from datasets import (get_dataset_config_names, get_dataset_split_names, | |
load_dataset) | |
from huggingface_hub import list_datasets | |
def convert(dataset_id: str): | |
dataset_name = dataset_id.split("/")[-1] | |
configs = get_dataset_config_names(dataset_id) | |
for config in configs: | |
splits = get_dataset_split_names(dataset_id, config) | |
splits = [split for split in splits if split not in ["train", "validation"]] | |
for split in splits: | |
columns_to_keep = ["gem_id", "gem_parent_id", "target"] | |
dataset = load_dataset(dataset_id, name=config, split=split) | |
# It seems like we store the references column as the target one | |
dataset = dataset.map(lambda x: {"target": x["references"]}) | |
# Delete unused columns | |
# The test split doesn't have a parent ID | |
if split == "test": | |
columns_to_keep.remove("gem_parent_id") | |
# The `datasets` JSON serializer is buggy - use `pandas` for now | |
df = dataset.to_pandas() | |
df[columns_to_keep].to_json(f"{dataset_name}_{config}_{split}.json", orient="records") | |
# TODO: validate against existing references on GitHub | |
# diff <(jq --sort-keys . mlsum_de_challenge_test_covid.json) <(jq --sort-keys . ~/git/GEM-metrics/data/references/mlsum_de_challenge_test_covid.json) | |
def main(): | |
all_datasets = list_datasets() | |
gem_datasets = [dataset for dataset in all_datasets if dataset.id.startswith("GEM/")] | |
# Test run with MLSUM | |
mlsum_datasets = [dataset for dataset in gem_datasets if dataset.id.startswith("GEM/mlsum")] | |
for dataset in mlsum_datasets: | |
convert(dataset.id) | |
if __name__ == "__main__": | |
main() | |