query-id
stringlengths
1
3
corpus-id
stringlengths
2
4
score
int64
1
1
1
c1
1
2
c2
1
3
c3
1
4
c4
1
5
c5
1
6
c6
1
7
c7
1
8
c8
1
9
c9
1
10
c10
1
11
c11
1
12
c12
1
13
c13
1
14
c14
1
15
c15
1
16
c16
1
17
c17
1
18
c18
1
19
c19
1
20
c20
1
21
c21
1
22
c22
1
23
c23
1
24
c24
1
25
c25
1
26
c26
1
27
c27
1
28
c28
1
29
c29
1
30
c30
1
31
c31
1
32
c32
1
33
c33
1
34
c34
1
35
c35
1
36
c36
1
37
c37
1
38
c38
1
39
c39
1
40
c40
1
41
c41
1
42
c42
1
43
c43
1
44
c44
1
45
c45
1
46
c46
1
47
c47
1
48
c48
1
49
c49
1
50
c50
1
51
c51
1
52
c52
1
53
c53
1
54
c54
1
55
c55
1
56
c56
1
57
c57
1
58
c58
1
59
c59
1
60
c60
1
61
c61
1
62
c62
1
63
c63
1
64
c64
1
65
c65
1
66
c66
1
67
c67
1
68
c68
1
69
c69
1
70
c70
1
71
c71
1
72
c72
1
73
c73
1
74
c74
1
75
c75
1
76
c76
1
77
c77
1
78
c78
1
79
c79
1
80
c80
1
81
c81
1
82
c82
1
83
c83
1
84
c84
1
85
c85
1
86
c86
1
87
c87
1
88
c88
1
89
c89
1
90
c90
1
91
c91
1
92
c92
1
93
c93
1
94
c94
1
95
c95
1
96
c96
1
97
c97
1
98
c98
1
99
c99
1
100
c100
1

Employing the MTEB evaluation framework's dataset version, utilize the code below for assessment:

import mteb
import logging
from sentence_transformers import SentenceTransformer
from mteb import MTEB

logger = logging.getLogger(__name__)

model_name = 'intfloat/e5-base-v2'
model = SentenceTransformer(model_name)
tasks = mteb.get_tasks(
    tasks=[
        "AppsRetrieval",
        "CodeFeedbackMT",
        "CodeFeedbackST",
        "CodeTransOceanContest",
        "CodeTransOceanDL",
        "CosQA",
        "SyntheticText2SQL",
        "StackOverflowQA",
        "COIRCodeSearchNetRetrieval",
        "CodeSearchNetCCRetrieval",
    ]
)
evaluation = MTEB(tasks=tasks)
results = evaluation.run(
    model=model,
    overwrite_results=True
)
print(result)
Downloads last month
313