whisper-small-vn / README.md
cang1602004's picture
End of training
9b3464a verified
|
raw
history blame
2.13 kB
metadata
library_name: transformers
language:
  - vi
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Small vn - pbl4
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: vi
          split: None
          args: 'config: vi, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 27.821033008005262

Whisper Small vn - pbl4

This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7314
  • Wer: 27.8210

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0252 5.7471 1000 0.6066 28.1171
0.0006 11.4943 2000 0.6882 27.6017
0.0003 17.2414 3000 0.7211 27.9088
0.0002 22.9885 4000 0.7314 27.8210

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.4.0
  • Datasets 3.2.0
  • Tokenizers 0.21.0