text
stringlengths
27
185
dis_img_path,dis_type,ref_img_path,score
A57/images/dst_imgs/horse/A/horse.FLT.bmp,Quantization_Noise,A57/images/src_imgs/horse.bmp,0.525
A57/images/dst_imgs/horse/A/horse.JPG.bmp,JPEG,A57/images/src_imgs/horse.bmp,0.108
A57/images/dst_imgs/horse/A/horse.JP2.bmp,JP2K,A57/images/src_imgs/horse.bmp,0.187
A57/images/dst_imgs/horse/A/horse.DCQ.bmp,Multiply Dist.,A57/images/src_imgs/horse.bmp,0.137
A57/images/dst_imgs/horse/A/horse.BLR.bmp,GBLUR,A57/images/src_imgs/horse.bmp,0.191
A57/images/dst_imgs/horse/A/horse.NOZ.bmp,AWGN,A57/images/src_imgs/horse.bmp,0.327
A57/images/dst_imgs/horse/B/horse.FLT.bmp,Quantization_Noise,A57/images/src_imgs/horse.bmp,0.681
A57/images/dst_imgs/horse/B/horse.JPG.bmp,JPEG,A57/images/src_imgs/horse.bmp,0.533
A57/images/dst_imgs/horse/B/horse.JP2.bmp,JP2K,A57/images/src_imgs/horse.bmp,0.508
A57/images/dst_imgs/horse/B/horse.DCQ.bmp,Multiply Dist.,A57/images/src_imgs/horse.bmp,0.165
A57/images/dst_imgs/horse/B/horse.BLR.bmp,GBLUR,A57/images/src_imgs/horse.bmp,0.267
A57/images/dst_imgs/horse/B/horse.NOZ.bmp,AWGN,A57/images/src_imgs/horse.bmp,0.367
A57/images/dst_imgs/horse/C/horse.FLT.bmp,Quantization_Noise,A57/images/src_imgs/horse.bmp,0.979
A57/images/dst_imgs/horse/C/horse.JPG.bmp,JPEG,A57/images/src_imgs/horse.bmp,0.871
A57/images/dst_imgs/horse/C/horse.JP2.bmp,JP2K,A57/images/src_imgs/horse.bmp,0.827
A57/images/dst_imgs/horse/C/horse.DCQ.bmp,Multiply Dist.,A57/images/src_imgs/horse.bmp,0.802
A57/images/dst_imgs/horse/C/horse.BLR.bmp,GBLUR,A57/images/src_imgs/horse.bmp,0.849
A57/images/dst_imgs/horse/C/horse.NOZ.bmp,AWGN,A57/images/src_imgs/horse.bmp,0.446
A57/images/dst_imgs/harbour/A/harbour.FLT.bmp,Quantization_Noise,A57/images/src_imgs/harbour.bmp,0.619
A57/images/dst_imgs/harbour/A/harbour.JPG.bmp,JPEG,A57/images/src_imgs/harbour.bmp,0.112
A57/images/dst_imgs/harbour/A/harbour.JP2.bmp,JP2K,A57/images/src_imgs/harbour.bmp,0.339
A57/images/dst_imgs/harbour/A/harbour.DCQ.bmp,Multiply Dist.,A57/images/src_imgs/harbour.bmp,0.112
A57/images/dst_imgs/harbour/A/harbour.BLR.bmp,GBLUR,A57/images/src_imgs/harbour.bmp,0.164
A57/images/dst_imgs/harbour/A/harbour.NOZ.bmp,AWGN,A57/images/src_imgs/harbour.bmp,0.28
A57/images/dst_imgs/harbour/B/harbour.FLT.bmp,Quantization_Noise,A57/images/src_imgs/harbour.bmp,0.836
A57/images/dst_imgs/harbour/B/harbour.JPG.bmp,JPEG,A57/images/src_imgs/harbour.bmp,0.336
A57/images/dst_imgs/harbour/B/harbour.JP2.bmp,JP2K,A57/images/src_imgs/harbour.bmp,0.589
A57/images/dst_imgs/harbour/B/harbour.DCQ.bmp,Multiply Dist.,A57/images/src_imgs/harbour.bmp,0.168
A57/images/dst_imgs/harbour/B/harbour.BLR.bmp,GBLUR,A57/images/src_imgs/harbour.bmp,0.28
A57/images/dst_imgs/harbour/B/harbour.NOZ.bmp,AWGN,A57/images/src_imgs/harbour.bmp,0.372
A57/images/dst_imgs/harbour/C/harbour.FLT.bmp,Quantization_Noise,A57/images/src_imgs/harbour.bmp,1
A57/images/dst_imgs/harbour/C/harbour.JPG.bmp,JPEG,A57/images/src_imgs/harbour.bmp,0.664
A57/images/dst_imgs/harbour/C/harbour.JP2.bmp,JP2K,A57/images/src_imgs/harbour.bmp,0.701
A57/images/dst_imgs/harbour/C/harbour.DCQ.bmp,Multiply Dist.,A57/images/src_imgs/harbour.bmp,0.418
A57/images/dst_imgs/harbour/C/harbour.BLR.bmp,GBLUR,A57/images/src_imgs/harbour.bmp,0.503
A57/images/dst_imgs/harbour/C/harbour.NOZ.bmp,AWGN,A57/images/src_imgs/harbour.bmp,0.51
A57/images/dst_imgs/baby/A/baby.FLT.bmp,Quantization_Noise,A57/images/src_imgs/baby.bmp,0.233
A57/images/dst_imgs/baby/A/baby.JPG.bmp,JPEG,A57/images/src_imgs/baby.bmp,0.15
A57/images/dst_imgs/baby/A/baby.JP2.bmp,JP2K,A57/images/src_imgs/baby.bmp,0.143
A57/images/dst_imgs/baby/A/baby.DCQ.bmp,Multiply Dist.,A57/images/src_imgs/baby.bmp,0.145
A57/images/dst_imgs/baby/A/baby.BLR.bmp,GBLUR,A57/images/src_imgs/baby.bmp,0.268
A57/images/dst_imgs/baby/A/baby.NOZ.bmp,AWGN,A57/images/src_imgs/baby.bmp,0.089
A57/images/dst_imgs/baby/B/baby.FLT.bmp,Quantization_Noise,A57/images/src_imgs/baby.bmp,0.396
A57/images/dst_imgs/baby/B/baby.JPG.bmp,JPEG,A57/images/src_imgs/baby.bmp,0.418
A57/images/dst_imgs/baby/B/baby.JP2.bmp,JP2K,A57/images/src_imgs/baby.bmp,0.283
A57/images/dst_imgs/baby/B/baby.DCQ.bmp,Multiply Dist.,A57/images/src_imgs/baby.bmp,0.349
A57/images/dst_imgs/baby/B/baby.BLR.bmp,GBLUR,A57/images/src_imgs/baby.bmp,0.38
A57/images/dst_imgs/baby/B/baby.NOZ.bmp,AWGN,A57/images/src_imgs/baby.bmp,0.141
A57/images/dst_imgs/baby/C/baby.FLT.bmp,Quantization_Noise,A57/images/src_imgs/baby.bmp,0.598
A57/images/dst_imgs/baby/C/baby.JPG.bmp,JPEG,A57/images/src_imgs/baby.bmp,0.63
A57/images/dst_imgs/baby/C/baby.JP2.bmp,JP2K,A57/images/src_imgs/baby.bmp,0.612
A57/images/dst_imgs/baby/C/baby.DCQ.bmp,Multiply Dist.,A57/images/src_imgs/baby.bmp,0.474
A57/images/dst_imgs/baby/C/baby.BLR.bmp,GBLUR,A57/images/src_imgs/baby.bmp,0.473
A57/images/dst_imgs/baby/C/baby.NOZ.bmp,AWGN,A57/images/src_imgs/baby.bmp,0.206
dis_img_path,dis_type,score
CID2013/IS1/co1/IS_I_C01_D01.jpg,Authentic,3.34364303351907
CID2013/IS1/co1/IS_I_C01_D02.jpg,Authentic,71.1818902079248
CID2013/IS1/co1/IS_I_C01_D03.jpg,Authentic,45.581094755566
CID2013/IS1/co1/IS_I_C01_D04.jpg,Authentic,3.60486438564329
CID2013/IS1/co1/IS_I_C01_D05.jpg,Authentic,25.2523542201857
CID2013/IS1/co1/IS_I_C01_D06.jpg,Authentic,20.307932539178
CID2013/IS1/co1/IS_I_C01_D07.jpg,Authentic,9.88964655415763
CID2013/IS1/co1/IS_I_C01_D08.jpg,Authentic,49.0633665821789
CID2013/IS1/co1/IS_I_C01_D09.jpg,Authentic,47.8527634276209
CID2013/IS1/co1/IS_I_C01_D10.jpg,Authentic,52.1761524530069
CID2013/IS1/co1/IS_I_C01_D11.jpg,Authentic,73.5651284538055
CID2013/IS1/co1/IS_I_C01_D12.jpg,Authentic,25.2409277095327
CID2013/IS1/co1/IS_I_C01_D13.jpg,Authentic,60.6821208795548
CID2013/IS1/co1/IS_I_C01_D14.jpg,Authentic,55.712411055437
CID2013/IS1/co2/IS_I_C02_D01.jpg,Authentic,28.5963300104152
CID2013/IS1/co2/IS_I_C02_D02.jpg,Authentic,58.0406571932505
CID2013/IS1/co2/IS_I_C02_D03.jpg,Authentic,28.1809404445844
CID2013/IS1/co2/IS_I_C02_D04.jpg,Authentic,28.0510117821647
CID2013/IS1/co2/IS_I_C02_D05.jpg,Authentic,29.1089158525708
CID2013/IS1/co2/IS_I_C02_D06.jpg,Authentic,18.5525112621487
CID2013/IS1/co2/IS_I_C02_D07.jpg,Authentic,26.3227998643204
CID2013/IS1/co2/IS_I_C02_D08.jpg,Authentic,43.6686393110421
CID2013/IS1/co2/IS_I_C02_D09.jpg,Authentic,53.4522893575262
CID2013/IS1/co2/IS_I_C02_D10.jpg,Authentic,42.3706071978319
CID2013/IS1/co2/IS_I_C02_D11.jpg,Authentic,54.4059477047769
CID2013/IS1/co2/IS_I_C02_D12.jpg,Authentic,20.7370330231321
CID2013/IS1/co2/IS_I_C02_D13.jpg,Authentic,52.8454559662388
CID2013/IS1/co2/IS_I_C02_D14.jpg,Authentic,44.5750487698004
CID2013/IS1/co3/IS_I_C03_D01.jpg,Authentic,16.5277672837329
CID2013/IS1/co3/IS_I_C03_D02.jpg,Authentic,50.8640155872224
CID2013/IS1/co3/IS_I_C03_D03.jpg,Authentic,19.7063506017642
CID2013/IS1/co3/IS_I_C03_D04.jpg,Authentic,7.37052887234148
CID2013/IS1/co3/IS_I_C03_D05.jpg,Authentic,12.7713238361835
CID2013/IS1/co3/IS_I_C03_D06.jpg,Authentic,2.72206538320867
CID2013/IS1/co3/IS_I_C03_D07.jpg,Authentic,12.8549034235037
CID2013/IS1/co3/IS_I_C03_D08.jpg,Authentic,24.0280758492009
CID2013/IS1/co3/IS_I_C03_D09.jpg,Authentic,48.2907808883764
CID2013/IS1/co3/IS_I_C03_D10.jpg,Authentic,29.6478757171602
CID2013/IS1/co3/IS_I_C03_D11.jpg,Authentic,39.2234186317494
CID2013/IS1/co3/IS_I_C03_D12.jpg,Authentic,4.63970974590334
CID2013/IS1/co3/IS_I_C03_D13.jpg,Authentic,45.6829842795049
CID2013/IS1/co3/IS_I_C03_D14.jpg,Authentic,35.8852131975314
CID2013/IS1/co4/IS_I_C04_D01.jpg,Authentic,63.6576024280957
CID2013/IS1/co4/IS_I_C04_D02.jpg,Authentic,75.224933897784
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

A Unified Interface for IQA Datasets

This repository contains a unified interface for downloading and loading 20 popular Image Quality Assessment (IQA) datasets. We provide codes for both general Python and PyTorch.

Citation

This repository is part of our Bayesian IQA project where we present an overview of IQA methods from a Bayesian perspective. More detailed summaries of both IQA models and datasets can be found in this interactive webpage.

If you find our project useful, please cite our paper

@article{duanmu2021biqa,
        author = {Duanmu, Zhengfang and Liu, Wentao and Wang, Zhongling and Wang, Zhou},
        title = {Quantifying Visual Image Quality: A Bayesian View},
        journal = {Annual Review of Vision Science},
        volume = {7},
        number = {1},
        pages = {437-464},
        year = {2021}
        }

Supported Datasets

Dataset Dis Img Ref Img MOS DMOS
LIVE βœ“ βœ“ βœ“
A57 βœ“ βœ“ βœ“
LIVE_MD βœ“ βœ“ βœ“
MDID2013 βœ“ βœ“ βœ“
CSIQ βœ“ βœ“ βœ“
KADID-10k βœ“ βœ“ βœ“(Note) ~~~~
TID2008 βœ“ βœ“ βœ“
TID2013 βœ“ βœ“ βœ“
CIDIQ_MOS100 βœ“ βœ“ βœ“
CIDIQ_MOS50 βœ“ βœ“ βœ“
MDID2016 βœ“ βœ“ βœ“
SDIVL βœ“ βœ“ βœ“
MDIVL βœ“ βœ“ βœ“
Toyama βœ“ βœ“ βœ“
PDAP-HDDS βœ“ βœ“ βœ“
VCLFER βœ“ βœ“ βœ“
LIVE_Challenge βœ“ βœ“
CID2013 βœ“ βœ“
KonIQ-10k βœ“ βœ“
SPAQ βœ“ βœ“
Waterloo_Exploration βœ“ βœ“
KADIS-700k βœ“ (code only) βœ“

Basic Usage

  1. Prerequisites

    pip install wget
    
  2. General Python (please refer demo.py)

    from load_dataset import load_dataset
    dataset = load_dataset("LIVE")
    
  3. PyTorch (please refer demo_pytorch.py)

    from load_dataset import load_dataset_pytorch
    dataset = load_dataset_pytorch("LIVE")
    

Advanced Usage

  1. General Python (please refer demo.py)

    from load_dataset import load_dataset
    dataset = load_dataset("LIVE", dataset_root="data", attributes=["dis_img_path", "dis_type", "ref_img_path", "score"], download=True)
    
  2. PyTorch (please refer demo_pytorch.py)

    from load_dataset import load_dataset_pytorch
    transform = transforms.Compose([transforms.RandomCrop(size=64), transforms.ToTensor()])
    dataset = load_dataset_pytorch("LIVE", dataset_root="data", attributes=["dis_img_path", "dis_type", "ref_img_path", "score"], download=True, transform=transform)
    

TODO

Star History

Star History Chart

Downloads last month
4