gemma-instruct-merge-test_
gemma-instruct-merge-test_ is a merge of the following models using LazyMergekit:
𧩠Configuration
- model: google/gemma-2-2b
- model: google/gemma-2-2b-it
parameters:
density:
- filter: model.layers.1.self_attn.q_proj
value: 0.00539
- filter: model.layers.2.self_attn.q_proj
value: 0.03843
- filter: model.layers.6.self_attn.q_proj
value: 0.03716
- filter: model.layers.24.self_attn.q_proj
value: 0.04552
- filter: model.layers.25.self_attn.q_proj
value: 0.03919
- filter: model.layers.0.self_attn.k_proj
value: 0.00592
- filter: model.layers.2.self_attn.k_proj
value: 0.02603
- filter: model.layers.3.self_attn.k_proj
value: 0.07283
- filter: model.layers.8.self_attn.k_proj
value: 0.08753
- filter: model.layers.10.self_attn.k_proj
value: 0.07783
- filter: model.layers.23.self_attn.k_proj
value: 0.05987
- filter: model.layers.24.self_attn.k_proj
value: 0.02903
- filter: model.layers.25.self_attn.k_proj
value: 0.08715
- filter: model.layers.0.self_attn.v_proj
value: 0.03025
- filter: model.layers.2.self_attn.v_proj
value: 0.00286
- filter: model.layers.3.self_attn.v_proj
value: 0.09155
- filter: model.layers.6.self_attn.v_proj
value: 0.06811
- filter: model.layers.7.self_attn.v_proj
value: 0.01334
- filter: model.layers.10.self_attn.v_proj
value: 0.04
- filter: model.layers.13.self_attn.v_proj
value: 0.09347
- filter: model.layers.24.self_attn.v_proj
value: 0.07956
- filter: model.layers.0.self_attn.o_proj
value: 0.03265
- filter: model.layers.2.self_attn.o_proj
value: 0.06134
- filter: model.layers.4.self_attn.o_proj
value: 0.07924
- filter: model.layers.6.self_attn.o_proj
value: 0.09982
- filter: model.layers.7.self_attn.o_proj
value: 0.02826
- filter: model.layers.8.self_attn.o_proj
value: 0.03906
- filter: model.layers.19.self_attn.o_proj
value: 0.09507
- filter: model.layers.23.self_attn.o_proj
value: 0.00282
- filter: model.layers.24.self_attn.o_proj
value: 0.09864
- filter: model.layers.25.self_attn.o_proj
value: 0.00961
- filter: model.layers.1.mlp.gate_proj
value: 0.08775
- filter: model.layers.2.mlp.gate_proj
value: 0.0001
- filter: model.layers.6.mlp.gate_proj
value: 0.06577
- filter: model.layers.12.mlp.gate_proj
value: 0.02651
- filter: model.layers.13.mlp.gate_proj
value: 0.04687
- filter: model.layers.15.mlp.gate_proj
value: 0.03147
- filter: model.layers.16.mlp.gate_proj
value: 0.05726
- filter: model.layers.17.mlp.gate_proj
value: 0.04511
- filter: model.layers.23.mlp.gate_proj
value: 0.08641
- filter: model.layers.1.mlp.up_proj
value: 0.06887
- filter: model.layers.6.mlp.up_proj
value: 0.07411
- filter: model.layers.7.mlp.up_proj
value: 0.05424
- filter: model.layers.12.mlp.up_proj
value: 0.08044
- filter: model.layers.13.mlp.up_proj
value: 0.0021
- filter: model.layers.14.mlp.up_proj
value: 0.26389
- filter: model.layers.15.mlp.up_proj
value: 0.06886
- filter: model.layers.23.mlp.up_proj
value: 0.02931
- filter: model.layers.0.mlp.down_proj
value: 0.06756
- filter: model.layers.1.mlp.down_proj
value: 0.03746
- filter: model.layers.2.mlp.down_proj
value: 0.09104
- filter: model.layers.3.mlp.down_proj
value: 0.06643
- filter: model.layers.4.mlp.down_proj
value: 0.05003
- filter: model.layers.5.mlp.down_proj
value: 0.0406
- filter: model.layers.6.mlp.down_proj
value: 0.01609
- filter: model.layers.7.mlp.down_proj
value: 0.09629
- filter: model.layers.8.mlp.down_proj
value: 0.08912
- filter: model.layers.10.mlp.down_proj
value: 0.04635
- filter: model.layers.11.mlp.down_proj
value: 0.0099
- filter: model.layers.12.mlp.down_proj
value: 0.03487
- filter: model.layers.13.mlp.down_proj
value: 0.04977
- filter: model.layers.14.mlp.down_proj
value: 0.00393
- filter: model.layers.15.mlp.down_proj
value: 0.00748
- filter: model.layers.16.mlp.down_proj
value: 0.06696
- filter: model.layers.17.mlp.down_proj
value: 0.02067
- filter: model.layers.19.mlp.down_proj
value: 0.009
- filter: model.layers.20.mlp.down_proj
value: 0.0215
- filter: model.layers.21.mlp.down_proj
value: 0.04196
- filter: model.layers.22.mlp.down_proj
value: 0.06326
- filter: model.layers.25.mlp.down_proj
value: 0.04905
weight:
- value: 1
merge_method: ties
base_model: google/gemma-2-2b
parameters:
normalize: true
int8_mask: true
dtype: bfloat16
tokenizer_source: union
π» Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "choprahetarth/gemma-instruct-merge-test_"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 2