twitter-xlm-roberta-base-sentiment-finetunned-davincis-local
This model is a fine-tuned version of citizenlab/twitter-xlm-roberta-base-sentiment-finetunned on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5461
- Accuracy: 0.9302
- F1: 0.9301
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 72
- eval_batch_size: 72
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.4006 | 1.0 | 41 | 0.3037 | 0.8779 | 0.8771 |
0.2165 | 2.0 | 82 | 0.2007 | 0.9205 | 0.9205 |
0.1311 | 3.0 | 123 | 0.2124 | 0.9244 | 0.9244 |
0.0839 | 4.0 | 164 | 0.2504 | 0.9341 | 0.9341 |
0.0525 | 5.0 | 205 | 0.3695 | 0.9147 | 0.9144 |
0.0392 | 6.0 | 246 | 0.3393 | 0.9244 | 0.9243 |
0.0282 | 7.0 | 287 | 0.4203 | 0.9244 | 0.9242 |
0.0205 | 8.0 | 328 | 0.3889 | 0.9302 | 0.9301 |
0.012 | 9.0 | 369 | 0.6586 | 0.9012 | 0.9006 |
0.0069 | 10.0 | 410 | 0.4873 | 0.9302 | 0.9301 |
0.005 | 11.0 | 451 | 0.6105 | 0.9089 | 0.9085 |
0.0082 | 12.0 | 492 | 0.4642 | 0.9302 | 0.9301 |
0.0022 | 13.0 | 533 | 0.3709 | 0.9516 | 0.9515 |
0.0088 | 14.0 | 574 | 0.5322 | 0.9283 | 0.9281 |
0.0067 | 15.0 | 615 | 0.6661 | 0.9128 | 0.9124 |
0.0015 | 16.0 | 656 | 0.5450 | 0.9283 | 0.9282 |
0.0006 | 17.0 | 697 | 0.5453 | 0.9302 | 0.9301 |
0.0002 | 18.0 | 738 | 0.5555 | 0.9302 | 0.9301 |
0.0018 | 19.0 | 779 | 0.5408 | 0.9302 | 0.9301 |
0.0022 | 20.0 | 820 | 0.5461 | 0.9302 | 0.9301 |
Framework versions
- Transformers 4.27.4
- Pytorch 1.13.1+cu116
- Datasets 2.11.0
- Tokenizers 0.13.2
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.