Whisper Large v3 Turbo - Bahriddin Muminov
This model is a fine-tuned version of openai/whisper-large-v3-turbo on the Common Voice 16.1 dataset. It achieves the following results on the evaluation set:
- Loss: 0.2958
- Wer: 28.2582
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- training_steps: 10000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.429 | 0.66 | 2000 | 0.4073 | 38.0018 |
0.2671 | 1.32 | 4000 | 0.3378 | 31.0778 |
0.2511 | 1.98 | 6000 | 0.3102 | 29.2484 |
0.1539 | 2.64 | 8000 | 0.3022 | 30.0763 |
0.111 | 3.3 | 10000 | 0.2958 | 28.2582 |
Framework versions
- Transformers 4.37.2
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 14
Model tree for dataprizma/whisper-large-v3-turbo
Base model
openai/whisper-large-v3
Finetuned
openai/whisper-large-v3-turbo