|
How to use: |
|
|
|
With sentence transformers: |
|
``` |
|
from sentence_transformers import CrossEncoder |
|
model_path = "clarin-knext/herbert-large-msmarco" |
|
model = CrossEncoder(model_path, max_length=512) |
|
|
|
scores = model.predict([('Query', 'Paragraph1'), ('Query', 'Paragraph2') , ('Query', 'Paragraph3')]) |
|
``` |
|
|
|
With transformers: |
|
``` |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
import torch |
|
|
|
model_path = "clarin-knext/herbert-large-msmarco" |
|
model = AutoModelForSequenceClassification.from_pretrained(model_path) |
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
|
|
features = tokenizer(['Jakie miasto jest stolica Polski?', 'Stolicą Polski jest Warszawa.'], padding=True, truncation=True, return_tensors="pt") |
|
|
|
model.eval() |
|
with torch.no_grad(): |
|
scores = model(**features).logits |
|
print(scores) |
|
``` |
|
|