metadata
library_name: ctranslate2
license: mit
base_model:
- microsoft/phi-4
base_model_relation: quantized
tags:
- ctranslate2
- AWQ
- phi-4
- phi
- chat
Ctranslate2-based version of Phi-4
- First converted to AWQ format using the cosmopedia-100k dataset for calibration.
- Converted to Ctranslate2-compatible format
For inference, the main difference is that you do not use the "compute_type" parameter.
Example Usage
Non-Streaming Example:
import ctranslate2
from transformers import AutoTokenizer
def generate_response(prompt: str, system_message: str, model_path: str) -> str:
generator = ctranslate2.Generator(
model_path,
device="cuda",
)
tokenizer = AutoTokenizer.from_pretrained(model_path)
formatted_prompt = f"""<|im_start|>system<|im_sep|>{system_message}<|im_end|>
<|im_start|>user<|im_sep|>{prompt}<|im_end|>
<|im_start|>assistant<|im_sep|>"""
tokens = tokenizer.tokenize(formatted_prompt)
results = generator.generate_batch(
[tokens],
max_length=1024,
sampling_temperature=0.7,
include_prompt_in_result=False
)
response = tokenizer.decode(results[0].sequences_ids[0], skip_special_tokens=True)
return response
if __name__ == "__main__":
model_path = "path/to/your/phi-4-ct2-model"
system_message = "You are a helpful AI assistant."
user_prompt = "Write a short poem about a cat."
response = generate_response(user_prompt, system_message, model_path)
print("\nGenerated response:")
print(response)
Streaming Example:
import ctranslate2
from transformers import AutoTokenizer
import sys
def generate_response(prompt: str, system_message: str, model_path: str) -> None:
generator = ctranslate2.Generator(model_path, device="cuda")
tokenizer = AutoTokenizer.from_pretrained(model_path)
formatted_prompt = f"""<|im_start|>system<|im_sep|>{system_message}<|im_end|>
<|im_start|>user<|im_sep|>{prompt}<|im_end|>
<|im_start|>assistant<|im_sep|>"""
tokens: List[str] = tokenizer.tokenize(formatted_prompt)
for step in generator.generate_tokens([tokens], max_length=1024, sampling_temperature=0.7):
token: str = step.token
if token in tokenizer.eos_token or token in tokenizer.all_special_tokens:
break
decoded_token: str = tokenizer.decode([step.token_id])
print(decoded_token, end="", flush=True)
if __name__ == "__main__":
model_path = "path/to/your/phi-4-ct2-model"
system_message = "You are a helpful AI assistant."
user_prompt = "Write a short poem about a cat."
print("\nGenerating response:")
generate_response(user_prompt, system_message, model_path)