - entity clustering
  - fuzzy join
  - entity matching
  - string matching
  - string similarity
size_categories:
  - 1K<n<10K

PEARL-Benchmark: A benchmark for evaluating phrase representations

Learning High-Quality and General-Purpose Phrase Representations.
Lihu Chen, Gaël Varoquaux, Fabian M. Suchanek. Accepted by EACL Findings 2024

Our PEARL Benchmark contains 9 phrase-level datasets of five types of tasks, which cover both the field of data science and natural language processing.

Description

  • Paraphrase Classification: PPDB and PPDBfiltered (Wang et al., 2021)
  • Phrase Similarity: Turney (Turney, 2012) and BIRD (Asaadi et al., 2019)
  • Entity Retrieval: We constructed two datasets based on Yago (Pellissier Tanon et al., 2020) and UMLS (Bodenreider, 2004)
  • Entity Clustering: CoNLL 03 (Tjong Kim Sang, 2002) and BC5CDR (Li et al., 2016)
  • Fuzzy Join: AutoFJ benchmark (Li et al., 2021), which contains 50 diverse fuzzy-join datasets
    - PPDB PPDB filtered Turney BIRD YAGO UMLS CoNLL BC5CDR AutoFJ
    Task Paraphrase Classification Paraphrase Classification Phrase Similarity Phrase Similarity Entity Retrieval Entity Retrieval Entity Clustering Entity Clustering Fuzzy Join
    Samples 23.4k 15.5k 2.2k 3.4k 10k 10k 5.0k 9.7k 50 subsets
    Averaged Length 2.5 2.0 1.2 1.7 3.3 4.1 1.5 1.4 3.8
    Metric Acc Acc Acc Pearson Top-1 Acc Top-1 Acc NMI NMI Acc

Usage

from datasets import load_dataset
turney_dataset = load_dataset("Lihuchen/pearl_benchmark", "turney", split="test")

Evaluation

We offer a python script to evaluate your model: eval.py

python eval.py -batch_size 32

Citation

@article{chen2024learning,
  title={Learning High-Quality and General-Purpose Phrase Representations},
  author={Chen, Lihu and Varoquaux, Ga{\"e}l and Suchanek, Fabian M},
  journal={arXiv preprint arXiv:2401.10407},
  year={2024}
}