|
import numpy as np |
|
import pandas as pd |
|
from plotly import graph_objects as go |
|
import plotly.express as px |
|
from viewer.utils import PlotOptions |
|
|
|
|
|
def parse_merge_runs_to_plot(df, metric_name, merge_method): |
|
if merge_method == "none": |
|
return [ |
|
(group["steps"], group[metric_name], f'{runname}-s{seed}') |
|
for (runname, seed), group in df.groupby(["runname", "seed"]) |
|
] |
|
if metric_name not in df.columns: |
|
return [] |
|
grouped = df.groupby(['runname', 'steps']).agg({metric_name: merge_method}).reset_index() |
|
return [ |
|
(group["steps"], group[metric_name], runname) |
|
for (runname,), group in grouped.groupby(["runname"]) |
|
] |
|
|
|
|
|
def prepare_plot_data(df: pd.DataFrame, metric_name: str, seed_merge_method: str, |
|
plot_options: PlotOptions) -> pd.DataFrame: |
|
if df is None or "steps" not in df or metric_name not in df.columns: |
|
return pd.DataFrame() |
|
|
|
df = df.copy().sort_values(by=["steps"]) |
|
plot_data = parse_merge_runs_to_plot(df, metric_name, seed_merge_method) |
|
|
|
|
|
all_steps = sorted(set(step for xs, _, _ in plot_data for step in xs)) |
|
result_df = pd.DataFrame(index=all_steps) |
|
|
|
|
|
for xs, ys, runname in plot_data: |
|
result_df[runname] = pd.Series(index=xs.values, data=ys.values) |
|
|
|
|
|
if plot_options.interpolate: |
|
|
|
result_df = result_df.interpolate(method='linear') |
|
|
|
if plot_options.smoothing > 0: |
|
result_df = result_df.rolling(window=plot_options.smoothing, min_periods=1).mean() |
|
if plot_options.pct: |
|
result_df = result_df * 100 |
|
|
|
return result_df |
|
|
|
|
|
def plot_metric(plot_df: pd.DataFrame, metric_name: str, seed_merge_method: str, pct: bool, statistics: dict, |
|
nb_stds: int, language: str = None, barplot: bool = False) -> go.Figure: |
|
if barplot: |
|
return plot_metric_barplot(plot_df, metric_name, seed_merge_method, pct, statistics, nb_stds, language) |
|
return plot_metric_scatter(plot_df, metric_name, seed_merge_method, pct, statistics, nb_stds, language) |
|
|
|
def plot_metric_scatter(plot_df: pd.DataFrame, metric_name: str, seed_merge_method: str, pct: bool, statistics: dict, |
|
nb_stds: int, language: str = None) -> go.Figure: |
|
fig = go.Figure() |
|
if not isinstance(plot_df, pd.DataFrame) or plot_df.empty: |
|
return fig |
|
show_error_bars = nb_stds > 0 and not np.isnan(statistics["mean_std"]) |
|
error_value = statistics["mean_std"] * nb_stds * (100 if pct else 1) if show_error_bars else 0.0 |
|
|
|
last_y_values = {runname: plot_df[runname].iloc[-1] for runname in plot_df.columns} |
|
sorted_runnames = sorted(last_y_values, key=last_y_values.get, reverse=True) |
|
for runname in sorted_runnames: |
|
fig.add_trace( |
|
go.Scatter(x=plot_df.index, y=plot_df[runname], mode='lines+markers', name=runname, |
|
hovertemplate=f'%{{y:.2f}} ({runname})<extra></extra>', |
|
error_y=dict( |
|
type='constant', |
|
value=error_value, |
|
visible=show_error_bars |
|
)) |
|
) |
|
|
|
lang_string = f" ({language})" if language else "" |
|
|
|
fig.update_layout( |
|
title=f"Run comparisons{lang_string}: {metric_name}" + |
|
(f" ({seed_merge_method} over seeds)" if seed_merge_method != "none" else "") + (f" [%]" if pct else ""), |
|
xaxis_title="Training steps", |
|
yaxis_title=metric_name, |
|
hovermode="x unified" |
|
) |
|
return fig |
|
|
|
|
|
def plot_metric_barplot(plot_df: pd.DataFrame, metric_name: str, seed_merge_method: str, pct: bool, statistics: dict, |
|
nb_stds: int, language: str = None) -> go.Figure: |
|
fig = go.Figure() |
|
if not isinstance(plot_df, pd.DataFrame) or plot_df.empty: |
|
return fig |
|
|
|
show_error_bars = nb_stds > 0 and not np.isnan(statistics["mean_std"]) |
|
error_value = statistics["mean_std"] * nb_stds * (100 if pct else 1) if show_error_bars else 0.0 |
|
|
|
last_values = {runname: plot_df[runname].iloc[-1] for runname in plot_df.columns} |
|
sorted_runnames = sorted(last_values, key=last_values.get, reverse=True) |
|
|
|
|
|
colors = px.colors.qualitative.Set1 |
|
color_map = {run: colors[i % len(colors)] for i, run in enumerate(plot_df.columns)} |
|
|
|
fig.add_trace( |
|
go.Bar( |
|
x=sorted_runnames, |
|
y=[last_values[run] for run in sorted_runnames], |
|
marker_color=[color_map[run] for run in sorted_runnames], |
|
error_y=dict( |
|
type='constant', |
|
value=error_value, |
|
visible=show_error_bars |
|
), |
|
hovertemplate='%{y:.2f}<extra></extra>' |
|
) |
|
) |
|
|
|
lang_string = f" ({language})" if language else "" |
|
|
|
fig.update_layout( |
|
title=f"Run comparisons{lang_string}: {metric_name}" + |
|
(f" ({seed_merge_method} over seeds)" if seed_merge_method != "none" else "") + ( |
|
f" [%]" if pct else ""), |
|
xaxis_title="Runs", |
|
yaxis_title=metric_name, |
|
hovermode="x" |
|
) |
|
return fig |