Datasets:
File size: 8,714 Bytes
ca1fdb0 5571213 84c942e 5571213 84c942e 5571213 84c942e 5571213 84c942e 5571213 84c942e 5571213 ca1fdb0 5571213 ca1fdb0 5571213 b8fb613 ee813ef fdda5ec 5571213 ca1fdb0 5571213 ca1fdb0 5571213 ca1fdb0 5571213 ca1fdb0 5571213 29fef7d 5571213 ca1fdb0 5571213 ca1fdb0 5571213 ca1fdb0 fdda5ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
# coding=utf-8
"""Snacks Data Set"""
import os
import json
import datasets
from datasets.tasks import ImageClassification
_CITATION = """
@misc{helff2023vlol,
title={V-LoL: A Diagnostic Dataset for Visual Logical Learning},
author={Lukas Helff and Wolfgang Stammer and Hikaru Shindo and Devendra Singh Dhami and Kristian Kersting},
journal={Dataset available from https://sites.google.com/view/v-lol},
year={2023},
eprint={2306.07743},
archivePrefix={arXiv},
primaryClass={cs.AI}
}
"""
_DESCRIPTION = "This is a diagnostic dataset for visual logical learning. " \
"It consists of 2D images of trains, where each train is either going eastbound or westbound. " \
"The trains are composed of multiple wagons, which are composed of multiple properties. " \
"The task is to predict the direction of the train. " \
"The dataset is designed to test the ability of machine learning models to learn logical rules from visual input."
_HOMEPAGE = "https://huggingface.co/datasets/LukasHug/v-lol-trains/"
_LICENSE = "cc-by-4.0"
_IMAGES_URL = "https://huggingface.co/datasets/LukasHug/v-lol-trains/resolve/main/data"
_DIR = _IMAGES_URL
# _URL_DATA = {
# "V-LoL-Trains-TheoryX": f"{_DIR}/V-LoL-Trains-TheoryX.zip",
# "V-LoL-Trains-Numerical": f"{_DIR}/V-LoL-Trains-Numerical.zip",
# "V-LoL-Trains-Complex": f"{_DIR}/V-LoL-Trains-Complex.zip",
# "V-LoL-Blocks-TheoryX": f"{_DIR}/V-LoL-Blocks-TheoryX.zip",
# "V-LoL-Blocks-Numerical": f"{_DIR}/V-LoL-Blocks-Numerical.zip",
# "V-LoL-Blocks-Complex": f"{_DIR}/V-LoL-Blocks-Complex.zip",
# "V-LoL-Trains-TheoryX-len7": f"{_DIR}/V-LoL-Trains-TheoryX-len7.zip",
# "V-LoL-Trains-Numerical-len7": f"{_DIR}/V-LoL-Trains-Numerical-len7.zip",
# "V-LoL-Trains-Complex-len7": f"{_DIR}/V-LoL-Trains-Complex-len7.zip",
# "V-LoL-Random-Blocks-TheoryX": f"{_DIR}/V-LoL-Random-Blocks-TheoryX.zip",
# "V-LoL-Random-Trains-TheoryX": f"{_DIR}/V-LoL-Random-Trains-TheoryX.zip",
# }
_URL_DATA = {
"V-LoL-Trains-TheoryX": f"{_DIR}/Trains_theoryx_MichalskiTrains_base_scene_len_2-4.zip",
"V-LoL-Trains-Numerical": f"{_DIR}/Trains_numerical_MichalskiTrains_base_scene_len_2-4.zip",
"V-LoL-Trains-Complex": f"{_DIR}/Trains_complex_MichalskiTrains_base_scene_len_2-4.zip",
"V-LoL-Blocks-TheoryX": f"{_DIR}/SimpleObjects_theoryx_MichalskiTrains_base_scene_len_2-4.zip",
"V-LoL-Blocks-Numerical": f"{_DIR}/SimpleObjects_numerical_MichalskiTrains_base_scene_len_2-4.zip",
"V-LoL-Blocks-Complex": f"{_DIR}/SimpleObjects_complex_MichalskiTrains_base_scene_len_2-4.zip",
"V-LoL-Trains-TheoryX-len7":
{'train': f"{_DIR}/Trains_theoryx_MichalskiTrains_base_scene_len_2-4.zip",
'test': f"{_DIR}/Trains_theoryx_MichalskiTrains_base_scene_len_7-7.zip"},
"V-LoL-Trains-Numerical-len7":
{'train': f"{_DIR}/Trains_numerical_MichalskiTrains_base_scene_len_2-4.zip",
'test': f"{_DIR}/Trains_numerical_MichalskiTrains_base_scene_len_7-7.zip"},
"V-LoL-Trains-Complex-len7":
{'train': f"{_DIR}/Trains_complex_MichalskiTrains_base_scene_len_2-4.zip",
'test': f"{_DIR}/Trains_complex_MichalskiTrains_base_scene_len_7-7.zip"},
"V-LoL-Random-Blocks-TheoryX":
{'train': f"{_DIR}/SimpleObjects_theoryx_MichalskiTrains_base_scene_len_2-4.zip",
'test': f"{_DIR}/SimpleObjects_theoryx_RandomTrains_base_scene_len_2-4.zip"},
"V-LoL-Random-Trains-TheoryX":
{'train': f"{_DIR}/Trains_theoryx_MichalskiTrains_base_scene_len_2-4.zip",
'test': f"{_DIR}/Trains_theoryx_RandomTrains_base_scene_len_2-4.zip"},
# "V-LoL-Trains-TheoryX-len7": f"{_DIR}/Trains_theoryx_MichalskiTrains_base_scene_len_7.zip",
# "V-LoL-Trains-Numerical-len7": f"{_DIR}/Trains_numerical_MichalskiTrains_base_scene_len_7.zip",
# "V-LoL-Trains-Complex-len7": f"{_DIR}/Trains_complex_MichalskiTrains_base_scene_len_7.zip",
# "V-LoL-Random-Blocks-TheoryX": f"{_DIR}/SimpleObjects_theoryx_RandomTrains_base_scene_len_2-4.zip",
# "V-LoL-Random-Trains-TheoryX": f"{_DIR}/Trains_theoryx_RandomTrains_base_scene_len_2-4.zip",
}
_NAMES = ["westbound", "eastbound"]
class VLoLConfig(datasets.BuilderConfig):
"""Builder Config for Food-101"""
def __init__(self, data_url, **kwargs):
"""BuilderConfig for Food-101.
Args:
metadata_urls: dictionary with keys 'train' and 'validation' containing the archive metadata URLs
**kwargs: keyword arguments forwarded to super.
"""
super(VLoLConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs)
if isinstance(data_url, dict):
self.metadata_urls = data_url
else:
self.metadata_urls = {'train': data_url, 'test': None}
class vloltrains(datasets.GeneratorBasedBuilder):
'''v-lol-trains Data Set'''
BUILDER_CONFIGS = [
VLoLConfig(
name=name,
description=name,
data_url=data_url,
) for name, data_url in _URL_DATA.items()
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"image": datasets.Image(),
"label": datasets.features.ClassLabel(names=_NAMES),
}
),
supervised_keys=("image", "label"),
homepage=_HOMEPAGE,
citation=_CITATION,
license=_LICENSE,
task_templates=ImageClassification(image_column="image", label_column="label"),
)
def get_data(self, dl_manager, url):
archive_path = os.path.join(dl_manager.download_and_extract(url), url.split('/')[-1].split('.')[0])
# print containg folders
print(os.listdir(archive_path))
image_dir = os.path.join(archive_path, "images")
metadata_pth = os.path.join(archive_path, "all_scenes", "all_scenes.json")
images, y, trains, masks = [], [], [], []
# ds settings
# load data
with open(metadata_pth, 'r') as f:
all_scenes = json.load(f)
for scene in all_scenes['scenes']:
images.append(scene['image_filename'])
train = scene['train']
y.append(int(train.split(' ')[0] == 'east'))
# depths.append(scene['depth_map_filename'])
# if 'train' in scene:
# # new json data format
# train = scene['train']
# l = train.split(' ')
# y = l[0]
# y = int(l[0] == 'east')
# train = MichalskiTrain.from_text(train, train_vis)
# else:
# # old json data format
# train = scene['m_train']
# train = jsonpickle.decode(train)
# # trains.append(train.replace('michalski_trains.m_train.', 'm_train.'))
# # text = train.to_txt()
# # t1 = MichalskiTrain.from_text(text, train_vis)
# lab = int(train.get_label() == 'east')
# y.append(lab)
# trains.append(train)
# masks.append(scene['car_masks'])
return image_dir, y, images
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
if self.config.metadata_urls['test'] is None:
image_dir, y, images = self.get_data(dl_manager, self.config.metadata_urls['train'])
image_dir_train, image_dir_test = image_dir, image_dir
from sklearn.model_selection import train_test_split
y_train, y_test, images_train, images_test = train_test_split(y, images, test_size=0.2, random_state=0)
else:
image_dir_train, y_train, images_train = self.get_data(dl_manager, self.config.metadata_urls['train'])
image_dir_test, y_test, images_test = self.get_data(dl_manager, self.config.metadata_urls['test'])
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"image_dir": image_dir_train, "labels": y_train, "images": images_train}
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"image_dir": image_dir_test, "labels": y_test, "images": images_test}
),
]
def _generate_examples(self, image_dir, labels, images):
for i, (image, label) in enumerate(zip(images, labels)):
yield i, {"image": os.path.join(image_dir, image), "label": label}
|