This model is based on a model originally licensed under the Apache License 2.0, fine-tuned using a dataset licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC-BY-NC-SA 4.0).

As a result of the dataset's licensing terms, this model and any derived works are distributed under the CC-BY-NC-SA 4.0 license.

Please note that the Apache License 2.0 conditions apply to the base model, but the CC-BY-NC-SA 4.0 license restricts the commercial use of this fine-tuned version.

Uploaded model

  • Developed by: daichira
  • License: cc-by-nc-sa-4.0
  • Finetuned from model : llm-jp/llm-jp-3-13b

This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.

README.md

llm-jp-3-13b-finetune2

概要

このプロジェクトは、Hugging Face上で提供される言語モデルllm-jp/llm-jp-3-13bを基盤とし、LoRA (Low-Rank Adaptation) を使用して特定のデータセットで微調整を行ったモデルllm-jp-3-13b-finetune2を公開するものです。このREADMEは、元のコードを再現可能な形でセットアップ、トレーニング、推論の手順を示します。


前提条件

このプロジェクトを実行するには、以下の環境とツールが必要です:

  • Python 3.8以上
  • Google Colabまたはローカル環境 (GPU推奨)
  • Hugging Faceアクセストークン (HF_TOKEN)

セットアップ手順

1. ライブラリのインストール

Google Colabの場合、以下のコマンドを使用して必要なライブラリをインストールします:

!pip uninstall unsloth -y && pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
!pip install --upgrade torch
!pip install --upgrade xformers
!pip install ipywidgets --upgrade

Flash Attention 2をサポートするために、以下をインストールします:

import torch
if torch.cuda.get_device_capability()[0] >= 8:
    !pip install --no-deps packaging ninja einops "flash-attn>=2.6.3"

2. モデルとトークナイザーのロード

以下のコードを使用して、Hugging Faceからベースモデルをロードし、LoRAの設定を適用します:

from transformers import AutoModelForCausalLM, AutoTokenizer
from unsloth import FastLanguageModel

max_seq_length = 512
dtype = None
load_in_4bit = True
model_id = "llm-jp/llm-jp-3-13b"
new_model_id = "llm-jp-3-13b-finetune2"

model, tokenizer = FastLanguageModel.from_pretrained(
    model_name=model_id,
    dtype=dtype,
    load_in_4bit=load_in_4bit,
    trust_remote_code=True,
)

model = FastLanguageModel.get_peft_model(
    model,
    r=32,
    target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
    lora_alpha=32,
    lora_dropout=0.05,
    bias="none",
    use_gradient_checkpointing="unsloth",
    random_state=3407,
    use_rslora=False,
    loftq_config=None,
    max_seq_length=max_seq_length,
)

データセットの準備

以下のコードでデータセットをロードし、フォーマットを適用します:

!pip install datasets
from datasets import load_dataset

dataset = load_dataset("json", data_files="./ichikara-instruction-003-001-1.json")

prompt = """### 指示
{}
### 回答
{}"""
EOS_TOKEN = tokenizer.eos_token

def formatting_prompts_func(examples):
    input_text = examples["text"]
    output_text = examples["output"]
    return {"formatted_text": prompt.format(input_text, output_text) + EOS_TOKEN}

dataset = dataset.map(formatting_prompts_func, num_proc=4)

トレーニングの設定

以下の手順でトレーニングを設定します:

from trl import SFTTrainer
from transformers import TrainingArguments
from unsloth import is_bfloat16_supported

trainer = SFTTrainer(
    model=model,
    tokenizer=tokenizer,
    train_dataset=dataset["train"],
    max_seq_length=max_seq_length,
    dataset_text_field="formatted_text",
    args=TrainingArguments(
        per_device_train_batch_size=2,
        gradient_accumulation_steps=4,
        num_train_epochs=1,
        logging_steps=10,
        warmup_steps=10,
        save_steps=100,
        save_total_limit=2,
        learning_rate=2e-4,
        fp16=not is_bfloat16_supported(),
        bf16=is_bfloat16_supported(),
        group_by_length=True,
        seed=3407,
        output_dir="outputs",
    ),
)

# 学習実行
torch.cuda.empty_cache()
trainer.train()

推論

以下のコードでトレーニング済みモデルを使用して推論を行います:

from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
import torch
from tqdm import tqdm
import json

HF_TOKEN = "Your_token_Write権限"
model_name = "daichira/llm-jp-3-13b-finetune2"

bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16,
    bnb_4bit_use_double_quant=False,
)

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    quantization_config=bnb_config,
    device_map="auto",
    token=HF_TOKEN
)

tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, token=HF_TOKEN)

datasets = []
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
    item = ""
    for line in f:
        line = line.strip()
        item += line
        if item.endswith("}"):
            datasets.append(json.loads(item))
            item = ""

results = []
for data in tqdm(datasets):
    input_text = data["input"]
    prompt = f"### 指示\n{input_text}\n### 回答\n"

    tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device)
    with torch.no_grad():
        outputs = model.generate(
            tokenized_input,
            max_new_tokens=100,
            do_sample=False,
            repetition_penalty=1.2
        )[0]
    output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)

    results.append({"task_id": data["task_id"], "input": input_text, "output": output})

import re
model_name = re.sub(".*/", "", model_name)
with open(f"./{model_name}-outputs.jsonl", 'w', encoding='utf-8') as f:
    for result in results:
        json.dump(result, f, ensure_ascii=False)
        f.write('\n')

注意事項

  • 本モデルは日本語専用で設計されています。
  • 再現性を確保するため、ランダムシードを固定しています (seed=3407)。
  • モデルのパラメータ量が大きいため、十分なGPUメモリを確保してください (推奨: 16GB以上)。

''''

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for daichira/llm-jp-3-13b-finetune2

Finetuned
(1145)
this model