distilbert-base-uncased-finetuned-ner

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2228
  • Precision: 0.8030
  • Recall: 0.8093
  • F1: 0.8061
  • Accuracy: 0.9545

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.3032 1.0 878 0.3241 0.6979 0.5912 0.6401 0.9168
0.2666 2.0 1756 0.2822 0.6475 0.6577 0.6525 0.9221
0.2025 3.0 2634 0.2402 0.7021 0.7273 0.7144 0.9369
0.1421 4.0 3512 0.2158 0.7283 0.7331 0.7307 0.9390
0.111 5.0 4390 0.2189 0.7442 0.7395 0.7418 0.9417
0.0813 6.0 5268 0.2196 0.7307 0.7812 0.7551 0.9442
0.0538 7.0 6146 0.2169 0.7594 0.8049 0.7815 0.9497
0.0389 8.0 7024 0.2133 0.7929 0.7991 0.7960 0.9520
0.0263 9.0 7902 0.2192 0.8002 0.7991 0.7996 0.9530
0.0141 10.0 8780 0.2224 0.8029 0.8097 0.8063 0.9546

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.2.0
  • Datasets 2.17.0
  • Tokenizers 0.15.2
Downloads last month
16
Safetensors
Model size
66.4M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for chandc/distilbert-base-uncased-finetuned-ner

Finetuned
(7142)
this model