|
from collections import defaultdict |
|
|
|
import gradio as gr |
|
import numpy as np |
|
import pandas as pd |
|
from scipy import stats |
|
from viewer.literals import BASLINE_RUN_NAME |
|
import tqdm as progress |
|
from viewer.results import NormalizationMode, add_baseline_rows |
|
|
|
from viewer.utils import BASELINE_GROUPING_MODE, create_df_from_run_data, get_groupped_score, get_run_name_seed, RunData, is_aggregate_column, is_task_column, select_runs |
|
|
|
|
|
def fast_kendall_tau_a(x, y): |
|
x = np.array(x) |
|
y = np.array(y) |
|
n = len(x) |
|
if n <= 1: |
|
return 0.0 |
|
|
|
|
|
x_diff = x[:, np.newaxis] - x |
|
y_diff = y[:, np.newaxis] - y |
|
|
|
|
|
concordant = np.sum((x_diff * y_diff > 0) & (np.triu(np.ones((n, n)), k=1) == 1)) |
|
discordant = np.sum((x_diff * y_diff <= 0) & (np.triu(np.ones((n, n)), k=1) == 1)) |
|
|
|
|
|
tau_a = (concordant - discordant) / (n * (n - 1) / 2) |
|
|
|
return tau_a |
|
|
|
|
|
def calculate_statistics(df: pd.DataFrame, std_dev_run_name: str, column_name: str, |
|
score_s: int, score_window: int, baseline_run: str = BASLINE_RUN_NAME) -> dict[str, float]: |
|
if len(df) == 0 or not (is_task_column(column_name) or is_aggregate_column(column_name)) or column_name not in df.columns: |
|
return defaultdict(lambda: np.nan) |
|
|
|
|
|
baseline_df = select_runs(df, runs_to_include=[baseline_run]) |
|
|
|
df = select_runs(df, runs_to_exclude=[baseline_run]) |
|
df = df[['runname', 'seed', 'steps', column_name]] |
|
|
|
|
|
mean_over_seeds = df.groupby(['runname', 'steps'], as_index=False)[column_name].mean() |
|
pivot_df = mean_over_seeds.pivot(index='steps', columns='runname', values=column_name).interpolate(method='linear') |
|
|
|
|
|
spearman_corrs = [stats.spearmanr(pivot_df[col].index, pivot_df[col], nan_policy="omit")[0] for col in |
|
pivot_df.columns if len(np.unique(pivot_df[col])) > 1] |
|
avg_spearman = np.mean([c for c in spearman_corrs if not np.isnan(c)]) if not all( |
|
map(np.isnan, spearman_corrs)) else np.nan |
|
|
|
|
|
last_half = int(len(pivot_df.index) / 2) |
|
step_pairs = list(zip(pivot_df.index[:-1], pivot_df.index[1:]))[last_half:] |
|
kendall_tau_a_values = [fast_kendall_tau_a(pivot_df.loc[s1], pivot_df.loc[s2]) for s1, s2 in step_pairs] |
|
avg_kendall_tau_a = np.mean(kendall_tau_a_values) if kendall_tau_a_values else np.nan |
|
|
|
|
|
mean_std, min_std, min_std_step, max_std, max_std_step, snr, max_n_std = ( |
|
np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan) |
|
if std_dev_run_name and std_dev_run_name != "-": |
|
grouped_std_runs = df[(df['runname'] == std_dev_run_name) & (df['steps'] != 0)] \ |
|
.groupby('steps')[column_name] |
|
|
|
means = grouped_std_runs.mean() |
|
stds = grouped_std_runs.std() |
|
|
|
window_steps = means.index[means.index <= score_s][-score_window:] |
|
pivot_df_window = pivot_df.loc[window_steps] |
|
|
|
stds_window = stds[window_steps] |
|
|
|
if not stds_window.empty: |
|
max_std, max_std_step = stds_window.max(), stds_window.index[stds_window.argmax()] |
|
min_std, min_std_step = stds_window.min(), stds_window.index[stds_window.argmin()] |
|
mean_std = stds_window.mean() |
|
|
|
|
|
|
|
score = pivot_df_window.loc[score_s] |
|
|
|
full_mean_std = stds.mean() |
|
if full_mean_std != 0.0 and full_mean_std != np.nan: |
|
snr = score.mean() / full_mean_std |
|
|
|
if not baseline_df.empty and mean_std != np.nan and mean_std != 0: |
|
|
|
random_baseline_scores = baseline_df.set_index("steps")[column_name].reindex( |
|
pd.concat([baseline_df["steps"], pivot_df_window.index.to_series()]).unique().sort() |
|
).interpolate(method='linear') |
|
|
|
baseline_score = random_baseline_scores.loc[score_s] |
|
max_n_std = (score - baseline_score).max() / mean_std |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return { |
|
"avg_spearman": float(avg_spearman), |
|
"avg_kendall_tau_a": float(avg_kendall_tau_a), |
|
"max_std": float(max_std), |
|
"max_std_step": float(max_std_step), |
|
"min_std": float(min_std), |
|
"min_std_step": float(min_std_step), |
|
"mean_std": float(mean_std), |
|
"avg_snr": float(snr), |
|
"max_n_std": float(max_n_std) |
|
} |
|
|
|
|
|
def format_statistics(stats: dict[str, float]) -> tuple[str, str, str, str]: |
|
if not stats: |
|
stats = defaultdict(lambda: np.nan) |
|
monotonicity_md_text = f"Average=**{stats['avg_spearman']:.3f}**" |
|
variability_md_text = f"""SNR=**{stats['avg_snr']:.2f}**; Mean std_dev=**{stats['mean_std']:.5f}**; |
|
Min std_dev=**{stats['min_std']:.3f} (step {stats['min_std_step']})**; |
|
Max std_dev=**{stats['max_std']:.3f} (step {stats['max_std_step']})**""" |
|
randomness_md_text = (f"Maximum distance of final checkpoint to random baseline=" |
|
f"**{stats['max_n_std']:.2f}** std_devs") |
|
ordering_md_text = (f"Average Kendall-A Tau between second half of consecutive steps=" |
|
f"**{stats['avg_kendall_tau_a']:.3f}**") |
|
|
|
return monotonicity_md_text, variability_md_text, randomness_md_text, ordering_md_text |
|
|
|
|
|
def smooth_tasks(df: pd.DataFrame, rolling_window: int) -> pd.DataFrame: |
|
if df.empty or "steps" not in df.columns: |
|
return df |
|
|
|
|
|
task_or_agg_columns = [c for c in df.columns if is_aggregate_column(c) or is_task_column(c)] |
|
if rolling_window > 0: |
|
smoothed_df = df.sort_values(by=["runname", "seed", "steps"]) |
|
smoothed_df = smoothed_df.groupby(['runname', 'seed'])[task_or_agg_columns].rolling(rolling_window, min_periods=1).mean().reset_index(level=[0,1]) |
|
smoothed_df["steps"] = df["steps"] |
|
df = smoothed_df |
|
return df |
|
|
|
def generate_and_export_stats(run_data: RunData, std_dev_run_name: str, baseline_runs: list[str], baseline_mode: BASELINE_GROUPING_MODE, score_s: int, baseline_window: int) -> gr.File: |
|
if not run_data: |
|
return gr.File(value=None, visible=False) |
|
|
|
stats_data: list[dict] = [] |
|
|
|
task_metrics = set(f"{task_info.name}/{metric}" for run in run_data for task_info in run.tasks |
|
for metric, value in task_info.metrics.items()) |
|
|
|
df = create_df_from_run_data(run_data) |
|
|
|
|
|
df = add_baseline_rows(df, baseline_runs, baseline_mode) |
|
|
|
df = select_runs(df, runs_to_exclude=baseline_runs) |
|
|
|
df = smooth_tasks(df, 3) |
|
|
|
for column in list(progress.tqdm(task_metrics)): |
|
if not is_task_column(column): |
|
continue |
|
|
|
|
|
task_stats = calculate_statistics(df, std_dev_run_name, column, score_s, baseline_window) |
|
|
|
task, metric = column.split("/") |
|
|
|
|
|
stats_data.append({ |
|
"task": task, |
|
"metric": metric.removesuffix("|0/"), |
|
**task_stats |
|
}) |
|
|
|
|
|
stats_df = pd.DataFrame(stats_data) |
|
stats_df.to_csv("statistics.csv", index=False) |
|
|
|
return gr.File(value="statistics.csv", visible=True) |
|
|
|
|