Datasets:
File size: 7,116 Bytes
4c49f63 41f6bcd 4c49f63 323bf25 4c49f63 658d135 41f6bcd 658d135 41f6bcd 658d135 41f6bcd 9c8606c 4c49f63 254fa20 4c49f63 323bf25 4c49f63 c11e980 4c49f63 9c8606c 4c49f63 9c8606c 4c49f63 9c8606c 4c49f63 9c8606c 1704867 9c8606c 4c49f63 9c8606c 4c49f63 9c8606c 4c49f63 9c8606c 4c49f63 9c8606c 4c49f63 9c8606c 4c49f63 9c8606c 4c49f63 9c8606c 4c49f63 9c8606c 4c49f63 9c8606c 4c49f63 1704867 4c49f63 9c8606c 4c49f63 9c8606c 4c49f63 9c8606c 4c49f63 9c8606c 4c49f63 9c8606c 4c49f63 9c8606c 4c49f63 9c8606c 1704867 4c49f63 9c8606c 4c49f63 9c8606c 4c49f63 9c8606c 4c49f63 9c8606c 4c49f63 9c8606c 4c49f63 9c8606c 4c49f63 9c8606c 4c49f63 9c8606c 4c49f63 9c8606c 1704867 9c8606c 4c49f63 9c8606c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
---
configs:
- config_name: mGeNTE
data_files:
- split: test
path:
- "en-es.tsv"
- "en-de.tsv"
- "en-it.tsv"
default: true
- config_name: mGeNTE en-it
data_files:
- split: test
path:
- "en-it.tsv"
- config_name: mGeNTE en-es
data_files:
- split: test
path:
- "en-es.tsv"
- config_name: mGeNTE en-de
data_files:
- split: test
path:
- "en-de.tsv"
- config_name: mGeNTE_common
data_files:
- split: test
path:
- "en-es_common.tsv"
- "en-de_common.tsv"
- "en-it_common.tsv"
annotations_creators:
- expert-generated
language:
- en
- it
- de
- es
language_creators:
- expert-generated
license:
- cc-by-4.0
multilinguality:
- multilingual
- translation
paperswithcode_id: null
pretty_name: MGeNTE
size_categories:
- 1K<n<10K
source_datasets: []
tags:
- gender
- bias
- inclusivity
- rewriting
- translation
- mt
task_categories:
- translation
- text-generation
task_ids:
- language-modeling
---
# Dataset Card for mGeNTE
**Homepage:** https://mt.fbk.eu/mgente/
## Dataset Summary
mGeNTE (**M**ultilingual **Ge**nder-**N**eutral **T**ranslation **E**valuation) is a natural, multilingual corpus designed to benchmark gender-neutral language and automatic translation.
mGente is built upon European Parliament speech data extracted from the [Europarl corpus](https://www.statmt.org/europarl/archives.html), and represents a mutlilingual expansion of the bilingual [GeNTE](https://huggingface.co/datasets/FBK-MT/GeNTE) dataset.
For each language pair, mGeNTE comprises 1500 parallel sentences, which are enriched with manual annotations and feature a balanced distribution of translation phenomena that either entail i) a gender-neutral translation (`set-N`), or ii) a gendered translation in the target language (`set-G`).
### Supported Tasks and Languages
mGeNTE supports cross-lingual (en-it, en-es, en-de) gender inclusive translation and intra-lingual (it-it, es-es, de-de) gender inclusive rewriting tasks.
## Dataset Structure
### Data Instances
The dataset consists of two main different configuration types:
- **`mGeNTE`:** The complete GeNTE corpus and its annotations, consisting of a tsv file for each language pair
- **`mGeNTE_common`:** Subset of the GeNTE corpus that comprises 3 alternative gender-neutral reference translations
### Data Fields
Each tsv file in **`mGeNTE`** is organized into 10 tab-separated columns as follows:
- ID: The unique mGeNTE ID.
- Europarl_ID: The original sentence ID from Europarl's common-test-set 2.
- SET: Indicates whether the entry belongs to the Set-G or the Set-N subportion of the corpus.
- SRC: The English source sentence.
- REF-G: The gendered reference translation in the target language.
- REF-N: The gender-neutral reference in the target language, produced by a professional translator.
- COMMON: Indicates whether the entry is part of GeNTE common-set (yes/no).
- GENDER: For entries belonging to the Set-G, indicates if the the entry is Feminine or Masculine (F/M).
- REF-G_ann: Tokenized version of the gendered reference translation with target gendered words annotated.
- G-WORDS: List of annotated target gendered words separated by "&".
For entries of the common set, REF-N provides the gender-neutral reference translation n. 2.
Each tsv file in **`mGeNTE_common`** comprises 200 entries organized into 11 tab-separated columns as follows:
- ID: The unique GeNTE ID.
- Europarl_ID: The original sentence ID from Europarl's common-test-set 2.
- SET: Indicates whether the entry belongs to the Set-G or the Set-N subportion of the corpus.
- SRC: The English source sentence.
- REF-G: The gendered reference translation in the target language.
- REF-N1: The gender-neutral reference in the target language produced by Translator 1.
- REF-N2: The gender-neutral reference in the target language produced by Translator 2.
- REF-N3: The gender-neutral reference in the target language produced by Translator 3.
- GENDER: For entries belonging to the Set-G, indicates if the the entry is Feminine or Masculine (F/M).
- REF-G_ann: Tokenized version of the gendered reference translation with target gendered words annotated.
- G-WORDS: List of annotated target gendered words separated by "&".
## Dataset Creation
Refer to the original [paper]() for full details on dataset creation.
### Curation Rationale
GeNTE is designed to test gender neutral language modeling and to evaluate models’ ability to perform gender-neutral translations under desirable circumstances. In
fact, when referents’ gender is unknown or irrelevant, undue gender inferences should not be made
and translation should be neutral. Instead, when a referent’s gender is relevant and
known, MT should not over-generalize to neutral translations. The corpus hence consists parallel sentences with mentions to human referents that equally represent two
translation scenarios:
- `Set-N`: featuring gender-ambiguous source sentences that require to be neutrally rendered in translation;
- `Set-G`: featuring gender-unambiguous source sentences, which shall
be properly rendered with gendered (masculine or feminine) forms in translation.
Across the three available language pairs, mGente features 1,106 fully parallel en-it/es/de segments to maximize comparability, i.e. `Parallel set`.
Parallel multilingual instances feature the same string in the `SRC` data field.
### Source Data
The dataset contains text data extracted and edited from the Europarl Corpus ([common test set 2](https://www.statmt.org/europarl/archives.html)), and all rights of the data belong to the European Union and/or respective copyright holders.
Please refer to Europarl “[Terms of Use](https://www.statmt.org/europarl/archives.html)” for details.
### Annotations
For each sentence pair extracted from Europarl (src, ref), mGeNTE includes an additional reference in the target language, which differs from the original one only in that it refers to
the human entities with neutral expressions.
The neutral reference translations were created by professionals based on the following en-it [guidelines](https://drive.google.com/file/d/1TvV6NQoXiPHNSUHYlf4NFhef1_PKncF6/view?usp=sharing).
and en-es/de [guidelines](https://github.com/bsavoldi/mGeNTE-neutral).
### Dataset Curators
The authors of mGeNTE are the dataset curators.
For curating efforts coordination, refer to Beatrice Savoldi (FBK) at <[email protected]>
### Licensing Information
The mGeNTE corpus is released under a Creative Commons Attribution 4.0 International license (CC BY 4.0).
## Citation
```bibtex
@misc{savoldi-etal-2025-mgente,
title = {{mGeNTE: A Multilingual Resource for Gender-Neutral Language and Translation}},
author = "Savoldi, Beatrice and
Cupin, Eleonora and
Manjinder, Thind and
Lauscher, Anne and
Bentivogli, Luisa",
month = jan,
year = "2025",
publisher = "arxiv",
url = " "
}
```
## Contributions
Thanks to [@BSavoldi](https://huggingface.co/BSavoldi) for adding this dataset. |