SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2 on the imdb-triplet dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- imdb-triplet
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("celik-muhammed/all-MiniLM-L6-v2-finetuned-imdb")
# Run inference
sentences = [
' "Oliver Twist" (1985) In a storm, in a workhouse, to a nameless woman, young Oliver Twist is born into parish care where he\'s overworked and underfed. As he grows older his adventures take him from the countryside to London, through harsh treatment, kindness, an undertaker, and a thieves\' dens, where he makes friends and enemies. But all the time he is pursued by the mysterious Monks, who hires Fagin to turn Oliver into a thief. Oliver is rescued by chance and kind friends. But it\'s a puzzle of legitimacy, inheritance, and identity that Oliver\'s friends must attempt to unravel before Monks can destroy Oliver.',
'drama',
'documentary',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9007 |
cosine_accuracy_threshold | 0.602 |
cosine_f1 | 0.4643 |
cosine_f1_threshold | 0.5201 |
cosine_precision | 0.4201 |
cosine_recall | 0.5189 |
cosine_ap | 0.4637 |
dot_accuracy | 0.9007 |
dot_accuracy_threshold | 0.602 |
dot_f1 | 0.4643 |
dot_f1_threshold | 0.5201 |
dot_precision | 0.4201 |
dot_recall | 0.5189 |
dot_ap | 0.4637 |
manhattan_accuracy | 0.9003 |
manhattan_accuracy_threshold | 13.5474 |
manhattan_f1 | 0.4582 |
manhattan_f1_threshold | 15.1497 |
manhattan_precision | 0.4095 |
manhattan_recall | 0.52 |
manhattan_ap | 0.4579 |
euclidean_accuracy | 0.9007 |
euclidean_accuracy_threshold | 0.8922 |
euclidean_f1 | 0.4643 |
euclidean_f1_threshold | 0.9797 |
euclidean_precision | 0.4201 |
euclidean_recall | 0.5189 |
euclidean_ap | 0.4637 |
max_accuracy | 0.9007 |
max_accuracy_threshold | 13.5474 |
max_f1 | 0.4643 |
max_f1_threshold | 15.1497 |
max_precision | 0.4201 |
max_recall | 0.52 |
max_ap | 0.4637 |
Triplet
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.6382 |
dot_accuracy | 0.3618 |
manhattan_accuracy | 0.6227 |
euclidean_accuracy | 0.6382 |
max_accuracy | 0.6382 |
Training Details
Training Dataset
imdb-triplet
- Dataset: imdb-triplet
- Size: 43,371 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 31 tokens
- mean: 129.65 tokens
- max: 256 tokens
- min: 3 tokens
- mean: 3.0 tokens
- max: 3 tokens
- Samples:
anchor positive A Metafísica dos Chocolates (1967) Beautiful girls (pre-teens, adolescents, and young women) in street scenes and one of them visiting a chocolate factory, where all the workers are young women, too. A poetic text and an extract from a major Portuguese poet, convey to us the sensual feeling of choosing, unwrapping, and munching chocolate.
short
Thai Jashe! (2016) Thai Jashe! is an upcoming Gujarati film written and directed by Nirav Barot. It is about the struggles of a middle class man to achieve his goals in the metro-city Ahmedabad. The film stars Manoj Joshi, Malhar Thakar and Monal Gajjar.
drama
Vuelco (2005) A teenage boy rides out of town to meet a a girl in the countryside. She is deaf, and he explains the different means he uses to get her attention when she has not seen him. Then they say goodbye, with one poignant hug and a desperate yell punctuating their final farewell.
short
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 256per_device_eval_batch_size
: 256num_train_epochs
: 5warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 256per_device_eval_batch_size
: 256per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss | max_accuracy | max_ap |
---|---|---|---|---|
0 | 0 | - | 0.6382 | 0.2004 |
0.5882 | 100 | 1.7867 | - | 0.3542 |
1.1765 | 200 | 1.3073 | - | 0.4564 |
1.7647 | 300 | 1.266 | - | 0.3862 |
2.3529 | 400 | 1.1889 | - | 0.4011 |
2.9412 | 500 | 1.1554 | - | 0.4398 |
3.5294 | 600 | 1.1558 | - | 0.4386 |
4.1176 | 700 | 1.1555 | - | 0.4566 |
4.7059 | 800 | 1.0835 | - | 0.4637 |
Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2
- Accelerate: 0.30.1
- Datasets: 2.19.2
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 18
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for celik-muhammed/all-MiniLM-L6-v2-finetuned-imdb
Base model
sentence-transformers/all-MiniLM-L6-v2Evaluation results
- Cosine Accuracy on Unknownself-reported0.901
- Cosine Accuracy Threshold on Unknownself-reported0.602
- Cosine F1 on Unknownself-reported0.464
- Cosine F1 Threshold on Unknownself-reported0.520
- Cosine Precision on Unknownself-reported0.420
- Cosine Recall on Unknownself-reported0.519
- Cosine Ap on Unknownself-reported0.464
- Dot Accuracy on Unknownself-reported0.901
- Dot Accuracy Threshold on Unknownself-reported0.602
- Dot F1 on Unknownself-reported0.464