distilbert-base-uncased-finetuned-qnli

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2932
  • Accuracy: 0.8874

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.3493 1.0 6547 0.2973 0.8777
0.2559 2.0 13094 0.2932 0.8874

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.1.2+cu121
  • Datasets 2.15.0
  • Tokenizers 0.13.3
Downloads last month
2
Inference API
Unable to determine this model's library. Check the docs .