cybersectony's picture
Update README.md
6724dec verified
---
license: apache-2.0
datasets:
- cybersectony/PhishingEmailDetectionv2.0
language:
- en
base_model:
- distilbert/distilbert-base-uncased
library_name: transformers
---
# A distilBERT based Phishing Email Detection Model
## Model Overview
This model is based on DistilBERT and has been fine-tuned for multilabel classification of Emails and URLs as safe or potentially phishing.
## Key Specifications
- __Base Architecture:__ DistilBERT
- __Task:__ Multilabel Classification
- __Fine-tuning Framework:__ Hugging Face Trainer API
- __Training Duration:__ 3 epochs
## Performance Metrics
- __Accuracy:__ 99.58
- __F1-score:__ 99.579
- __Precision:__ 99.583
- __Recall:__ 99.58
## Dataset Details
The model was trained on a custom dataset of Emails and URLs labeled as legitimate or phishing. The dataset is available at [`cybersectony/PhishingEmailDetectionv2.0`](https://huggingface.co/datasets/cybersectony/PhishingEmailDetectionv2.0) on the Hugging Face Hub.
## Usage Guide
## Installation
```bash
pip install transformers
pip install torch
```
## Quick Start
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("cybersectony/phishing-email-detection-distilbert_v2.4.1")
import torch
# Load model and tokenizer
model = AutoModelForSequenceClassification.from_pretrained("cybersectony/phishing-email-detection-distilbert_v2.4.1")
def predict_email(email_text):
# Preprocess and tokenize
inputs = tokenizer(
email_text,
return_tensors="pt",
truncation=True,
max_length=512
)
# Get prediction
with torch.no_grad():
outputs = model(**inputs)
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
# Get probabilities for each class
probs = predictions[0].tolist()
# Create labels dictionary
labels = {
"legitimate_email": probs[0],
"phishing_url": probs[1],
"legitimate_url": probs[2],
"phishing_url_alt": probs[3]
}
# Determine the most likely classification
max_label = max(labels.items(), key=lambda x: x[1])
return {
"prediction": max_label[0],
"confidence": max_label[1],
"all_probabilities": labels
}
```
## Example Usage
```python
# Example usage
email = """
Dear User,
Your account security needs immediate attention. Please verify your credentials.
Click here: http://suspicious-link.com
"""
result = predict_email(email)
print(f"Prediction: {result['prediction']}")
print(f"Confidence: {result['confidence']:.2%}")
print("\nAll probabilities:")
for label, prob in result['all_probabilities'].items():
print(f"{label}: {prob:.2%}")
```