image
imagewidth (px) 54
3.23k
| latex_formula
stringlengths 6
142
|
---|---|
\[\sqrt{-g}= \sqrt{h}\] |
|
\[56(1986)1319\] |
|
\[n= \frac{n_2}{n_1-1}= \frac{n_3}{n_1-1}\] |
|
\[d^2x \sqrt{h(x)}\] |
|
\[4n= \frac{2n \times 2n}{n}\] |
|
\[\frac{| \sin \Delta|}{ \sin \Delta}\] |
|
\[z= \frac{1}{ \sqrt{2}}(x+iy)\] |
|
\[\theta=2 \alpha_1+4 \alpha_2+6 \alpha_3+5 \alpha 4+4_ \alpha 6+2_ \alpha 7+3 \alpha_5\] |
|
\[x \rightarrow-1\] |
|
\[\sqrt{1+z^2}\] |
|
\[z=x-iy\] |
|
\[\pm i \sqrt{2n}\] |
|
\[A^{-1}_{ \frac{3}{5}}A^{1}_{- \frac{3}{5}}\] |
|
\[m \geq \sqrt{ \frac{3}{2}}H\] |
|
\[\cos(kX)\] |
|
\[\frac{( k-i_1+1)(k-i_1+2)}{2}\] |
|
\[\int A_z\] |
|
\[129106\] |
|
\[\frac{30}{3072}\] |
|
\[b \geq \frac{1}{a-1}\] |
|
\[\cosk_nx^5\] |
|
\[3 \times 4+r-4\] |
|
\[v \leq x\] |
|
\[w=x^2+ix^3\] |
|
\[A^{-1}_{+ \frac{4}{5}}\] |
|
\[\lim_{r \rightarrow 0}f(r)= \sqrt{r}\] |
|
\[(- \frac{1}{4},- \frac{3}{4})\] |
|
\[p_{0}=(2n+1) \pi T= \frac{(2n+1) \pi}{ \beta}\] |
|
\[0<a+ \frac{1}{2}< \frac{1}{2}\] |
|
\[n!L_n^{(m-n)}(z)=(-z)^{n-m}m!L_m^{(n-m)}(z)\] |
|
\[- \pi \leqy \leq \pi\] |
|
\[- \frac{ \sin \alpha( \infty)}{2 \pi}\] |
|
\[v(z)=z^{n+1}-(-1)^nz^{-n+1}\] |
|
\[4+n\] |
|
\[(a+b)\] |
|
\[X=x_0(x-x_0)\] |
|
\[\phi_0=dx^{136}+dx^{235}+dx^{145}-dx^{246}\] |
|
\[\frac{1}{ \sqrt 3}\] |
|
\[\int^{ \infty}_{0} duV(u)u^{ \frac{d}{2}-2} \neq 0\] |
|
\[(x^6,x^7,x^8,x^9)\] |
|
\[b \rightarrow 1\] |
|
\[-0.998\] |
|
\[V(x)=v_px^p+v_{p-1}x^{p-1}+ \ldots\] |
|
\[j=|q|- \frac{1}{2}+p>|q|- \frac{1}{2}\] |
|
\[(x-1)^{2}-32x \gt0\] |
|
\[x^3=- \frac{1}{48} \frac{v^6}{ \alpha_1}\] |
|
\[any\] |
|
\[x^{ \prime}=(ax+b)(cx+d)^{-1}\] |
|
\[\cos2p \thetak\] |
|
\[z=x^2+ix^3\] |
|
\[( \frac{p2^{-p}}{1+p}+1)\] |
|
\[(x^1-x^2)\] |
|
\[c \times(a-b)\] |
|
\[\frac{1}{n!}\] |
|
\[m^2n^2+4mx_1^2x^3=-4y_1^2y_3\] |
|
\[x \pm iy\] |
|
\[(1+1)+(5 \times0)\] |
|
\[\frac{43}{9}\] |
|
\[y \rightarrow ky\] |
|
\[c= \frac{1}{2} \left(1- \frac{1}{2N} \right)\] |
|
\[(x^3+ix^6)\] |
|
\[3x_B=12x_A=4x_C\] |
|
\[- \frac{(3+z^2)^2}{16}\] |
|
\[b= \frac{1}{ \sqrt{2}}(A-B)\] |
|
\[\int d^2x\] |
|
\[(2k+1) \times(2k+1)\] |
|
\[f= \sum_{n=1}^{ \infty}a_n(f)q^n\] |
|
\[1^3+1^3+(-2)^3=-6\] |
|
\[s_{b}s_{ab}+s_{ab}s_{b}=0\] |
|
\[f=z^1( \cos \theta z^2+ \sin \theta z^1)\] |
|
\[u(x-y)\] |
|
\[\sum_{k=1}^{ \infty}(-1)^k \frac{1}{w^{2k+1}}=- \frac1w \frac1{1+w^2}\] |
|
\[h_{xx}=-h_{yy} \neq0\] |
|
\[(c-3) \times c\] |
|
\[1 \times(6-3-1)\] |
|
\[n \geq 9\] |
|
\[f=f_a+f_b+f_c\] |
|
\[x= \frac{2 \pi}{ \sqrt{2}}(n+ \frac{1}{2})\] |
|
\[\beta=2- \sqrt3\] |
|
\[[t^a,t^b]=if^{abc}t^c\] |
|
\[dx_{n}^2-dx_{n+1}^2\] |
|
\[2 \times7\] |
|
\[z=x_{21}x_{13}^{-1}x_{34}x_{42}^{-1}\] |
|
\[x^1 \ldots x^5\] |
|
\[x^{-n}\] |
|
\[(a-b)-(k-b-c) \times(a-b)=(a-k+c) \times(a-b)\] |
|
\[y=f(x)\] |
|
\[\frac{1}{2}(r-1)(r+1)(r+2)\] |
|
\[cab=(abc)^{c}\] |
|
\[e^{-2q^{ \prime}(1-y)}<e^{-2 \sqrt{v}(1-y)}\] |
|
\[(y_{12}^2)^{-p}(y_{13}^2)^{p}\] |
|
\[- \frac{1}{3}\] |
|
\[[3,- \frac{27}{4}, \frac{171}{14},- \frac{729}{40}, \frac{729}{70}]\] |
|
\[y(x)=a_i(x)\] |
|
\[r^2= \sum_iy^i y^i\] |
|
\[(n-1)+4=n+3\] |
|
\[n2^{n-1}+1-2^n\] |
|
\[\beta=y-x\] |
|
\[\alpha_3+2 \alpha_4+ \alpha_5+2 \alpha_6+ \alpha_7\] |
|
\[V(x)=v_px^p+v_{p-1}x^{p-1}+ \ldots\] |
End of preview. Expand
in Dataset Viewer.
README.md exists but content is empty.
- Downloads last month
- 39