Datasets:
Formats:
csv
Languages:
English
Size:
1M - 10M
ArXiv:
Tags:
pearl benchmark
phrase embeddings
entity retrieval
entity clustering
fuzzy join
entity matching
License:
metadata
license: cc-by-sa-4.0
dataset_info:
- config_name: bc5cdr
features:
- name: entity
dtype: string
- name: label
dtype: string
configs:
- config_name: bird
data_files:
- split: test
path: data/bird/bird.tsv
- config_name: turney
data_files:
- split: test
path: data/turney/turney.tsv
- config_name: conll
data_files:
- split: test
path: data/conll/conll.tsv
- config_name: bc5cdr
data_files:
- split: test
path: data/bc5cdr/bc5cdr.tsv
- config_name: autofj
data_files:
- split: test
path: data/autofj/autofj.tsv
- config_name: ppdb
data_files:
- split: test
path: data/ppdb/ppdb.tsv
- config_name: ppdb_filtered
data_files:
- split: test
path: data/ppdb/ppdb_filtered.tsv
- config_name: yago
data_files:
- split: test
path: data/yago/yago_test_samples.tsv
- config_name: umls
data_files:
- split: umls
path: data/umls/umls_test_samples.tsv
- config_name: kb
data_files:
- split: umls
path: data/kb/umls_kb.tsv
- split: yago
path: data/kb/yago_kb.tsv
language:
- en
tags:
- pearl benchmark
- phrase embeddings
- entity retrieval
- entity clustering
- fuzzy join
- entity matching
- string matching
- string similarity
size_categories:
- 1K<n<10K
PEARL-Benchmark: A benchmark for evaluating phrase representations
Learning High-Quality and General-Purpose Phrase Representations.
Lihu Chen, Gaël Varoquaux, Fabian M. Suchanek.
Accepted by EACL Findings 2024
Our PEARL Benchmark contains 9 phrase-level datasets of five types of tasks, which cover both the field of data science and natural language processing.
Description
- Paraphrase Classification: PPDB and PPDBfiltered (Wang et al., 2021)
- Phrase Similarity: Turney (Turney, 2012) and BIRD (Asaadi et al., 2019)
- Entity Retrieval: We constructed two datasets based on Yago (Pellissier Tanon et al., 2020) and UMLS (Bodenreider, 2004)
- Entity Clustering: CoNLL 03 (Tjong Kim Sang, 2002) and BC5CDR (Li et al., 2016)
- Fuzzy Join: AutoFJ benchmark (Li et al., 2021), which contains 50 diverse fuzzy-join datasets
- PPDB PPDB filtered Turney BIRD YAGO UMLS CoNLL BC5CDR AutoFJ Task Paraphrase Classification Paraphrase Classification Phrase Similarity Phrase Similarity Entity Retrieval Entity Retrieval Entity Clustering Entity Clustering Fuzzy Join Samples 23.4k 15.5k 2.2k 3.4k 10k 10k 5.0k 9.7k 50 subsets Averaged Length 2.5 2.0 1.2 1.7 3.3 4.1 1.5 1.4 3.8 Metric Acc Acc Acc Pearson Top-1 Acc Top-1 Acc NMI NMI Acc
Usage
from datasets import load_dataset
turney_dataset = load_dataset("Lihuchen/pearl_benchmark", "turney", split="test")
Evaluation
We offer a python script to evaluate your model: eval.py
python eval.py -batch_size 32
Citation
@article{chen2024learning,
title={Learning High-Quality and General-Purpose Phrase Representations},
author={Chen, Lihu and Varoquaux, Ga{\"e}l and Suchanek, Fabian M},
journal={arXiv preprint arXiv:2401.10407},
year={2024}
}