File size: 7,116 Bytes
4c49f63
 
41f6bcd
4c49f63
 
 
 
323bf25
 
4c49f63
658d135
41f6bcd
 
 
 
658d135
41f6bcd
 
 
 
658d135
41f6bcd
 
 
 
9c8606c
4c49f63
254fa20
4c49f63
 
323bf25
 
4c49f63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c11e980
4c49f63
9c8606c
4c49f63
9c8606c
4c49f63
9c8606c
 
4c49f63
9c8606c
1704867
9c8606c
4c49f63
 
9c8606c
4c49f63
9c8606c
4c49f63
 
 
9c8606c
4c49f63
9c8606c
4c49f63
9c8606c
 
4c49f63
 
9c8606c
4c49f63
9c8606c
4c49f63
9c8606c
 
 
 
 
 
 
 
 
 
4c49f63
9c8606c
4c49f63
1704867
4c49f63
9c8606c
 
 
 
 
 
 
 
 
 
 
4c49f63
 
9c8606c
4c49f63
9c8606c
4c49f63
9c8606c
4c49f63
9c8606c
 
 
 
 
4c49f63
9c8606c
 
 
4c49f63
9c8606c
1704867
4c49f63
9c8606c
4c49f63
9c8606c
 
4c49f63
9c8606c
 
 
4c49f63
9c8606c
 
4c49f63
9c8606c
4c49f63
9c8606c
 
4c49f63
 
9c8606c
4c49f63
9c8606c
4c49f63
 
9c8606c
 
 
1704867
9c8606c
 
 
 
 
 
 
 
 
 
 
4c49f63
 
9c8606c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
---
configs:
- config_name: mGeNTE
  data_files:
  - split: test
    path:
    - "en-es.tsv"
    - "en-de.tsv"
    - "en-it.tsv"    
  default: true
- config_name: mGeNTE en-it
  data_files:
  - split: test
    path: 
    - "en-it.tsv" 
- config_name: mGeNTE en-es
  data_files:
  - split: test
    path: 
    - "en-es.tsv" 
- config_name: mGeNTE en-de
  data_files:
  - split: test
    path: 
    - "en-de.tsv" 
- config_name: mGeNTE_common
  data_files:
  - split: test
    path: 
    - "en-es_common.tsv"
    - "en-de_common.tsv"
    - "en-it_common.tsv"
annotations_creators:
- expert-generated
language:
- en
- it
- de
- es
language_creators:
- expert-generated
license:
- cc-by-4.0
multilinguality:
- multilingual
- translation
paperswithcode_id: null
pretty_name: MGeNTE
size_categories:
- 1K<n<10K
source_datasets: []
tags:
- gender
- bias
- inclusivity
- rewriting
- translation
- mt
task_categories:
- translation
- text-generation
task_ids:
- language-modeling
---



# Dataset Card for mGeNTE

**Homepage:** https://mt.fbk.eu/mgente/

## Dataset Summary
mGeNTE (**M**ultilingual **Ge**nder-**N**eutral **T**ranslation **E**valuation) is a natural, multilingual corpus designed to benchmark gender-neutral language and automatic translation.

mGente is built upon European Parliament speech data extracted from the [Europarl corpus](https://www.statmt.org/europarl/archives.html), and represents a mutlilingual expansion of the bilingual [GeNTE](https://huggingface.co/datasets/FBK-MT/GeNTE) dataset. 

For each language pair, mGeNTE comprises 1500 parallel sentences, which are enriched with manual annotations and feature a balanced distribution of translation phenomena that either entail i) a gender-neutral translation (`set-N`), or ii) a gendered translation in the target language (`set-G`).


### Supported Tasks and Languages

mGeNTE supports cross-lingual (en-it, en-es, en-de) gender inclusive translation and intra-lingual (it-it, es-es, de-de) gender inclusive rewriting tasks.

## Dataset Structure

### Data Instances

The dataset consists of two main different configuration types: 

- **`mGeNTE`:** The complete GeNTE corpus and its annotations, consisting of a tsv file for each language pair
-  **`mGeNTE_common`:** Subset of the GeNTE corpus that comprises 3 alternative gender-neutral reference translations


### Data Fields

Each tsv file in **`mGeNTE`** is organized into 10 tab-separated columns as follows: 

	 - ID: The unique mGeNTE ID.
	 - Europarl_ID: The original sentence ID from Europarl's common-test-set 2.
	 - SET: Indicates whether the entry belongs to the Set-G or the Set-N subportion of the corpus.
	 - SRC: The English source sentence.
	 - REF-G: The gendered reference translation in the target language.
	 - REF-N: The gender-neutral reference in the target language, produced by a professional translator. 
	 - COMMON: Indicates whether the entry is part of GeNTE common-set (yes/no).
	 - GENDER: For entries belonging to the Set-G, indicates if the the entry is Feminine or Masculine (F/M).
     - REF-G_ann: Tokenized version of the gendered reference translation with target gendered words annotated.
     - G-WORDS: List of annotated target gendered words separated by "&". 

For entries of the common set, REF-N provides the gender-neutral reference translation n. 2. 

Each tsv file in **`mGeNTE_common`** comprises 200 entries organized into 11 tab-separated columns as follows:

	 - ID: The unique GeNTE ID.
	 - Europarl_ID: The original sentence ID from Europarl's common-test-set 2.
	 - SET: Indicates whether the entry belongs to the Set-G or the Set-N subportion of the corpus.
	 - SRC: The English source sentence.
	 - REF-G: The gendered reference translation in the target language.
	 - REF-N1: The gender-neutral reference in the target language produced by Translator 1.
	 - REF-N2: The gender-neutral reference in the target language produced by Translator 2.
	 - REF-N3: The gender-neutral reference in the target language produced by Translator 3.
	 - GENDER: For entries belonging to the Set-G, indicates if the the entry is Feminine or Masculine (F/M).
     - REF-G_ann: Tokenized version of the gendered reference translation with target gendered words annotated.
     - G-WORDS: List of annotated target gendered words separated by "&". 


## Dataset Creation

Refer to the original [paper]() for full details on dataset creation. 

### Curation Rationale

GeNTE is designed to test gender neutral language modeling and to evaluate models’ ability to perform gender-neutral translations under desirable circumstances. In
fact, when referents’ gender is unknown or irrelevant, undue gender inferences should not be made
and translation should be neutral. Instead, when a referent’s gender is relevant and
known, MT should not over-generalize to neutral translations. The corpus hence consists parallel sentences with mentions to human referents that equally represent two
translation scenarios: 

- `Set-N`: featuring gender-ambiguous source sentences that require to be neutrally rendered in translation;
- `Set-G`: featuring gender-unambiguous source sentences, which shall
be properly rendered with gendered (masculine or feminine) forms in translation.

Across the three available language pairs, mGente features 1,106 fully parallel en-it/es/de segments to maximize comparability, i.e. `Parallel set`. 
Parallel multilingual instances feature the same string in the `SRC` data field. 

### Source Data

The dataset contains text data extracted and edited from the Europarl Corpus ([common test set 2](https://www.statmt.org/europarl/archives.html)), and all rights of the data belong to the European Union and/or respective copyright holders. 
Please refer to Europarl “[Terms of Use](https://www.statmt.org/europarl/archives.html)” for details.

### Annotations
For each sentence pair extracted from Europarl (src, ref), mGeNTE includes an additional reference in the target language, which differs from the original one only in that it refers to
the human entities with neutral expressions. 

The neutral reference translations were created by professionals based on the following en-it [guidelines](https://drive.google.com/file/d/1TvV6NQoXiPHNSUHYlf4NFhef1_PKncF6/view?usp=sharing).
and en-es/de [guidelines](https://github.com/bsavoldi/mGeNTE-neutral).

### Dataset Curators

The authors of mGeNTE are the dataset curators.
For curating efforts coordination, refer to Beatrice Savoldi (FBK) at <[email protected]>


### Licensing Information

The mGeNTE corpus is released under a Creative Commons Attribution 4.0 International license (CC BY 4.0).


## Citation
```bibtex
@misc{savoldi-etal-2025-mgente,
    title = {{mGeNTE: A Multilingual Resource for Gender-Neutral Language and Translation}},
    author = "Savoldi, Beatrice and 
      Cupin, Eleonora  and
      Manjinder, Thind  and
      Lauscher, Anne and
      Bentivogli, Luisa",
    month = jan,
    year = "2025",
    publisher = "arxiv",
    url = " "
}
```


## Contributions
Thanks to [@BSavoldi](https://huggingface.co/BSavoldi) for adding this dataset.