distil-slovakbert-upos

This model is a fine-tuned version of crabz/distil-slovakbert on the universal_dependencies sk_snk dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1207
  • Precision: 0.9771
  • Recall: 0.9785
  • F1: 0.9778
  • Accuracy: 0.9801

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 266 0.2168 0.9570 0.9554 0.9562 0.9610
0.3935 2.0 532 0.1416 0.9723 0.9736 0.9730 0.9740
0.3935 3.0 798 0.1236 0.9722 0.9735 0.9728 0.9747
0.0664 4.0 1064 0.1195 0.9722 0.9741 0.9732 0.9766
0.0664 5.0 1330 0.1160 0.9764 0.9772 0.9768 0.9789
0.0377 6.0 1596 0.1194 0.9763 0.9776 0.9770 0.9790
0.0377 7.0 1862 0.1188 0.9740 0.9755 0.9748 0.9777
0.024 8.0 2128 0.1188 0.9762 0.9777 0.9769 0.9793
0.024 9.0 2394 0.1207 0.9774 0.9789 0.9781 0.9802
0.0184 10.0 2660 0.1207 0.9771 0.9785 0.9778 0.9801

Framework versions

  • Transformers 4.17.0.dev0
  • Pytorch 1.10.0
  • Datasets 1.16.1
  • Tokenizers 0.11.0
Downloads last month
13
Inference Examples
Inference API (serverless) has been turned off for this model.

Dataset used to train crabz/distil-slovakbert-upos

Evaluation results