twitter-xlm-roberta-base-sentiment-finetunned-davincis-local

This model is a fine-tuned version of citizenlab/twitter-xlm-roberta-base-sentiment-finetunned on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5461
  • Accuracy: 0.9302
  • F1: 0.9301

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 72
  • eval_batch_size: 72
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.4006 1.0 41 0.3037 0.8779 0.8771
0.2165 2.0 82 0.2007 0.9205 0.9205
0.1311 3.0 123 0.2124 0.9244 0.9244
0.0839 4.0 164 0.2504 0.9341 0.9341
0.0525 5.0 205 0.3695 0.9147 0.9144
0.0392 6.0 246 0.3393 0.9244 0.9243
0.0282 7.0 287 0.4203 0.9244 0.9242
0.0205 8.0 328 0.3889 0.9302 0.9301
0.012 9.0 369 0.6586 0.9012 0.9006
0.0069 10.0 410 0.4873 0.9302 0.9301
0.005 11.0 451 0.6105 0.9089 0.9085
0.0082 12.0 492 0.4642 0.9302 0.9301
0.0022 13.0 533 0.3709 0.9516 0.9515
0.0088 14.0 574 0.5322 0.9283 0.9281
0.0067 15.0 615 0.6661 0.9128 0.9124
0.0015 16.0 656 0.5450 0.9283 0.9282
0.0006 17.0 697 0.5453 0.9302 0.9301
0.0002 18.0 738 0.5555 0.9302 0.9301
0.0018 19.0 779 0.5408 0.9302 0.9301
0.0022 20.0 820 0.5461 0.9302 0.9301

Framework versions

  • Transformers 4.27.4
  • Pytorch 1.13.1+cu116
  • Datasets 2.11.0
  • Tokenizers 0.13.2
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.