|
|
|
"""Snacks Data Set""" |
|
|
|
import os |
|
import json |
|
|
|
import datasets |
|
from datasets.tasks import ImageClassification |
|
|
|
_CITATION = """ |
|
@misc{helff2023vlol, |
|
title={V-LoL: A Diagnostic Dataset for Visual Logical Learning}, |
|
author={Lukas Helff and Wolfgang Stammer and Hikaru Shindo and Devendra Singh Dhami and Kristian Kersting}, |
|
journal={Dataset available from https://sites.google.com/view/v-lol}, |
|
year={2023}, |
|
eprint={2306.07743}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.AI} |
|
} |
|
|
|
""" |
|
|
|
_DESCRIPTION = "This is a diagnostic dataset for visual logical learning. " \ |
|
"It consists of 2D images of trains, where each train is either going eastbound or westbound. " \ |
|
"The trains are composed of multiple wagons, which are composed of multiple properties. " \ |
|
"The task is to predict the direction of the train. " \ |
|
"The dataset is designed to test the ability of machine learning models to learn logical rules from visual input." |
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/LukasHug/v-lol-trains/" |
|
|
|
_LICENSE = "cc-by-4.0" |
|
_IMAGES_URL = "https://huggingface.co/datasets/LukasHug/v-lol-trains/resolve/main/data" |
|
_DIR = _IMAGES_URL |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_URL_DATA = { |
|
"V-LoL-Trains-TheoryX": f"{_DIR}/Trains_theoryx_MichalskiTrains_base_scene_len_2-4.zip", |
|
"V-LoL-Trains-Numerical": f"{_DIR}/Trains_numerical_MichalskiTrains_base_scene_len_2-4.zip", |
|
"V-LoL-Trains-Complex": f"{_DIR}/Trains_complex_MichalskiTrains_base_scene_len_2-4.zip", |
|
"V-LoL-Blocks-TheoryX": f"{_DIR}/SimpleObjects_theoryx_MichalskiTrains_base_scene_len_2-4.zip", |
|
"V-LoL-Blocks-Numerical": f"{_DIR}/SimpleObjects_numerical_MichalskiTrains_base_scene_len_2-4.zip", |
|
"V-LoL-Blocks-Complex": f"{_DIR}/SimpleObjects_complex_MichalskiTrains_base_scene_len_2-4.zip", |
|
"V-LoL-Trains-TheoryX-len7": |
|
{'train': f"{_DIR}/Trains_theoryx_MichalskiTrains_base_scene_len_2-4.zip", |
|
'test': f"{_DIR}/Trains_theoryx_MichalskiTrains_base_scene_len_7-7.zip"}, |
|
"V-LoL-Trains-Numerical-len7": |
|
{'train': f"{_DIR}/Trains_numerical_MichalskiTrains_base_scene_len_2-4.zip", |
|
'test': f"{_DIR}/Trains_numerical_MichalskiTrains_base_scene_len_7-7.zip"}, |
|
"V-LoL-Trains-Complex-len7": |
|
{'train': f"{_DIR}/Trains_complex_MichalskiTrains_base_scene_len_2-4.zip", |
|
'test': f"{_DIR}/Trains_complex_MichalskiTrains_base_scene_len_7-7.zip"}, |
|
"V-LoL-Random-Blocks-TheoryX": |
|
{'train': f"{_DIR}/SimpleObjects_theoryx_MichalskiTrains_base_scene_len_2-4.zip", |
|
'test': f"{_DIR}/SimpleObjects_theoryx_RandomTrains_base_scene_len_2-4.zip"}, |
|
"V-LoL-Random-Trains-TheoryX": |
|
{'train': f"{_DIR}/Trains_theoryx_MichalskiTrains_base_scene_len_2-4.zip", |
|
'test': f"{_DIR}/Trains_theoryx_RandomTrains_base_scene_len_2-4.zip"}, |
|
|
|
|
|
|
|
|
|
|
|
} |
|
|
|
_NAMES = ["westbound", "eastbound"] |
|
class VLoLConfig(datasets.BuilderConfig): |
|
"""Builder Config for Food-101""" |
|
|
|
def __init__(self, data_url, **kwargs): |
|
"""BuilderConfig for Food-101. |
|
Args: |
|
metadata_urls: dictionary with keys 'train' and 'validation' containing the archive metadata URLs |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(VLoLConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs) |
|
if isinstance(data_url, dict): |
|
self.metadata_urls = data_url |
|
else: |
|
self.metadata_urls = {'train': data_url, 'test': None} |
|
|
|
|
|
class vloltrains(datasets.GeneratorBasedBuilder): |
|
'''v-lol-trains Data Set''' |
|
|
|
BUILDER_CONFIGS = [ |
|
VLoLConfig( |
|
name=name, |
|
description=name, |
|
data_url=data_url, |
|
) for name, data_url in _URL_DATA.items() |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"label": datasets.features.ClassLabel(names=_NAMES), |
|
} |
|
), |
|
supervised_keys=("image", "label"), |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
license=_LICENSE, |
|
task_templates=ImageClassification(image_column="image", label_column="label"), |
|
) |
|
|
|
def get_data(self, dl_manager, url): |
|
archive_path = os.path.join(dl_manager.download_and_extract(url), url.split('/')[-1].split('.')[0]) |
|
|
|
print(os.listdir(archive_path)) |
|
image_dir = os.path.join(archive_path, "images") |
|
metadata_pth = os.path.join(archive_path, "all_scenes", "all_scenes.json") |
|
images, y, trains, masks = [], [], [], [] |
|
|
|
|
|
with open(metadata_pth, 'r') as f: |
|
all_scenes = json.load(f) |
|
for scene in all_scenes['scenes']: |
|
images.append(scene['image_filename']) |
|
train = scene['train'] |
|
y.append(int(train.split(' ')[0] == 'east')) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return image_dir, y, images |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
if self.config.metadata_urls['test'] is None: |
|
image_dir, y, images = self.get_data(dl_manager, self.config.metadata_urls['train']) |
|
image_dir_train, image_dir_test = image_dir, image_dir |
|
from sklearn.model_selection import train_test_split |
|
y_train, y_test, images_train, images_test = train_test_split(y, images, test_size=0.2, random_state=0) |
|
else: |
|
image_dir_train, y_train, images_train = self.get_data(dl_manager, self.config.metadata_urls['train']) |
|
image_dir_test, y_test, images_test = self.get_data(dl_manager, self.config.metadata_urls['test']) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"image_dir": image_dir_train, "labels": y_train, "images": images_train} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"image_dir": image_dir_test, "labels": y_test, "images": images_test} |
|
), |
|
] |
|
|
|
def _generate_examples(self, image_dir, labels, images): |
|
for i, (image, label) in enumerate(zip(images, labels)): |
|
yield i, {"image": os.path.join(image_dir, image), "label": label} |
|
|