whisper-large-v2-Ko / README.md
byoussef's picture
Update README.md
e4f7c8c
|
raw
history blame
2.12 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: whisper-large-v2-Ko
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Bingsu/zeroth-korean
          type: Bingsu/zeroth-korean
          split: test
        metrics:
          - name: Wer
            type: wer
            value: 2.9
datasets:
  - Bingsu/zeroth-korean
language:
  - ko
library_name: transformers
pipeline_tag: automatic-speech-recognition

whisper-large-v2-Ko

This model is a fine-tuned version of openai/whisper-large-v2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0617
  • Wer: 2.9

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 7
  • total_train_batch_size: 224
  • total_eval_batch_size: 112
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0299 10.0 1000 0.0745 0.0447
0.0085 20.0 2000 0.0608 0.0353
0.0036 30.0 3000 0.0593 0.0302
0.0013 40.0 4000 0.0609 0.0282
0.0008 50.0 5000 0.0617 0.0290

Framework versions

  • Transformers 4.27.0.dev0
  • Pytorch 1.12.1+cu113
  • Datasets 2.10.1
  • Tokenizers 0.13.2