CS224S_Quechua_Project_Bilingual

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2367
  • Wer: 0.2585

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 70
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.2273 0.3628 600 0.6478 0.6345
0.5989 0.7255 1200 0.4562 0.4218
0.4847 1.0883 1800 0.3781 0.3914
0.4599 1.4510 2400 0.3657 0.3400
0.3462 1.8138 3000 0.3296 0.3185
0.3738 2.1765 3600 0.2808 0.2975
0.2969 2.5393 4200 0.2856 0.2877
0.3985 2.9021 4800 0.2728 0.2889
0.2507 3.2648 5400 0.2676 0.2732
0.284 3.6276 6000 0.2539 0.2553
0.317 3.9903 6600 0.2359 0.2496
0.1526 4.3531 7200 0.2444 0.2609
0.1813 4.7158 7800 0.2367 0.2585

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
23
Safetensors
Model size
606M params
Tensor type
F32
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for cportoca/CS224S_Quechua_Project_Bilingual

Finetuned
(238)
this model

Space using cportoca/CS224S_Quechua_Project_Bilingual 1