|
--- |
|
license: cc-by-nc-4.0 |
|
--- |
|
# Dataset Card for BBBicycles |
|
## Dataset Summary |
|
Bent & Broken Bicycles (BBBicycles) dataset is a benchmark set for the novel task of **damaged object re-identification**, which aims to identify the same object in multiple images even in the presence of breaks, deformations, and missing parts. You can find an interactive preview [here](https://huggingface.co/spaces/GrainsPolito/BBBicyclesPreview). |
|
## Dataset Structure |
|
The final dataset contains: |
|
|
|
- Total of 39,200 image |
|
- 2,800 unique IDs |
|
- 20 models |
|
- 140 IDs for each model |
|
|
|
<table border-collapse="collapse"> |
|
<tr> |
|
<td><b style="font-size:25px">Information for each ID:</b></td> |
|
<td><b style="font-size:25px">Information for each render:</b></td> |
|
</tr> |
|
<tr> |
|
<td> |
|
<ul> |
|
<li>Model</li> |
|
<li>Type</li> |
|
<li>Texture type</li> |
|
<li>Stickers</li> |
|
</ul> |
|
</td> |
|
<td> |
|
<ul> |
|
<li>Background</li> |
|
<li>Viewing Side</li> |
|
<li>Focal Length</li> |
|
<li>Presence of dirt</li> |
|
</ul> |
|
</td> |
|
</tr> |
|
</table> |
|
|
|
### Citation Information |
|
``` |
|
@inproceedings{bbb_2022, |
|
title={Bent & Broken Bicycles: Leveraging synthetic data for damaged object re-identification}, |
|
author={Luca Piano, Filippo Gabriele Pratticò, Alessandro Sebastian Russo, Lorenzo Lanari, Lia Morra, Fabrizio Lamberti}, |
|
booktitle={2022 IEEE Winter Conference on Applications of Computer Vision (WACV)}, |
|
year={2022}, |
|
organization={IEEE} |
|
} |
|
|
|
``` |
|
|
|
### Credits |
|
The authors gratefully acknowledge the financial support of Reale Mutua Assicurazioni. |