from datasets import (get_dataset_config_names, get_dataset_split_names, load_dataset) from huggingface_hub import list_datasets def convert(dataset_id: str): dataset_name = dataset_id.split("/")[-1] configs = get_dataset_config_names(dataset_id) for config in configs: splits = get_dataset_split_names(dataset_id, config) splits = [split for split in splits if split not in ["train", "validation"]] for split in splits: columns_to_keep = ["gem_id", "gem_parent_id", "target"] dataset = load_dataset(dataset_id, name=config, split=split) # It seems like we store the references column as the target one dataset = dataset.map(lambda x: {"target": x["references"]}) # Delete unused columns # The test split doesn't have a parent ID if split == "test": columns_to_keep.remove("gem_parent_id") # The `datasets` JSON serializer is buggy - use `pandas` for now df = dataset.to_pandas() df[columns_to_keep].to_json(f"{dataset_name}_{config}_{split}.json", orient="records") # TODO: validate against existing references on GitHub # diff <(jq --sort-keys . mlsum_de_challenge_test_covid.json) <(jq --sort-keys . ~/git/GEM-metrics/data/references/mlsum_de_challenge_test_covid.json) def main(): all_datasets = list_datasets() gem_datasets = [dataset for dataset in all_datasets if dataset.id.startswith("GEM/")] # Test run with MLSUM mlsum_datasets = [dataset for dataset in gem_datasets if dataset.id.startswith("GEM/mlsum")] for dataset in mlsum_datasets: convert(dataset.id) if __name__ == "__main__": main()