csikasote's picture
End of training
8d50746 verified
metadata
library_name: transformers
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
  - automatic-speech-recognition
  - toigen
  - mms
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: mms-1b-toigen-balanced-model
    results: []

mms-1b-toigen-balanced-model

This model is a fine-tuned version of facebook/mms-1b-all on the TOIGEN - TOI dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3234
  • Wer: 0.3755

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 2500.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
14.2297 0.8850 100 3.4836 1.0056
4.1389 1.7699 200 0.5562 0.5694
1.3643 2.6549 300 0.4360 0.4958
1.1715 3.5398 400 0.3980 0.4824
1.1309 4.4248 500 0.3785 0.4583
1.0283 5.3097 600 0.3741 0.4477
1.0148 6.1947 700 0.3669 0.4403
0.9961 7.0796 800 0.3607 0.4356
0.9248 7.9646 900 0.3581 0.4236
0.9482 8.8496 1000 0.3463 0.4356
0.8815 9.7345 1100 0.3488 0.4273
0.8209 10.6195 1200 0.3384 0.4
0.8754 11.5044 1300 0.3459 0.4051
0.8454 12.3894 1400 0.3317 0.3884
0.8164 13.2743 1500 0.3319 0.4032
0.7673 14.1593 1600 0.3311 0.3921
0.7953 15.0442 1700 0.3333 0.3944
0.7527 15.9292 1800 0.3313 0.3917
0.763 16.8142 1900 0.3278 0.3931
0.7319 17.6991 2000 0.3234 0.3755
0.7352 18.5841 2100 0.3248 0.3806
0.7017 19.4690 2200 0.3334 0.3852
0.6902 20.3540 2300 0.3304 0.3889
0.707 21.2389 2400 0.3314 0.3856

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0