OTAS (Office Title Address Splitter)
Our model OTAS (Office Title Address Splitter) is a Named Entity Recognition Classical Chinese language model that is intended to split the address portion in Classical Chinese office titles.. This model is first inherited from raynardj/classical-chinese-punctuation-guwen-biaodian Classical Chinese punctuation model, and finetuned using over a 25,000 high-quality punctuation pairs collected CBDB group (China Biographical Database).
Sample input txt file
The sample input txt file can be downloaded here: https://huggingface.co/cbdb/OfficeTitleAddressSplitter/blob/main/input.txt
How to use
Here is how to use this model to get the features of a given text in PyTorch:
1. Import model and packages
from transformers import AutoTokenizer, AutoModelForTokenClassification
PRETRAINED = "cbdb/OfficeTitleAddressSplitter"
tokenizer = AutoTokenizer.from_pretrained(PRETRAINED)
model = AutoModelForTokenClassification.from_pretrained(PRETRAINED)
2. Load Data
# Load your data here
test_list = ['漢軍鑲黃旗副都統', '兵部右侍郎', '盛京戶部侍郎']
3. Make a prediction
def predict_class(test):
tokens_test = tokenizer.encode_plus(
test,
add_special_tokens=True,
return_attention_mask=True,
padding=True,
max_length=128,
return_tensors='pt',
truncation=True
)
test_seq = torch.tensor(tokens_test['input_ids'])
test_mask = torch.tensor(tokens_test['attention_mask'])
inputs = {
"input_ids": test_seq,
"attention_mask": test_mask
}
with torch.no_grad():
# print(inputs.shape)
outputs = model(**inputs)
outputs = outputs.logits.detach().cpu().numpy()
softmax_score = softmax(outputs)
softmax_score = np.argmax(softmax_score, axis=2)[0]
return test_seq, softmax_score
for test_sen0 in test_list:
test_seq, pred_class_proba = predict_class(test_sen0)
test_sen = tokenizer.decode(test_seq[0]).split()
label = [idx2label[i] for i in pred_class_proba]
element_to_find = '。'
if element_to_find in label:
index = label.index(element_to_find)
test_sen_pred = [i for i in test_sen0]
test_sen_pred.insert(index, element_to_find)
test_sen_pred = ''.join(test_sen_pred)
else:
test_sen_pred = [i for i in test_sen0]
test_sen_pred = ''.join(test_sen_pred)
print(test_sen_pred)
漢軍鑲黃旗。副都統
兵部右侍郎
盛京。戶部侍郎
Authors
Queenie Luo (queenieluo[at]g.harvard.edu)
Hongsu Wang
Peter Bol
CBDB Group
License
Copyright (c) 2023 CBDB
Except where otherwise noted, content on this repository is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0). To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
- Downloads last month
- 11