layoutlmv3-funsd

This model is a fine-tuned version of microsoft/layoutlmv3-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8428
  • Precision: 0.8993
  • Recall: 0.9046
  • F1: 0.9019
  • Accuracy: 0.8354

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 2.63 100 0.6294 0.7864 0.8286 0.8070 0.7966
No log 5.26 200 0.5034 0.8389 0.8793 0.8586 0.8343
No log 7.89 300 0.5673 0.8597 0.9011 0.8799 0.8416
No log 10.53 400 0.5730 0.8783 0.9106 0.8941 0.8395
0.4463 13.16 500 0.6630 0.8923 0.9016 0.8970 0.8412
0.4463 15.79 600 0.7048 0.8850 0.8947 0.8898 0.8329
0.4463 18.42 700 0.7772 0.8925 0.9071 0.8997 0.8317
0.4463 21.05 800 0.8408 0.8959 0.9016 0.8987 0.8313
0.4463 23.68 900 0.8580 0.8918 0.9051 0.8984 0.8313
0.0611 26.32 1000 0.8428 0.8993 0.9046 0.9019 0.8354

Framework versions

  • Transformers 4.36.0
  • Pytorch 2.0.0
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
10
Safetensors
Model size
125M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for cuongdz01/layoutlmv3-funsd

Finetuned
(220)
this model