plant-seedlings-model-swin

This model is a fine-tuned version of microsoft/swin-base-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2169
  • Accuracy: 0.9474

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.8259 0.2 100 0.7181 0.7520
1.0121 0.39 200 0.7504 0.7092
0.5952 0.59 300 0.6254 0.7986
0.6031 0.79 400 0.4595 0.8438
0.637 0.98 500 0.5830 0.8080
0.5896 1.18 600 0.5042 0.8384
0.6758 1.38 700 0.4827 0.8325
0.543 1.57 800 0.4713 0.8433
0.3312 1.77 900 0.4752 0.8546
0.5559 1.96 1000 0.4578 0.8369
0.4303 2.16 1100 0.5034 0.8389
0.5705 2.36 1200 0.4322 0.8502
0.5369 2.55 1300 0.4646 0.8404
0.3628 2.75 1400 0.3984 0.8659
0.4071 2.95 1500 0.3872 0.8689
0.4988 3.14 1600 0.3543 0.8792
0.4607 3.34 1700 0.3933 0.8674
0.3342 3.54 1800 0.3883 0.8639
0.4141 3.73 1900 0.3886 0.8644
0.5513 3.93 2000 0.3335 0.8900
0.4659 4.13 2100 0.4286 0.8590
0.2263 4.32 2200 0.3587 0.8772
0.4518 4.52 2300 0.3332 0.8870
0.3422 4.72 2400 0.2723 0.9062
0.6113 4.91 2500 0.2811 0.9057
0.3636 5.11 2600 0.3157 0.8939
0.2794 5.3 2700 0.2773 0.9082
0.3486 5.5 2800 0.3099 0.8978
0.2563 5.7 2900 0.3077 0.9052
0.3709 5.89 3000 0.3650 0.8836
0.3732 6.09 3100 0.3132 0.8988
0.2218 6.29 3200 0.2947 0.9052
0.2488 6.48 3300 0.2737 0.9131
0.2689 6.68 3400 0.3471 0.8924
0.3212 6.88 3500 0.3447 0.8905
0.3604 7.07 3600 0.2974 0.9086
0.2492 7.27 3700 0.3057 0.8993
0.1674 7.47 3800 0.3241 0.9032
0.3248 7.66 3900 0.2952 0.9077
0.204 7.86 4000 0.2883 0.9111
0.2783 8.06 4100 0.3017 0.9047
0.3721 8.25 4200 0.2782 0.9136
0.2554 8.45 4300 0.2625 0.9170
0.1104 8.64 4400 0.2590 0.9190
0.247 8.84 4500 0.3021 0.9096
0.3316 9.04 4600 0.3190 0.8988
0.3214 9.23 4700 0.2883 0.9140
0.192 9.43 4800 0.2770 0.9155
0.3568 9.63 4900 0.2475 0.9229
0.3365 9.82 5000 0.2568 0.9229
0.1226 10.02 5100 0.2534 0.9204
0.2359 10.22 5200 0.2679 0.9131
0.1623 10.41 5300 0.3127 0.9204
0.2369 10.61 5400 0.2779 0.9170
0.1234 10.81 5500 0.2486 0.9273
0.1823 11.0 5600 0.2608 0.9239
0.2875 11.2 5700 0.2612 0.9190
0.1408 11.39 5800 0.2208 0.9298
0.1094 11.59 5900 0.2399 0.9332
0.213 11.79 6000 0.2636 0.9209
0.1599 11.98 6100 0.2458 0.9249
0.2565 12.18 6200 0.2698 0.9204
0.0773 12.38 6300 0.2348 0.9322
0.1515 12.57 6400 0.2370 0.9263
0.2308 12.77 6500 0.2185 0.9307
0.2009 12.97 6600 0.2211 0.9342
0.2126 13.16 6700 0.2552 0.9342
0.1348 13.36 6800 0.2206 0.9371
0.1473 13.56 6900 0.2199 0.9357
0.1861 13.75 7000 0.2512 0.9224
0.1136 13.95 7100 0.2803 0.9214
0.1726 14.15 7200 0.2201 0.9361
0.202 14.34 7300 0.2105 0.9371
0.2043 14.54 7400 0.2472 0.9263
0.1427 14.73 7500 0.2250 0.9381
0.1599 14.93 7600 0.2270 0.9391
0.1216 15.13 7700 0.2409 0.9307
0.2869 15.32 7800 0.2208 0.9386
0.1254 15.52 7900 0.2298 0.9332
0.1314 15.72 8000 0.1959 0.9416
0.1106 15.91 8100 0.2183 0.9342
0.2211 16.11 8200 0.2581 0.9337
0.1589 16.31 8300 0.2091 0.9381
0.0791 16.5 8400 0.1792 0.9455
0.0849 16.7 8500 0.2481 0.9298
0.089 16.9 8600 0.2143 0.9386
0.0609 17.09 8700 0.2020 0.9524
0.1509 17.29 8800 0.2039 0.9396
0.0934 17.49 8900 0.2242 0.9322
0.0398 17.68 9000 0.1891 0.9460
0.1106 17.88 9100 0.1939 0.9470
0.1742 18.07 9200 0.1965 0.9479
0.1015 18.27 9300 0.1886 0.9440
0.089 18.47 9400 0.1851 0.9479
0.1393 18.66 9500 0.1844 0.9484
0.0849 18.86 9600 0.2205 0.9396
0.0708 19.06 9700 0.1888 0.9435
0.1037 19.25 9800 0.2070 0.9450
0.1109 19.45 9900 0.2079 0.9460
0.0533 19.65 10000 0.2036 0.9489
0.0757 19.84 10100 0.2169 0.9474

Framework versions

  • Transformers 4.28.1
  • Pytorch 2.0.0+cu118
  • Datasets 2.11.0
  • Tokenizers 0.13.3
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results