XLM_RoBERTa-Clickbait-Detection-new

This model is a fine-tuned version of xlm-roberta-large on the christinacdl/clickbait_detection_dataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1071
  • Micro F1: 0.9834
  • Macro F1: 0.9833
  • Accuracy: 0.9834

It achieves the following results on the test set:

  • Accuracy: 0.9838922630050172

  • Micro-F1 Score: 0.9838922630050172

  • Macro-F1 Score: 0.9838416247418498

  • Matthews Correlation Coefficient: 0.9676867009951606

  • Precision of each class: [0.98156425 0.98597897]

  • Recall of each class: [0.98431373 0.98351648]

  • F1 score of each class: [0.98293706 0.98474619]

Intended uses & limitations

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • early stopping patience: 2
  • adam epsilon: 1e-8
  • gradient_checkpointing: True
  • max_grad_norm: 1.0
  • seed: 42
  • optimizer: adamw_torch_fused
  • weight decay: 0.01
  • warmup_ratio: 0
  • group_by_length: True
  • max_seq_length: 512
  • save_steps: 1000
  • logging_steps: 500
  • evaluation_strategy: epoch
  • save_strategy: epoch
  • eval_steps: 1000
  • save_total_limit: 2

All results from Training and Evaluation

  • "epoch": 4.0,
  • "eval_accuracy": 0.9844203855294428,
  • "eval_loss": 0.08027808368206024,
  • "eval_macro_f1": 0.9843695357857132,
  • "eval_micro_f1": 0.9844203855294428,
  • "eval_runtime": 124.9733,
  • "eval_samples": 3787,
  • "eval_samples_per_second": 30.302,
  • "eval_steps_per_second": 1.896,
  • "predict_accuracy": 0.9838922630050172,
  • "predict_loss": 0.07716809958219528,
  • "predict_macro_f1": 0.9838416247418498,
  • "predict_micro_f1": 0.9838922630050172,
  • "predict_runtime": 127.7861,
  • "predict_samples": 3787,
  • "predict_samples_per_second": 29.635,
  • "predict_steps_per_second": 1.855,
  • "train_loss": 0.057462599486458765,
  • "train_runtime": 25253.576,
  • "train_samples": 30296,
  • "train_samples_per_second": 4.799,
  • "train_steps_per_second": 0.15

Framework versions

  • Transformers 4.36.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.13.1
  • Tokenizers 0.15.0
Downloads last month
109
Safetensors
Model size
560M params
Tensor type
F32
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for christinacdl/XLM_RoBERTa-Clickbait-Detection-new

Finetuned
(333)
this model

Dataset used to train christinacdl/XLM_RoBERTa-Clickbait-Detection-new

Space using christinacdl/XLM_RoBERTa-Clickbait-Detection-new 1