admin / viewer /stats.py
hynky's picture
hynky HF staff
add viewer + update plots
27411b0
raw
history blame
7.83 kB
from collections import defaultdict
import gradio as gr
import numpy as np
import pandas as pd
from scipy import stats
from viewer.literals import BASLINE_RUN_NAME
import tqdm as progress
from viewer.results import NormalizationMode, add_baseline_rows
from viewer.utils import BASELINE_GROUPING_MODE, create_df_from_run_data, get_groupped_score, get_run_name_seed, RunData, is_aggregate_column, is_task_column, select_runs
def fast_kendall_tau_a(x, y):
x = np.array(x)
y = np.array(y)
n = len(x)
if n <= 1:
return 0.0
# Create matrices of pairwise differences
x_diff = x[:, np.newaxis] - x
y_diff = y[:, np.newaxis] - y
# Calculate concordant and discordant pairs
concordant = np.sum((x_diff * y_diff > 0) & (np.triu(np.ones((n, n)), k=1) == 1))
discordant = np.sum((x_diff * y_diff <= 0) & (np.triu(np.ones((n, n)), k=1) == 1))
# Calculate tau-a
tau_a = (concordant - discordant) / (n * (n - 1) / 2)
return tau_a
def calculate_statistics(df: pd.DataFrame, std_dev_run_name: str, column_name: str,
score_s: int, score_window: int, baseline_run: str = BASLINE_RUN_NAME) -> dict[str, float]:
if len(df) == 0 or not (is_task_column(column_name) or is_aggregate_column(column_name)) or column_name not in df.columns:
return defaultdict(lambda: np.nan)
# drop baseline_score and other columns
baseline_df = select_runs(df, runs_to_include=[baseline_run])
df = select_runs(df, runs_to_exclude=[baseline_run])
df = df[['runname', 'seed', 'steps', column_name]]
# mean over seeds
mean_over_seeds = df.groupby(['runname', 'steps'], as_index=False)[column_name].mean()
pivot_df = mean_over_seeds.pivot(index='steps', columns='runname', values=column_name).interpolate(method='linear')
# 1. monotonicity: Spearman Correlation
spearman_corrs = [stats.spearmanr(pivot_df[col].index, pivot_df[col], nan_policy="omit")[0] for col in
pivot_df.columns if len(np.unique(pivot_df[col])) > 1]
avg_spearman = np.mean([c for c in spearman_corrs if not np.isnan(c)]) if not all(
map(np.isnan, spearman_corrs)) else np.nan
# 2. ordering consistency: Average Kendall Tau-a
last_half = int(len(pivot_df.index) / 2)
step_pairs = list(zip(pivot_df.index[:-1], pivot_df.index[1:]))[last_half:]
kendall_tau_a_values = [fast_kendall_tau_a(pivot_df.loc[s1], pivot_df.loc[s2]) for s1, s2 in step_pairs]
avg_kendall_tau_a = np.mean(kendall_tau_a_values) if kendall_tau_a_values else np.nan
# 3. variability: Std dev
mean_std, min_std, min_std_step, max_std, max_std_step, snr, max_n_std = (
np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan)
if std_dev_run_name and std_dev_run_name != "-":
grouped_std_runs = df[(df['runname'] == std_dev_run_name) & (df['steps'] != 0)] \
.groupby('steps')[column_name]
means = grouped_std_runs.mean()
stds = grouped_std_runs.std()
window_steps = means.index[means.index <= score_s][-score_window:]
pivot_df_window = pivot_df.loc[window_steps]
stds_window = stds[window_steps]
if not stds_window.empty:
max_std, max_std_step = stds_window.max(), stds_window.index[stds_window.argmax()]
min_std, min_std_step = stds_window.min(), stds_window.index[stds_window.argmin()]
mean_std = stds_window.mean()
score = pivot_df_window.loc[score_s]
full_mean_std = stds.mean()
if full_mean_std != 0.0 and full_mean_std != np.nan:
snr = score.mean() / full_mean_std
if not baseline_df.empty and mean_std != np.nan and mean_std != 0:
# 4. randomness
random_baseline_scores = baseline_df.set_index("steps")[column_name].reindex(
pd.concat([baseline_df["steps"], pivot_df_window.index.to_series()]).unique().sort()
).interpolate(method='linear')
baseline_score = random_baseline_scores.loc[score_s]
max_n_std = (score - baseline_score).max() / mean_std
# # 2. Standard Error, Mean, and Max
# summary_stats = [(df[col].std() / np.sqrt(df[col].count()),
# df[col].mean(),
# df[col].max()) for col in df.columns if df[col].count() > 1]
# avg_stderr, avg_mean, max_max = np.nan, np.nan, np.nan
# if summary_stats:
# avg_stderr = np.mean([s for s, _, _ in summary_stats])
# avg_mean = np.mean([m for _, m, _ in summary_stats])
# max_max = np.max([mx for _, _, mx in summary_stats])
return {
"avg_spearman": float(avg_spearman),
"avg_kendall_tau_a": float(avg_kendall_tau_a),
"max_std": float(max_std),
"max_std_step": float(max_std_step),
"min_std": float(min_std),
"min_std_step": float(min_std_step),
"mean_std": float(mean_std),
"avg_snr": float(snr),
"max_n_std": float(max_n_std)
}
def format_statistics(stats: dict[str, float]) -> tuple[str, str, str, str]:
if not stats:
stats = defaultdict(lambda: np.nan)
monotonicity_md_text = f"Average=**{stats['avg_spearman']:.3f}**"
variability_md_text = f"""SNR=**{stats['avg_snr']:.2f}**; Mean std_dev=**{stats['mean_std']:.5f}**;
Min std_dev=**{stats['min_std']:.3f} (step {stats['min_std_step']})**;
Max std_dev=**{stats['max_std']:.3f} (step {stats['max_std_step']})**"""
randomness_md_text = (f"Maximum distance of final checkpoint to random baseline="
f"**{stats['max_n_std']:.2f}** std_devs")
ordering_md_text = (f"Average Kendall-A Tau between second half of consecutive steps="
f"**{stats['avg_kendall_tau_a']:.3f}**")
return monotonicity_md_text, variability_md_text, randomness_md_text, ordering_md_text
def smooth_tasks(df: pd.DataFrame, rolling_window: int) -> pd.DataFrame:
if df.empty or "steps" not in df.columns:
return df
task_or_agg_columns = [c for c in df.columns if is_aggregate_column(c) or is_task_column(c)]
if rolling_window > 0:
smoothed_df = df.sort_values(by=["runname", "seed", "steps"])
smoothed_df = smoothed_df.groupby(['runname', 'seed'])[task_or_agg_columns].rolling(rolling_window, min_periods=1).mean().reset_index(level=[0,1])
smoothed_df["steps"] = df["steps"]
df = smoothed_df
return df
def generate_and_export_stats(run_data: RunData, std_dev_run_name: str, baseline_runs: list[str], baseline_mode: BASELINE_GROUPING_MODE, score_s: int, baseline_window: int) -> gr.File:
if not run_data:
return gr.File(value=None, visible=False)
stats_data: list[dict] = []
task_metrics = set(f"{task_info.name}/{metric}" for run in run_data for task_info in run.tasks
for metric, value in task_info.metrics.items())
df = create_df_from_run_data(run_data)
df = add_baseline_rows(df, baseline_runs, baseline_mode)
df = select_runs(df, runs_to_exclude=baseline_runs)
df = smooth_tasks(df, 3)
for column in list(progress.tqdm(task_metrics)):
if not is_task_column(column):
continue
# Calculate statistics
task_stats = calculate_statistics(df, std_dev_run_name, column, score_s, baseline_window)
task, metric = column.split("/")
# Add to stats_data
stats_data.append({
"task": task,
"metric": metric.removesuffix("|0/"),
**task_stats
})
# Create DataFrame and export to CSV
stats_df = pd.DataFrame(stats_data)
stats_df.to_csv("statistics.csv", index=False)
return gr.File(value="statistics.csv", visible=True)